當(dāng)前位置:育文網(wǎng)>高中>高中數(shù)學(xué)> 高中數(shù)學(xué)學(xué)考知識(shí)點(diǎn)總結(jié)

高中數(shù)學(xué)學(xué)考知識(shí)點(diǎn)總結(jié)

時(shí)間:2022-04-25 08:26:22 高中數(shù)學(xué) 我要投稿

高中數(shù)學(xué)學(xué)考知識(shí)點(diǎn)總結(jié)

  在學(xué)習(xí)中,大家最不陌生的就是知識(shí)點(diǎn)吧!知識(shí)點(diǎn)就是掌握某個(gè)問題/知識(shí)的學(xué)習(xí)要點(diǎn)。想要一份整理好的知識(shí)點(diǎn)嗎?以下是小編整理的高中數(shù)學(xué)學(xué)考知識(shí)點(diǎn)總結(jié),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

高中數(shù)學(xué)學(xué)考知識(shí)點(diǎn)總結(jié)

  高中數(shù)學(xué)學(xué)考知識(shí)點(diǎn)總結(jié)1

  1.定義法:

  判斷B是A的條件,實(shí)際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫出箭頭示意圖,再利用定義判斷即可.

  2.轉(zhuǎn)換法:

  當(dāng)所給命題的充要條件不易判斷時(shí),可對(duì)命題進(jìn)行等價(jià)裝換,例如改用其逆否命題進(jìn)行判斷.

  3.集合法

  在命題的'條件和結(jié)論間的關(guān)系判斷有困難時(shí),可從集合的角度考慮,記條件p、q對(duì)應(yīng)的集合分別為A、B,則:

  若A∩B,則p是q的充分條件.

  若A∪B,則p是q的必要條件.

  若A=B,則p是q的充要條件.

  若A∈B,且B∈A,則p是q的既不充分也不必要條件.

  高中數(shù)學(xué)學(xué)考知識(shí)點(diǎn)總結(jié)2

  有界性

  設(shè)函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對(duì)于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上無界。

  單調(diào)性

  設(shè)函數(shù)f(x)的定義域?yàn)镈,區(qū)間I包含于D.如果對(duì)于區(qū)間上任意兩點(diǎn)x1及x2,當(dāng)x1f(x2),則稱函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的.單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為單調(diào)函數(shù)。

  奇偶性

  設(shè)為一個(gè)實(shí)變量實(shí)值函數(shù),若有f(—x)=—f(x),則f(x)為奇函數(shù)。

  幾何上,一個(gè)奇函數(shù)關(guān)于原點(diǎn)對(duì)稱,亦即其圖像在繞原點(diǎn)做180度旋轉(zhuǎn)后不會(huì)改變。

  奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x)。

  設(shè)f(x)為一實(shí)變量實(shí)值函數(shù),若有f(x)=f(—x),則f(x)為偶函數(shù)。

  幾何上,一個(gè)偶函數(shù)關(guān)于y軸對(duì)稱,亦即其圖在對(duì)y軸映射后不會(huì)改變。

  偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x)。

  偶函數(shù)不可能是個(gè)雙射映射。

  連續(xù)性

  在數(shù)學(xué)中,連續(xù)是函數(shù)的一種屬性。直觀上來說,連續(xù)的函數(shù)就是當(dāng)輸入值的變化足夠小的時(shí)候,輸出的變化也會(huì)隨之足夠小的函數(shù).如果輸入值的某種微小的.變化會(huì)產(chǎn)生輸出值的一個(gè)突然的跳躍甚至無法定義,則這個(gè)函數(shù)被稱為是不連續(xù)的函數(shù)(或者說具有不連續(xù)性)。

  高中數(shù)學(xué)學(xué)考知識(shí)點(diǎn)總結(jié)3

  (一)導(dǎo)數(shù)第一定義

  設(shè)函數(shù) y = f(x) 在點(diǎn) x0 的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內(nèi) ) 時(shí),相應(yīng)地函數(shù)取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當(dāng) △x→0 時(shí)極限存在,則稱函數(shù) y = f(x) 在點(diǎn) x0 處可導(dǎo),并稱這個(gè)極限值為函數(shù) y = f(x) 在點(diǎn) x0 處的導(dǎo)數(shù)記為 f(x0) ,即導(dǎo)數(shù)第一定義

  (二)導(dǎo)數(shù)第二定義

  設(shè)函數(shù) y = f(x) 在點(diǎn) x0 的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內(nèi) ) 時(shí),相應(yīng)地函數(shù)變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當(dāng) △x→0 時(shí)極限存在,則稱函數(shù) y = f(x) 在點(diǎn) x0 處可導(dǎo),并稱這個(gè)極限值為函數(shù) y = f(x) 在點(diǎn) x0 處的導(dǎo)數(shù)記為 f(x0) ,即 導(dǎo)數(shù)第二定義

  (三)導(dǎo)函數(shù)與導(dǎo)數(shù)

  如果函數(shù) y = f(x) 在開區(qū)間 I 內(nèi)每一點(diǎn)都可導(dǎo),就稱函數(shù)f(x)在區(qū)間 I 內(nèi)可導(dǎo)。這時(shí)函數(shù) y = f(x) 對(duì)于區(qū)間 I 內(nèi)的.每一個(gè)確定的 x 值,都對(duì)應(yīng)著一個(gè)確定的導(dǎo)數(shù),這就構(gòu)成一個(gè)新的函數(shù),稱這個(gè)函數(shù)為原來函數(shù) y = f(x) 的導(dǎo)函數(shù),記作 y, f(x), dy/dx, df(x)/dx。導(dǎo)函數(shù)簡(jiǎn)稱導(dǎo)數(shù)。

  (四)單調(diào)性及其應(yīng)用

  1.利用導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一般步驟

  (1)求f(x)

  (2)確定f(x)在(a,b)內(nèi)符號(hào) (3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)

  2.用導(dǎo)數(shù)求多項(xiàng)式函數(shù)單調(diào)區(qū)間的一般步驟

  (1)求f(x)

  (2)f(x)>0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為增區(qū)間; f(x)<0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為減區(qū)間

  學(xué)習(xí)了導(dǎo)數(shù)基礎(chǔ)知識(shí)點(diǎn),接下來可以學(xué)習(xí)高二數(shù)學(xué)中涉及到的導(dǎo)數(shù)應(yīng)用的部分。

  高中數(shù)學(xué)學(xué)考知識(shí)點(diǎn)總結(jié)4

  一、圓及圓的相關(guān)量的定義

  1.平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長(zhǎng)稱為半徑。

  2.圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過圓心的弦叫

  做直徑。

  3.頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。

  4.過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

  5.直線與圓有3種位置關(guān)系:無公共點(diǎn)為相離;有2個(gè)公共點(diǎn)為相交;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。

  6.兩圓之間有5種位置關(guān)系:無公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。

  7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個(gè)扇形。這個(gè)扇形的半徑成為圓錐的母線。

  二、有關(guān)圓的字母表示方法

  圓--⊙ 半徑—r 弧--⌒ 直徑—d

  扇形弧長(zhǎng)/圓錐母線—l 周長(zhǎng)—C 面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個(gè))

  1.點(diǎn)P與圓O的位置關(guān)系(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離):

  P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO

  2.圓是軸對(duì)稱圖形,其對(duì)稱軸是任意一條過圓心的直線。圓也是中心對(duì)稱圖形,其對(duì)稱中心是圓心。

  3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧。逆定

  理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的弧。

  4.在同圓或等圓中,如果2個(gè)圓心角,2個(gè)圓周角,2條弧,2條弦中有一組量相等,那么他們所對(duì)應(yīng)的其余各組量都分別相等。

  5.一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。

  6.直徑所對(duì)的圓周角是直角。90度的圓周角所對(duì)的弦是直徑。

  7.不在同一直線上的3個(gè)點(diǎn)確定一個(gè)圓。

  8.一個(gè)三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),到三角形3個(gè)頂點(diǎn)距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形3邊距離相等。

  9.直線AB與圓O的位置關(guān)系(設(shè)OP⊥AB于P,則PO是AB到圓心的距

  離):

  AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO

  10.圓的切線垂直于過切點(diǎn)的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個(gè)圓的切線。

  11.圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P):

  外離P>R+r;外切P=R+r;相交R-r

  三、有關(guān)圓的計(jì)算公式

  1.圓的周長(zhǎng)C=2πr=πd

  2.圓的面積S=s=πr?

  3.扇形弧長(zhǎng)l=nπr/180

  4.扇形面積S=nπr? /360=rl/2

  5.圓錐側(cè)面積S=πrl

  四、圓的方程

  1.圓的標(biāo)準(zhǔn)方程

  在平面直角坐標(biāo)系中,以點(diǎn)O(a,b)為圓心,以r為半徑的圓的標(biāo)準(zhǔn)方程是

  (x-a)^2+(y-b)^2=r^2

  2.圓的一般方程

  把圓的標(biāo)準(zhǔn)方程展開,移項(xiàng),合并同類項(xiàng)后,可得圓的一般方程是

  x^2+y^2+Dx+Ey+F=0

  和標(biāo)準(zhǔn)方程對(duì)比,其實(shí)D=-2a,E=-2b,F=a^2+b^2

  相關(guān)知識(shí):圓的離心率e=0.在圓上任意一點(diǎn)的曲率半徑都是r.

  五、圓與直線的位置關(guān)系判斷

  平面內(nèi),直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是

  討論如下2種情況:

  (1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

  代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的一元二次方程f(x)=0.

  利用判別式b^2-4ac的符號(hào)可確定圓與直線的位置關(guān)系如下:

  如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交

  如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切

  如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離

 。2)如果B=0即直線為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)

  將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2

  令y=b,求出此時(shí)的兩個(gè)x值x1,x2,并且我們規(guī)定x1

  當(dāng)x=-C/Ax2時(shí),直線與圓相離

  當(dāng)x1

  當(dāng)x=-C/A=x1或x=-C/A=x2時(shí),直線與圓相切

  圓的定理:

  1.不在同一直線上的三點(diǎn)確定一個(gè)圓。

  2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

  推論1.①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

  ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧

  ③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

  推論2.圓的兩條平行弦所夾的弧相等

  3.圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

  4.圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

  5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  7.同圓或等圓的半徑相等

  8.到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

  9.定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦 相等,所對(duì)的弦的弦心距相等

  10.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

  11.定理 圓的`內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對(duì)角

  12.①直線L和⊙O相交 d

  ②直線L和⊙O相切 d=r

 、壑本L和⊙O相離 d>r

  13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑

  15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

  16.推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

  17.切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等, 圓心和這一點(diǎn)的連線平分兩條切線的夾角

  18.圓的外切四邊形的兩組對(duì)邊的和相等 外角等于內(nèi)對(duì)角

  19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

  20.①兩圓外離 d>R+r ②兩圓外切 d=R+r

 、蹆蓤A相交 R-rr)

 、軆蓤A內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)

  21.定理 相交兩圓的連心線垂直平分兩圓的公共弦

  22.定理 把圓分成n(n≥3):

 。1)依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

 。2)經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  23.定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

  24.正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

  25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長(zhǎng)

  27.正三角形面積√3a/4 a表示邊長(zhǎng)

  28.如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29.弧長(zhǎng)計(jì)算公式:L=n兀R/180

  30.扇形面積公式:S扇形=n兀R^2/360=LR/2

  31.內(nèi)公切線長(zhǎng)= d-(R-r) 外公切線長(zhǎng)= d-(R+r)

  32.定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

  33.推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

  34.推論2 半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所 對(duì)的弦是直徑

  35.弧長(zhǎng)公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

  高中數(shù)學(xué)學(xué)考知識(shí)點(diǎn)總結(jié)5

  一、平面的基本性質(zhì)與推論

  1、平面的基本性質(zhì):

  公理1如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在這個(gè)平面內(nèi);

  公理2過不在一條直線上的三點(diǎn),有且只有一個(gè)平面;

  公理3如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。

  2、空間點(diǎn)、直線、平面之間的位置關(guān)系:

  直線與直線—平行、相交、異面;

  直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);

  平面與平面—平行、相交。

  3、異面直線:

  平面外一點(diǎn)A與平面一點(diǎn)B的連線和平面內(nèi)不經(jīng)過點(diǎn)B的.直線是異面直線(判定);

  所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補(bǔ)角);

  兩條直線不是異面直線,則兩條直線平行或相交(反證);

  異面直線不同在任何一個(gè)平面內(nèi)。

  求異面直線所成的角:平移法,把異面問題轉(zhuǎn)化為相交直線的夾角

  二、空間中的平行關(guān)系

  1、直線與平面平行(核心)

  定義:直線和平面沒有公共點(diǎn)

  判定:不在一個(gè)平面內(nèi)的一條直線和平面內(nèi)的一條直線平行,則該直線平行于此平面(由線線平行得出)

  性質(zhì):一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,則這條直線就和兩平面的交線平行

  2、平面與平面平行

  定義:兩個(gè)平面沒有公共點(diǎn)

  判定:一個(gè)平面內(nèi)有兩條相交直線平行于另一個(gè)平面,則這兩個(gè)平面平行

  性質(zhì):兩個(gè)平面平行,則其中一個(gè)平面內(nèi)的直線平行于另一個(gè)平面;如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。

  3、常利用三角形中位線、平行四邊形對(duì)邊、已知直線作一平面找其交線

  三、空間中的垂直關(guān)系

  1、直線與平面垂直

  定義:直線與平面內(nèi)任意一條直線都垂直

  判定:如果一條直線與一個(gè)平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直

  性質(zhì):垂直于同一直線的兩平面平行

  推論:如果在兩條平行直線中,有一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面

  直線和平面所成的角:【0,90】度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說成的銳角,特別規(guī)定垂直90度,在平面內(nèi)或者平行0度

  2、平面與平面垂直

  定義:兩個(gè)平面所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點(diǎn)為端點(diǎn),在兩個(gè)半平面內(nèi)分別作垂直于棱的兩條射線所成的角)

  判定:一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直

  性質(zhì):兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直

  高中數(shù)學(xué)學(xué)考知識(shí)點(diǎn)總結(jié)6

  空間兩條直線只有三種位置關(guān)系:平行、相交、異面

  1、按是否共面可分為兩類:

  (1)共面:平行、相交

  (2)異面:

  異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。

  異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。

  兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

  兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

  2、若從有無公共點(diǎn)的.角度看可分為兩類:

  (1)有且僅有一個(gè)公共點(diǎn)——相交直線;

  (2)沒有公共點(diǎn)——平行或異面

  直線和平面的位置關(guān)系:

  直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

 、僦本在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)

  ②直線和平面相交——有且只有一個(gè)公共點(diǎn)

  直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。

【高中數(shù)學(xué)學(xué)考知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)總結(jié)04-13

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)總結(jié)大全03-04

高中數(shù)學(xué)水平考知識(shí)點(diǎn)歸納12-07

數(shù)學(xué)學(xué)業(yè)水平考高中知識(shí)點(diǎn)總結(jié)04-06

高中數(shù)學(xué)學(xué)業(yè)水平知識(shí)點(diǎn)總結(jié)(精選8篇)01-08

高中數(shù)學(xué)學(xué)業(yè)水平知識(shí)點(diǎn)整理11-10

數(shù)學(xué)學(xué)業(yè)水平考高中知識(shí)點(diǎn)分享02-25

高中數(shù)學(xué)全部知識(shí)點(diǎn)總結(jié)04-25

高中數(shù)學(xué)統(tǒng)計(jì)知識(shí)點(diǎn)總結(jié)10-21