- 《二次函數(shù)》教案 推薦度:
- 二次函數(shù)教案 推薦度:
- 二次函數(shù)教案 推薦度:
- 相關(guān)推薦
《二次函數(shù)》教案
作為一無名無私奉獻(xiàn)的教育工作者,常常要寫一份優(yōu)秀的教案,教案是教學(xué)活動(dòng)的總的組織綱領(lǐng)和行動(dòng)方案。教案要怎么寫呢?下面是小編精心整理的《二次函數(shù)》教案,歡迎閱讀,希望大家能夠喜歡。
《二次函數(shù)》教案1
學(xué)習(xí)目標(biāo):
1、能夠分析和表示變量間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。
2、用三種方式表示變量間二次函數(shù)關(guān)系,從不同側(cè)面對(duì)函數(shù)性質(zhì)進(jìn)行研究。
3、通過解決用二次函數(shù)所表示的問題,培養(yǎng)學(xué)生的運(yùn)用能力
學(xué)習(xí)重點(diǎn):
能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。
能夠根據(jù)二次函數(shù)的不同表示方式,從不同的側(cè)面對(duì)函數(shù)性質(zhì)進(jìn)行研究。
學(xué)習(xí)難點(diǎn):
能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。
學(xué)習(xí)過程:
一、學(xué)前準(zhǔn)備
函數(shù)的三種表示方式,即表格、表達(dá)式、圖象法,我們都不陌生,比如在商店的廣告牌上這樣寫著:一種豆子的售價(jià)與購(gòu)買數(shù)量之間的關(guān)系如下:
x(千克) 0 0.5 1 1.5 2 2.5 3
y(元) 0 1 2 3 4 5 6
這是售貨員為了便于計(jì)價(jià),常常制作這種表示售價(jià)與數(shù)量關(guān)系的表,即用表格表示函數(shù)。用表達(dá)式和圖象法來表示函數(shù)的情形我們更熟悉。這節(jié)課我們不僅要掌握三種表示方式,而且要體會(huì)三種方式之間的聯(lián)系與各自不同的特點(diǎn),在什么情況下用哪一種方式更好?
二、探究活動(dòng)
。ㄒ唬┖献魈骄浚
矩形的周長(zhǎng)是20cm,設(shè)它一邊長(zhǎng)為xx,面積為 xxcm2。 變化的`規(guī)律是什么?你能分別用函數(shù)表達(dá)式、表格和圖象表示出來嗎?
交流完成:
。1)一邊長(zhǎng)為x cm,則另一邊長(zhǎng)為 cm,所以面積為: 用函數(shù)表達(dá)式表示: =________________________________。
。2) 表格表示:
1 2 3 4 5 6 7 8 9
10—
(3)畫出圖象
討論:函數(shù)的圖象在第一象限,可是我們知道開口向下的拋物線可以到達(dá)第四象限和第三象限,思考原因
。ǘ┳h一議
(1)在上述問題中,自變量x的取值范圍是什么?
(2)當(dāng)x取何值時(shí),長(zhǎng)方形的面積最大?它的最大面積是多少?你是怎樣得到的?請(qǐng)你描述一下y隨x的變化而變化的情況。
點(diǎn)撥:自變量x的取值范圍即是使函數(shù)有意義的自變量的取值范圍。請(qǐng)大家互相交流。
。1)因?yàn)閤是邊長(zhǎng),所以x應(yīng)取 數(shù),即x 0,又另一邊長(zhǎng)(10—x)也應(yīng)大于 ,即10—x 0,所以x 10,這兩個(gè)條件應(yīng)該同時(shí)滿足,所以x的取值范圍是 。
。2)當(dāng)x取何值時(shí),長(zhǎng)方形的面積最大,就是求自變量取何值時(shí),函數(shù)有最大值,所以要把二次函數(shù)y=—x2+10x化成頂點(diǎn)式。當(dāng)x=— 時(shí),函數(shù)y有最大值y最大= 。當(dāng)x= 時(shí),長(zhǎng)方形的面積最大,最大面積是25cm2。
可以通過觀察圖象得知。也可以代入頂點(diǎn)坐標(biāo)公式中求得。
。ㄈ┳鲆蛔觯簩W(xué)生獨(dú)立思考完成P62,P63的函數(shù)表達(dá)式,表格,圖象問題
。1)用函數(shù)表達(dá)式表示:y=________。
。2)用表格表示:
(3)用圖象表示:
三、學(xué)習(xí)體會(huì)
本節(jié)課你有哪些收獲?你還有哪些疑問?
四、自我測(cè)試
1、把長(zhǎng)1.6米的鐵絲圍成長(zhǎng)方形ABCD,設(shè)寬為x(m),面積為y(m2)。則當(dāng)最大時(shí),所取的值是( )
A 0.5 B 0.4 C 0.3 D 0.6
2、兩個(gè)數(shù)的和為6,這兩個(gè)數(shù)的積最大可能達(dá)到多少?利用圖象描述乘積與因數(shù)之間的關(guān)系。
3、把一根長(zhǎng)120cm的鐵絲分為兩部分,每一部分均彎曲成一個(gè)正方形,它們的面積和是多少?它們的面積和的最小值是多少?
。ㄟx作題)邊長(zhǎng)為12的正方形鐵片,中間剪去一個(gè)邊長(zhǎng)為x(cm)的小正方形鐵片,剩下的四方框鐵片的面積y(cm2)與x(cm)之間的函數(shù)表達(dá)式為
《二次函數(shù)》教案2
【知識(shí)與技能】
1.會(huì)用描點(diǎn)法畫函數(shù)y=ax2(a>0)的圖象,并根據(jù)圖象認(rèn)識(shí)、理解和掌握其性質(zhì).
2.體會(huì)數(shù)形結(jié)合的轉(zhuǎn)化,能用y=ax2(a>0)的圖象和性質(zhì)解決簡(jiǎn)單的實(shí)際問題.
【過程與方法】
經(jīng)歷探索二次函數(shù)y=ax2(a>0)圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)的經(jīng)驗(yàn),培養(yǎng)觀察、思考、歸納的良好思維習(xí)慣.
【情感態(tài)度】
通過動(dòng)手畫圖,同學(xué)之間交流討論,達(dá)到對(duì)二次函數(shù)y=ax2(a>0)圖象和性質(zhì)的真正理解,從而產(chǎn)生對(duì)數(shù)學(xué)的興趣,調(diào)動(dòng)學(xué)生的積極性.
【教學(xué)重點(diǎn)】
1.會(huì)畫y=ax2(a>0)的圖象.
2.理解,掌握?qǐng)D象的性質(zhì).
【教學(xué)難點(diǎn)】
二次函數(shù)圖象及性質(zhì)探究過程和方法的體會(huì)教學(xué)過程.
一、情境導(dǎo)入,初步認(rèn)識(shí)
問題1 請(qǐng)同學(xué)們回憶一下一次函數(shù)的圖象、反比例函數(shù)的圖象的特征是什么?二次函數(shù)圖象是什么形狀呢?
問題2 如何用描點(diǎn)法畫一個(gè)函數(shù)圖象呢?
【教學(xué)說明】
、俾裕
、诹斜、描點(diǎn)、連線.
二、思考探究,獲取新知
探究1 畫二次函數(shù)y=ax2(a>0)的圖象.
畫二次函數(shù)y=ax2的圖象.
【教學(xué)說明】
①要求同學(xué)們?nèi)巳藙?dòng)手,按“列表、描點(diǎn)、連線”的步驟畫圖y=x2的圖象,同學(xué)們畫好后相互交流、展示,表?yè)P(yáng)畫得比較規(guī)范的同學(xué).
、趶牧斜砗兔椟c(diǎn)中,體會(huì)圖象關(guān)于y軸對(duì)稱的.特征.
③強(qiáng)調(diào)畫拋物線的三個(gè)誤區(qū).
誤區(qū)一:用直線連結(jié),而非光滑的曲線連結(jié),不符合函數(shù)的變化規(guī)律和發(fā)展趨勢(shì).
誤區(qū)二:并非對(duì)稱點(diǎn),存在漏點(diǎn)現(xiàn)象,導(dǎo)致拋物線變形.
誤區(qū)三:忽視自變量的取值范圍,拋物線要求用平滑曲線連點(diǎn)的同時(shí),還需要向兩旁無限延伸,而并非到某些點(diǎn)停止.
《二次函數(shù)》教案3
教學(xué)目標(biāo)
知識(shí)與技能
1.總結(jié)出二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間 的關(guān)系,表述何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數(shù)和沒有實(shí)根.
2.會(huì)利用二次函數(shù)的圖象求一元二次方程的近似解.
過程與方法
經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系.
情感態(tài)度價(jià)值觀
通過觀察二次函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù),討論一元二次方程的根的情況,進(jìn)一步體會(huì)數(shù)形結(jié)合思想.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):方程與函數(shù)之間的聯(lián)系,會(huì)利用二次函數(shù)的圖象求一元二次方程的近似解.
難點(diǎn):二次函數(shù)與x軸交 點(diǎn)的個(gè)數(shù)與一元二次方程的根的 個(gè)數(shù)之間的關(guān)系.
教學(xué)過程設(shè)計(jì)
。ㄒ唬﹩栴}的提出與解決
問題 如圖,以40m/s的速度將 小球沿與地面成30°角的方向擊出時(shí),球的飛行路線將是一條拋物線. 如果不考慮空氣阻力,球的飛行高度h( 單位:m)與飛行時(shí)間t(單位:s)之間具有關(guān)系
h=20t—5t2
考慮以下問題
(1)球的飛行高度能否達(dá)到15m?如能,需要多少飛行時(shí)間?
(2)球 的飛行高度能否達(dá)到20m?如能,需要多少飛行時(shí)間?
。3)球的飛行高度能否達(dá)到20.5m?為什么?
。4)球從飛出到落地要用多 少時(shí)間?
分析:由于球的飛行高度h與飛行時(shí)間t的關(guān)系是二次函數(shù)
h=20t-5t2.
所以可以將問題中h的值代入函數(shù)解析式,得到關(guān)于t的一元二次方程,如果方程有合乎實(shí)際的解,則說明球的飛行高度可以達(dá)到問題中h的值:否則,說明球的飛行高度不能達(dá)到問題中h的值.
解:(1)解方程 15=20t—5t2. t2—4t+3=0. t1=1,t2= 3.
當(dāng)球飛行1s和3s時(shí),它的高度為15m.
。2)解方程 20=20t-5t2. t2-4t+4=0. t1=t2=2.
當(dāng)球飛行2s時(shí),它的高度為20m.
。3)解方程 20.5=20t-5t2. t2-4t+4.1=0
因?yàn)椋ǎ?)2-4×4.1<0>(4)解方程 0=20t-5t2. t2-4t=0. t1=0,t2=4.
當(dāng)球飛行0s和4s時(shí),它的高度為0m,即0s時(shí)球從地面飛出.4s時(shí)球落回地面
播放課件:函數(shù)的`圖像,畫出二次函數(shù)h=20t-5t2的圖象,觀察圖象,體會(huì)以上問題的答案.
從上面可以看出.二次函數(shù)與一元二次方程關(guān)系 密切.
由學(xué)生小組討論,總結(jié)出二次函數(shù)與一元二次方程的解有什么關(guān)系?
例如:已知二次函數(shù)y =-x2+4x的值為3.求自變量x的值.可以解一元二次方程-x2+4x=3(即x2-4x+3=0) .反過來,解方程x2-4x+3=0又可以看作已知二次函數(shù)y=x2-4+3的值為0,求自變量x的值.
一般地,我們可以利用二次函數(shù)y=ax2+bx+c深入討論一元二次方程ax2+bx+c=0.
(二)問題的討論
二次函數(shù)(1)y=x2+x-2;
。2) y=x2-6x+9;
。3) y=x2-x+0.
的圖象如圖26.2-2所示.
。1) 以上二次函數(shù)的圖象與x軸有公共點(diǎn)嗎?如果有,公共點(diǎn)的橫坐標(biāo)是多少?
(2)當(dāng)x取公共點(diǎn)的橫坐標(biāo)時(shí),函數(shù)的值是多少?由 此,你能得出相應(yīng)的一元二次方程的根嗎?
先畫出以上二次函數(shù)的圖象,由圖像學(xué)生展開討論,
在老師的引導(dǎo)下回答以上的問題.
可播放課件:函數(shù)的圖像, 輸入a,b,c的值,劃出對(duì)應(yīng)的函數(shù)的圖像,觀察圖像,說出函數(shù)對(duì)應(yīng)方程的解.
可以看出:
(1)拋物線y=x2+x-2與x軸有兩個(gè)公共點(diǎn),它們的橫坐標(biāo)是-2,1.當(dāng)x取公共點(diǎn)的橫坐標(biāo)時(shí),函數(shù)的值是0 .由此得出方程x2+x-2=0的根是-2,1.
。2)拋物線y=x2-6x+9與x軸有一個(gè)公共點(diǎn),這點(diǎn)的橫坐標(biāo)是3.當(dāng)x=3時(shí),函數(shù)的值是0.由此得出方程x2-6x+9=0有兩個(gè)相等的實(shí)數(shù)根3.
。3)拋物線y=x2-x+1與x軸沒有公共點(diǎn), 由此可知,方程x 2-x+1=0沒有實(shí)數(shù)根.
總結(jié):一般地,如果二次函數(shù)y= 的圖像與x軸相交,那么交點(diǎn)的橫坐標(biāo)就是一元二次方程 =0的根.
。ㄈw納
一般地,從二次函數(shù)y=ax2+bx+c的圖象可知,(1)如果拋物線y=ax2+bx+c與x軸有公共點(diǎn),公共點(diǎn)的橫坐標(biāo)是 x0,那么當(dāng)x=x0時(shí),函數(shù)的值是0,因此x=x0就是方程ax 2+bx+c=0的一個(gè)根.
(2)二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒有公共點(diǎn),有一個(gè)公共點(diǎn),有兩個(gè)公共點(diǎn).這對(duì)應(yīng)著一元二次方程根的三種情況:沒有實(shí)數(shù)根,有兩個(gè)相等的實(shí)數(shù)根,有兩個(gè)不等的實(shí)數(shù)根.
由上面的結(jié)論,我們可以利用二次函數(shù)的圖象求一元二次方程的根.由 于作圖或觀察可能存在誤差,由圖象求得的根,一般是近似的
。ㄋ模├}
例 利用函數(shù)圖象求方程x2-2x-2=0的實(shí)數(shù)根(精確到0.1).
解:作y=x2-2x-2的圖象(圖26.2-3),它與x軸的公共點(diǎn)的橫坐標(biāo)大約是-0.7,2.7.
所以方程x2-2x-2=0的實(shí)數(shù)根為x1≈-0.7,x2≈2.7.
播放課件:函數(shù)的圖象與求解一元二次方程的解,前一個(gè)課件用來畫圖,可根據(jù)圖像估計(jì)出方程x2-2x-2=0實(shí)數(shù)根的近似解,后一個(gè)課件可以準(zhǔn)確的求出方程的解,體會(huì)其中的差異.
(五)小結(jié)
總結(jié)本節(jié)的知 識(shí)點(diǎn).
。┳鳂I(yè):
(七)板書 設(shè)計(jì)
二次函數(shù)與一元二次方程
拋物線y=ax2+bx+c與方程a x2+bx +c=0的解之間的關(guān)系
例題
《二次函數(shù)》教案4
教學(xué)設(shè)計(jì)
一 教學(xué)設(shè)計(jì)思路
通過小球飛行高度問題展示二次函數(shù)與一元二次方程的聯(lián)系。然后進(jìn)一步舉例說明,從而得出二次函數(shù)與一元二次方程的關(guān)系。最后通過例題介紹用二次函數(shù)的圖象求一元二次方程的根的方法。
二 教學(xué)目標(biāo)
1 知識(shí)與技能
(1).經(jīng)歷探索函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系?偨Y(jié)出二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,表述何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數(shù)和沒有實(shí)根.
(2).會(huì)利用圖象法求一元二次方程的近似解。
2 過程與方法
經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系.
三 情感態(tài)度價(jià)值觀
通過觀察二次函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù),討論一元二次方程的根的情況培養(yǎng)學(xué)生自主探索意識(shí),從中體會(huì)事物普遍聯(lián)系的觀點(diǎn),進(jìn)一步體會(huì)數(shù)形結(jié)合思想.
四 教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):方程與函數(shù)之間的聯(lián)系,會(huì)利用二次函數(shù)的圖象求一元二次方程的近似解。
難點(diǎn):二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的.關(guān)系。
五 教學(xué)方法
討論探索法
六 教學(xué)過程設(shè)計(jì)
(一)問題的提出與解決
問題 如圖,以20m/s的速度將小球沿與地面成30角的方向擊出時(shí),球的飛行路線將是一條拋物線。如果不考慮空氣阻力,球的飛行高度h(單位:m)與飛行時(shí)間t(單位:s)之間具有關(guān)系
h=20t5t2。
考慮以下問題
(1)球的飛行高度能否達(dá)到15m?如能,需要多少飛行時(shí)間?
(2)球的飛行高度能否達(dá)到20m?如能,需要多少飛行時(shí)間?
(3)球的飛行高度能否達(dá)到20.5m?為什么?
(4)球從飛出到落地要用多少時(shí)間?
分析:由于球的飛行高度h與飛行時(shí)間t的關(guān)系是二次函數(shù)
h=20t-5t2。
所以可以將問題中h的值代入函數(shù)解析式,得到關(guān)于t的一元二次方程,如果方程有合乎實(shí)際的解,則說明球的飛行高度可以達(dá)到問題中h的值:否則,說明球的飛行高度不能達(dá)到問題中h的值。
解:(1)解方程 15=20t5t2。 t24t+3=0。 t1=1,t2=3。
當(dāng)球飛行1s和3s時(shí),它的高度為15m。
(2)解方程 20=20t-5t2。 t2-4t+4=0。 t1=t2=2。
當(dāng)球飛行2s時(shí),它的高度為20m。
(3)解方程 20.5=20t-5t2。 t2-4t+4.1=0。
因?yàn)?-4)2-44.10。所以方程無解。球的飛行高度達(dá)不到20.5m。
(4)解方程 0=20t-5t2。 t2-4t=0。 t1=0,t2=4。
當(dāng)球飛行0s和4s時(shí),它的高度為0m,即0s時(shí)球從地面飛出。4s時(shí)球落回地面。
由學(xué)生小組討論,總結(jié)出二次函數(shù)與一元二次方程的解有什么關(guān)系?
例如:已知二次函數(shù)y=-x2+4x的值為3。求自變量x的值。
分析 可以解一元二次方程-x2+4x=3(即x2-4x+3=0) 。反過來,解方程x2-4x+3=0又可以看作已知二次函數(shù)y=x2-4+3的值為0,求自變量x的值。
一般地,我們可以利用二次函數(shù)y=ax2+bx+c深入討論一元二次方程ax2+bx+c=0。
(二)問題的討論
二次函數(shù)(1)y=x2+x-2;
(2) y=x2-6x+9;
(3) y=x2-x+0。
的圖象如圖26.2-2所示。
(1)以上二次函數(shù)的圖象與x軸有公共點(diǎn)嗎?如果有,有多少個(gè)交點(diǎn),公共點(diǎn)的橫坐標(biāo)是多少?
(2)當(dāng)x取公共點(diǎn)的橫坐標(biāo)時(shí),函數(shù)的值是多少?由此,你能得出相應(yīng)的一元二次方程的根嗎?
先畫出以上二次函數(shù)的圖象,由圖像學(xué)生展開討論,在老師的引導(dǎo)下回答以上的問題。
可以看出:
(1)拋物線y=x2+x-2與x軸有兩個(gè)公共點(diǎn),它們的橫坐標(biāo)是-2,1。當(dāng)x取公共點(diǎn)的橫坐標(biāo)時(shí),函數(shù)的值是0。由此得出方程x2+x-2=0的根是-2,1。
(2)拋物線y=x2-6x+9與x軸有一個(gè)公共點(diǎn),這點(diǎn)的橫坐標(biāo)是3。當(dāng)x=3時(shí),函數(shù)的值是0。由此得出方程x2-6x+9=0有兩個(gè)相等的實(shí)數(shù)根3。
(3)拋物線y=x2-x+1與x軸沒有公共點(diǎn), 由此可知,方程x2-x+1=0沒有實(shí)數(shù)根。
總結(jié):一般地,如果二次函數(shù)y= 的圖像與x軸相交,那么交點(diǎn)的橫坐標(biāo)就是一元二次方程 =0的根。
(三)歸納
一般地,從二次函數(shù)y=ax2+bx+c的圖象可知,
(1)如果拋物線y=ax2+bx+c與x軸有公共點(diǎn),公共點(diǎn)的橫坐標(biāo)是x0,那么當(dāng)x=x0時(shí),函數(shù)的值是0,因此x=x0就是方程ax2+bx+c=0的一個(gè)根。
(2)二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒有公共點(diǎn),有一個(gè)公共點(diǎn),有兩個(gè)公共點(diǎn)。這對(duì)應(yīng)著一元二次方程根的三種情況:沒有實(shí)數(shù)根,有兩個(gè)相等的實(shí)數(shù)根,有兩個(gè)不等的實(shí)數(shù)根。
由上面的結(jié)論,我們可以利用二次函數(shù)的圖象求一元二次方程的根。由于作圖或觀察可能存在誤差,由圖象求得的根,一般是近似的。
(四)例題
例 利用函數(shù)圖象求方程x2-2x-2=0的實(shí)數(shù)根(精確到0.1)。
解:作y=x2-2x-2的圖象(如圖),它與x軸的公共點(diǎn)的橫坐標(biāo)大約是-0.7,2.7。
所以方程x2-2x-2=0的實(shí)數(shù)根為x1-0.7,x22.7。
七 小結(jié)
二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒有公共點(diǎn),有一個(gè)公共點(diǎn),有兩個(gè)公共點(diǎn)。這對(duì)應(yīng)著一元二次方程根的三種情況:沒有實(shí)數(shù)根,有兩個(gè)相等的實(shí)數(shù)根,有兩個(gè)不等的實(shí)數(shù)根。
。
八 板書設(shè)計(jì)
用函數(shù)觀點(diǎn)看一元二次方程
拋物線y=ax2+bx+c與方程ax2+bx+c=0的解之間的關(guān)系
例題
《二次函數(shù)》教案5
教學(xué)目標(biāo)
【知識(shí)與技能】
使學(xué)生會(huì)用描點(diǎn)法畫出函數(shù)y=ax2的圖象,理解并掌握拋物線的有關(guān)概念及其性質(zhì).
【過程與方法】
使學(xué)生經(jīng)歷探索二次函數(shù)y=ax2的圖象及性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗(yàn),培養(yǎng)學(xué)生分析、解決問題的能力.
【情感、態(tài)度與價(jià)值觀】
使學(xué)生經(jīng)歷探索二次函數(shù)y=ax2的圖象和性質(zhì)的過程,培養(yǎng)學(xué)生觀察、思考、歸納的良好思維品質(zhì).
重點(diǎn)難點(diǎn)
【重點(diǎn)】
使學(xué)生理解拋物線的有關(guān)概念及性質(zhì),會(huì)用描點(diǎn)法畫出二次函數(shù)y=ax2的圖象.
【難點(diǎn)】
用描點(diǎn)法畫出二次函數(shù)y=ax2的圖象以及探索二次函數(shù)的性質(zhì).
教學(xué)過程
一、問題引入
1.一次函數(shù)的圖象是什么?反比例函數(shù)的圖象是什么?
(一次函數(shù)的圖象是一條直線,反比例函數(shù)的圖象是雙曲線.)
2.畫函數(shù)圖象的一般步驟是什么?
一般步驟:(1)列表(取幾組x,y的對(duì)應(yīng)值);(2)描點(diǎn)(根據(jù)表中x,y的數(shù)值在坐標(biāo)平面中描點(diǎn)(x,y));(3)連線(用平滑曲線).
3.二次函數(shù)的圖象是什么形狀?二次函數(shù)有哪些性質(zhì)?
(運(yùn)用描點(diǎn)法作二次函數(shù)的圖象,然后觀察、分析并歸納得到二次函數(shù)的性質(zhì).)
二、新課教授
【例1】 畫出二次函數(shù)y=x2的圖象.
解:(1)列表中自變量x可以是任意實(shí)數(shù),列表表示幾組對(duì)應(yīng)值.
(2)描點(diǎn):根據(jù)上表中x,y的數(shù)值在平面直角坐標(biāo)系中描點(diǎn)(x,y).
(3)連線:用平滑的曲線順次連接各點(diǎn),得到函數(shù)y=x2的圖象,如圖所示.
思考:觀察二次函數(shù)y=x2的圖象,思考下列問題:
(1)二次函數(shù)y=x2的圖象是什么形狀?
(2)圖象是軸對(duì)稱圖形嗎?如果是,它的對(duì)稱軸是什么?
(3)圖象有最低點(diǎn)嗎?如果有,最低點(diǎn)的坐標(biāo)是什么?
師生活動(dòng):
教師引導(dǎo)學(xué)生在平面直角坐標(biāo)系中畫出二次函數(shù)y=x2的圖象,通過數(shù)形結(jié)合解決上面的3個(gè)問題.
學(xué)生動(dòng)手畫圖,觀察、討論并歸納,積極展示探究結(jié)果,教師評(píng)價(jià).
函數(shù)y=x2的圖象是一條關(guān)于y軸(x=0)對(duì)稱的曲線,這條曲線叫做拋物線.實(shí)際上二次函數(shù)的圖象都是拋物線.二次函數(shù)y=x2的圖象可以簡(jiǎn)稱為拋物線y=x2.
由圖象可以看出,拋物線y=x2開口向上;y軸是拋物線y=x2的對(duì)稱軸:拋物線y=x2與它的對(duì)稱軸的交點(diǎn)(0,0)叫做拋物線的頂點(diǎn),它是拋物線y=x2的最低點(diǎn).實(shí)際上每條拋物線都有對(duì)稱軸,拋物線與對(duì)稱軸的交點(diǎn)叫做拋物線的頂點(diǎn),頂點(diǎn)是拋物線的最低點(diǎn)或最高點(diǎn).
【例2】 在同一直角坐標(biāo)系中,畫出函數(shù)y=x2及y=2x2的圖象.
解:分別填表,再畫出它們的圖象.
思考:函數(shù)y=x2、y=2x2的圖象與函數(shù)y=x2的圖象有什么共同點(diǎn)和不同點(diǎn)?
師生活動(dòng):
教師引導(dǎo)學(xué)生在平面直角坐標(biāo)系中畫出二次函數(shù)y=x2、y=2x2的圖象.
學(xué)生動(dòng)手畫圖,觀察、討論并歸納,回答探究的思路和結(jié)果,教師評(píng)價(jià).
拋物線y=x2、y=2x2與拋物線y=x2的開口均向上,頂點(diǎn)坐標(biāo)都是(0,0),函數(shù)y=2x2的圖象的開口較窄,y=x2的圖象的開口較大.
探究1:畫出函數(shù)y=-x2、y=-x2、y=-2x2的圖象,并考慮這些圖象有什么共同點(diǎn)和不同點(diǎn)。
師生活動(dòng):
學(xué)生在平面直角坐標(biāo)系中畫出函數(shù)y=-x2、y=-x2、y=-2x2的圖象,觀察、討論并歸納.教師巡視學(xué)生的探究情況,若發(fā)現(xiàn)問題,及時(shí)點(diǎn)撥.
學(xué)生匯報(bào)探究的思路和結(jié)果,教師評(píng)價(jià),給出圖形.
拋物線y=-x2、y=-x2、y=-2x2開口均向下,頂點(diǎn)坐標(biāo)都是(0,0),函數(shù)y=-2x2的圖象開口最窄,y=-x2的圖象開口最大.
探究2:對(duì)比拋物線y=x2和y=-x2,它們關(guān)于x軸對(duì)稱嗎?拋物線y=ax2和y=-ax2呢?
師生活動(dòng):
學(xué)生在平面直角坐標(biāo)系中畫出函數(shù)y=x2和y=-x2的圖象,觀察、討論并歸納.
教師巡視學(xué)生的探究情況,發(fā)現(xiàn)問題,及時(shí)點(diǎn)撥.
學(xué)生匯報(bào)探究思路和結(jié)果,教師評(píng)價(jià),給出圖形.
拋物線y=x2、y=-x2的圖象關(guān)于x軸對(duì)稱.一般地,拋物線y=ax2和y=-ax2的圖象也關(guān)于x軸對(duì)稱.
教師引導(dǎo)學(xué)生小結(jié)(知識(shí)點(diǎn)、規(guī)律和方法).
一般地,拋物線y=ax2的對(duì)稱軸是y軸,頂點(diǎn)是原點(diǎn).當(dāng)a0時(shí),拋物線y=ax2的開口向上,頂點(diǎn)是拋物線的最低點(diǎn),當(dāng)a越大時(shí),拋物線的開口越小;當(dāng)a0時(shí),拋物線y=ax2的開口向下,頂點(diǎn)是拋物線的'最高點(diǎn),當(dāng)a越大時(shí),拋物線的開口越大.
從二次函數(shù)y=ax2的圖象可以看出:如果a0,當(dāng)x0時(shí),y隨x的增大而減小,當(dāng)x0時(shí),y隨x的增大而增大;如果a0,當(dāng)x0時(shí),y隨x的增大而增大,當(dāng)x0時(shí),y隨x的增大而減小.
三、鞏固練習(xí)
1.拋物線y=-4x2-4的開口向,頂點(diǎn)坐標(biāo)是,對(duì)稱軸是,當(dāng)x=時(shí),y有最值,是.
【答案】下 (0,-4) x=0 0 大 -4
2.當(dāng)m≠時(shí),y=(m-1)x2-3m是關(guān)于x的二次函數(shù).
【答案】1
3.已知拋物線y=-3x2上兩點(diǎn)A(x,-27),B(2,y),則x=,y=.
【答案】-3或3 -12
4.拋物線y=3x2與直線y=kx+3的交點(diǎn)坐標(biāo)為(2,b),則k=,b=.
【答案】 12
5.已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為y軸,且經(jīng)過點(diǎn)(-1,-2),則拋物線的表達(dá)式為.
【答案】y=-2x2
6.在同一坐標(biāo)系中,圖象與y=2x2的圖象關(guān)于x軸對(duì)稱的是()
A.y=x2B.y=x2
C.y=-2x2 D.y=-x2
【答案】C
7.拋物線y=4x2、y=-2x2、y=x2的圖象,開口最大的是()
A.y=x2 B.y=4x2
C.y=-2x2 D.無法確定
【答案】A
8.對(duì)于拋物線y=x2和y=-x2在同一坐標(biāo)系中的位置,下列說法錯(cuò)誤的是()
A.兩條拋物線關(guān)于x軸對(duì)稱
B.兩條拋物線關(guān)于原點(diǎn)對(duì)稱
C.兩條拋物線關(guān)于y軸對(duì)稱
D.兩條拋物線的交點(diǎn)為原點(diǎn)
【答案】C
四、課堂小結(jié)
1.二次函數(shù)y=ax2的圖象過原點(diǎn)且關(guān)于y軸對(duì)稱,自變量x的取值范圍是一切實(shí)數(shù).
2.二次函數(shù)y=ax2的性質(zhì):拋物線y=ax2的對(duì)稱軸是y軸,頂點(diǎn)是原點(diǎn).當(dāng)a0時(shí),拋物線y=x2開口向上,頂點(diǎn)是拋物線的最低點(diǎn),當(dāng)a越大時(shí),拋物線的開口越小;當(dāng)a0時(shí),拋物線y=ax2開口向下,頂點(diǎn)是拋物線的最高點(diǎn),當(dāng)a越大時(shí),拋物線的開口越大.
3.二次函數(shù)y=ax2的圖象可以通過列表、描點(diǎn)、連線三個(gè)步驟畫出來.
教學(xué)反思
本節(jié)課的內(nèi)容主要研究二次函數(shù)y=ax2在a取不同值時(shí)的圖象,并引出拋物線的有關(guān)概念,再根據(jù)圖象總結(jié)拋物線的有關(guān)性質(zhì).整個(gè)內(nèi)容分成:(1)例1是基礎(chǔ);(2)在例1的基礎(chǔ)之上引入例2,讓學(xué)生體會(huì)a的大小對(duì)拋物線開口寬闊程度的影響;(3)例2及后面的練習(xí)探究讓學(xué)生領(lǐng)會(huì)a的正負(fù)對(duì)拋物線開口方向的影響;(4)最后讓學(xué)生比較例1和例2,練習(xí)歸納總結(jié).
《二次函數(shù)》教案6
目標(biāo):
。1)能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
。2)注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識(shí),培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣
重點(diǎn)難點(diǎn):
能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。
過程:
一、試一試
1.設(shè)矩形花圃的垂直于墻的一邊AB的長(zhǎng)為xm,先取x的一些值,算出矩形的另一邊BC的長(zhǎng),進(jìn)而得出矩形的面積ym2.試將計(jì)算結(jié)果填寫在下表的空格 中,
AB長(zhǎng)x(m)123456789
BC長(zhǎng)(m)12
面積y(m2)48
2.x的值是否可以任意取?有限定范圍嗎?
3.我們發(fā)現(xiàn),當(dāng)AB的長(zhǎng)(x)確定后,矩形的面積(y)也隨之確定, y是x的函數(shù),試寫出這個(gè)函數(shù)的關(guān)系式,
對(duì)于1.,可讓學(xué)生根據(jù)表中給出的AB的'長(zhǎng),填出相應(yīng)的BC的長(zhǎng)和面積,然后引導(dǎo)學(xué)生觀察表格中數(shù)據(jù)的變化情況,提出問題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對(duì)前面提出的問題的解答能作出什么猜想?讓學(xué)生思考、交流、發(fā)表意見,達(dá)成共識(shí):當(dāng)AB的長(zhǎng)為5cm,BC的長(zhǎng)為10m時(shí),圍成的矩形面積最大;最大面積為50m2。
對(duì)于2,可讓學(xué)生分組討論、交流,然后各組派代表發(fā)表意見。形成共識(shí),x的值不可以任意取,有限定范圍,其范圍是0 <x <10。
對(duì)于3,教師可提出問題,(1)當(dāng)AB=xm時(shí),BC長(zhǎng)等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函數(shù)關(guān)系式.
二、提出問題
某商店將每 件進(jìn)價(jià)為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價(jià)、增加銷售量的辦法來提高利潤(rùn),經(jīng)過市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低0.1元,其銷售量可增加10件。將這種商品的售價(jià)降低多少時(shí),能使銷售利潤(rùn)最大?
在這個(gè)問題中,可提出如下問題供學(xué)生思考并 回答:
1.商品的利潤(rùn)與售價(jià)、進(jìn)價(jià)以及銷售量之間有什么關(guān)系?
2.如果不降低售價(jià),該商品每件利潤(rùn)是多少元?一天總的利潤(rùn)是多 少元?
3.若每件商品降價(jià)x元,則每件商品的利潤(rùn)是多少元?一天可銷售約多少件商品?
4.x的值是否可以任意取?如果不能任意取,請(qǐng)求出它的范圍,
5.若設(shè)該商品每天的利潤(rùn)為y元,求y與x的函數(shù)關(guān)系式。
將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:
y=-2x2+20x (0<x<10)……………………………(1)
將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:
y =-100x2+100x+20D (0≤x≤2)……………………(2)
三、觀察;概括
1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出以下問題讓學(xué)生思考回答;
(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)?
(各有1個(gè))
(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?
(分別是二次多項(xiàng)式 )
(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)?
(都是用自變量的二次多項(xiàng)式來表示的)
(4)本章導(dǎo)圖中的問題以及P1頁(yè)的問題2有什么共同特點(diǎn) ?
讓學(xué)生討論、交流,發(fā)表意見,歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。
2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).
四、課堂練習(xí)
1.(口答)下列函數(shù)中,哪些是二次函數(shù)?
(1)y= 5x+1 (2)y=4x2-1
(3)y=2x3-3x2 (4)y=5x4-3x+1
2.P3練習(xí)第1,2題。
五、小結(jié)
1.請(qǐng)敘述二次函數(shù)的定義.
2,許多實(shí)際問題可以轉(zhuǎn)化為二次函數(shù)來解決,請(qǐng)你聯(lián)系生活實(shí) 際,編一道二次函數(shù)應(yīng)用題,并寫出函數(shù)關(guān)系式。
《二次函數(shù)》教案7
在整個(gè)中學(xué)數(shù)學(xué)知識(shí)體系中,二次函數(shù)占據(jù)極其關(guān)鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學(xué)的重要考點(diǎn),也是線性數(shù)學(xué)知識(shí)的基礎(chǔ)。那老師應(yīng)該怎么教呢?今天,小編給大家?guī)沓跞龜?shù)學(xué)二次函數(shù)教案教學(xué)方法。
一、 重視每一堂復(fù)習(xí)課 數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過的東西,我想許多老師都和我有相同的體會(huì),那就是復(fù)習(xí)課比新課難上。
二、 重視每一個(gè)學(xué)生 學(xué)生是課堂的主體,離開學(xué)生談?wù)n堂效率肯定是行不通的。而我校的學(xué)生數(shù)學(xué)基礎(chǔ)大多不太好,上課的積極性普遍不高,對(duì)學(xué)習(xí)的熱情也不是很高,這些都是十分現(xiàn)實(shí)的事情,既然現(xiàn)狀無法更改,那么我們只能去適應(yīng)它,這就對(duì)我們老師提出了更高的要求
三、做好課外與學(xué)生的溝通,學(xué)生對(duì)你教學(xué)理念認(rèn)同和教學(xué)常規(guī)配合與否,功夫往往在課外,只有在課外與學(xué)生多進(jìn)行交流和溝通,和學(xué)生建立起比較深厚的師生情誼,那么最頑皮的學(xué)生也能在他喜歡的老師的課堂上聽進(jìn)一點(diǎn)
四、要多了解學(xué)生。你對(duì)學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時(shí)了解每個(gè)學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計(jì)劃和備下一堂課,也有利于你更好的改進(jìn)教學(xué)方法。
2二次函數(shù)教學(xué)方法一
一、 立足教材,夯實(shí)雙基:進(jìn)行中考數(shù)學(xué)復(fù)習(xí)的時(shí)候,要立足于教材,重新梳理教材中的典例和習(xí)題,就顯得尤為重要.并且要讓學(xué)生在掌握的基礎(chǔ)上,能夠做到知識(shí)的延伸和遷移,讓解題方法、技巧在學(xué)生遇到相似問題時(shí),能在頭腦中再現(xiàn)
二、 立足課堂,提高效率:做到教師入題海,學(xué)生出題海.教師應(yīng)多做題、多研究近幾年的.中考試題,并根據(jù)本班學(xué)生的實(shí)際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過對(duì)題目的重組。
三、教師在設(shè)計(jì)教學(xué)目標(biāo)時(shí),要做到胸中有書,目中有人,讓每一節(jié)課都給學(xué)生留有時(shí)間,讓他們有獨(dú)立思考、合作探究交流的過程,最大限度的調(diào)動(dòng)學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達(dá)到最佳的復(fù)習(xí)效果.
四、激發(fā)興趣,提高質(zhì)量:興趣是學(xué)習(xí)最好的動(dòng)力,在上復(fù)習(xí)課時(shí)尤為重要.因此,我們?cè)谑谡n的過程中,在關(guān)注知識(shí)復(fù)習(xí)的同時(shí),也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的過程中體驗(yàn)成功的快感.這樣他們才會(huì)更有興趣的學(xué)習(xí)下去.
3二次函數(shù)教學(xué)方法二
1.質(zhì)疑問難是學(xué)生自主學(xué)習(xí)的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學(xué)生的主體意識(shí),必須鼓勵(lì)學(xué)生質(zhì)疑問難。教師要?jiǎng)?chuàng)造和諧融合的課堂氣氛,允許學(xué)生隨時(shí)“插嘴”、提問、爭(zhēng)辯,甚至提出與教師不同的看法。
2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學(xué)生要學(xué)習(xí)的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實(shí)世界變量之間關(guān)系的重要的數(shù)學(xué)模型。
3.學(xué)生有疑而問、質(zhì)疑問難,是用心思考、自主學(xué)習(xí)、主動(dòng)探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵(lì)和贊揚(yáng),F(xiàn)在對(duì)學(xué)生的隨時(shí)“插嘴”,提出的各種疑難問題,應(yīng)抱歡迎、鼓勵(lì)的態(tài)度給與肯定,并做出正確的解釋。
4.初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點(diǎn)審視一元二次方程,用二次函數(shù)的相關(guān)知識(shí)分析和解決簡(jiǎn)單的實(shí)際問題。
4二次函數(shù)教學(xué)方法三
1.教學(xué)案例、教學(xué)設(shè)計(jì)、教學(xué)實(shí)錄、教學(xué)敘事的區(qū)別:教學(xué)案例與教案:教案(教學(xué)設(shè)計(jì))是事先設(shè)想的教育教學(xué)思路,是對(duì)準(zhǔn)備實(shí)施的教育措施的簡(jiǎn)要說明,反映的是教學(xué)預(yù)期;而教學(xué)案例則是對(duì)已發(fā)生的教育教學(xué)過程的描述,反映的是教學(xué)結(jié)果。
2.教學(xué)案例與教學(xué)實(shí)錄:它們同樣是對(duì)教育教學(xué)情境的描述,但教學(xué)實(shí)錄是有聞必錄(事實(shí)判斷),而教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價(jià)值判斷)。
3.教學(xué)案例與敘事研究的聯(lián)系與區(qū)別:從“情景故事”的意義上講,教育敘事研究報(bào)告也是一種“教育案例”,但“教學(xué)案例”特指有典型意義的、包含疑難問題的、多角度描述的經(jīng)過研究并加上作者反思(或自我點(diǎn)評(píng))的教學(xué)敘事;
4.教學(xué)案例必須從教學(xué)任務(wù)分析的目標(biāo)出發(fā),有意識(shí)地選擇有關(guān)信息,必須事先進(jìn)行實(shí)地作業(yè),因此日常教育敘事日志可以作為寫作教學(xué)案例的素材積累。
《二次函數(shù)》教案8
【知識(shí)與技能】
1.會(huì)用描點(diǎn)法畫二次函數(shù)y=ax2+bx+c的圖象.
2.會(huì)用配方法求拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)、開口方向、對(duì)稱軸、y隨x的增減性.
3.能通過配方求出二次函數(shù)y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函數(shù)的性質(zhì)求實(shí)際問題中的最大值或最小值.
【過程與方法】
1.經(jīng)歷探索二次函數(shù)y=ax2+bx+c(a≠0)的圖象的作法和性質(zhì)的過程,體會(huì)建立二次函數(shù)y=ax2+bx+c(a≠0)對(duì)稱軸和頂點(diǎn)坐標(biāo)公式的必要性.
2.在學(xué)習(xí)y=ax2+bx+c(a≠0)的性質(zhì)的過程中,滲透轉(zhuǎn)化(化歸)的思想.
【情感態(tài)度】
進(jìn)一步體會(huì)由特殊到一般的化歸思想,形成積極參與數(shù)學(xué)活動(dòng)的意識(shí).
【教學(xué)重點(diǎn)】
、儆门浞椒ㄇ髖=ax2+bx+c的頂點(diǎn)坐標(biāo);②會(huì)用描點(diǎn)法畫y=ax2+bx+c的`圖象并能說出圖象的性質(zhì).
【教學(xué)難點(diǎn)】
能利用二次函數(shù)y=ax2+bx+c(a≠0)的對(duì)稱軸和頂點(diǎn)坐標(biāo)公式,解決一些問題,能通過對(duì)稱性畫出二次函數(shù)y=ax2+bx+c(a≠0)的圖象.
一、情境導(dǎo)入,初步認(rèn)識(shí)
請(qǐng)同學(xué)們完成下列問題.
1.把二次函數(shù)y=-2x2+6x-1化成y=a(x-h)2+k的形式.
2.寫出二次函數(shù)y=-2x2+6x-1的開口方向,對(duì)稱軸及頂點(diǎn)坐標(biāo).
3.畫y=-2x2+6x-1的圖象.
4.拋物線y=-2x2如何平移得到y(tǒng)=-2x2+6x-1的圖象.
5.二次函數(shù)y=-2x2+6x-1的y隨x的增減性如何?
【教學(xué)說明】上述問題教師應(yīng)放手引導(dǎo)學(xué)生逐一完成,從而領(lǐng)會(huì)y=ax2+bx+c與y=a(x-h)2+k的轉(zhuǎn)化過程.
二、思考探究,獲取新知
探究1 如何畫y=ax2+bx+c圖象,你可以歸納為哪幾步?
學(xué)生回答、教師點(diǎn)評(píng):
一般分為三步:
1.先用配方法求出y=ax2+bx+c的對(duì)稱軸和頂點(diǎn)坐標(biāo).
2.列表,描點(diǎn),連線畫出對(duì)稱軸右邊的部分圖象.
3.利用對(duì)稱點(diǎn),畫出對(duì)稱軸左邊的部分圖象.
探究2 二次函數(shù)y=ax2+bx+c圖象的性質(zhì)有哪些?你能試著歸納嗎?
《二次函數(shù)》教案9
教學(xué)目標(biāo):
讓學(xué)生經(jīng)歷根據(jù)不同的條件,利用待定系數(shù)法求二次函數(shù)的函數(shù)關(guān)系式。
重點(diǎn):二次函數(shù)表達(dá)式的形式的選擇
難點(diǎn):各種隱含條件的挖掘
教法:引導(dǎo)發(fā)現(xiàn)法
教學(xué)過程:
(一)診斷補(bǔ)償,情景引入:
1、二次函數(shù)的一般式是什么
2、二次函數(shù)的圖象及性質(zhì)
(先讓學(xué)生復(fù)習(xí),然后提問,并做進(jìn)一步診斷)
。ǘ﹩栴}導(dǎo)航,探究釋疑:
一般地,函數(shù)關(guān)系式中有幾個(gè)獨(dú)立的系數(shù),那么就需要有相同個(gè)數(shù)的獨(dú)立條件才能求出函數(shù)關(guān)系式。例如:我們?cè)诖_定一次函數(shù)的關(guān)系式時(shí),通常需要兩個(gè)立的條件:確定反比例函數(shù)的關(guān)系式時(shí),通常只需要一個(gè)條件:如果要確定二次函數(shù)的關(guān)系式,又需要幾個(gè)條件呢?
。ㄈ┚v提煉,揭示本質(zhì):
例1。某涵洞是拋物線形,它的截面如圖26。2。9所示,現(xiàn)測(cè)得水面寬1。6m,涵洞頂點(diǎn)O到水面的距離為2。4m,在圖中直角坐標(biāo)系內(nèi),涵洞所在的拋物線的函數(shù)關(guān)系式是什么?
分析如圖,以AB的垂直平分線為y軸,以過點(diǎn)O的y軸的垂線為x軸,建立了直角坐標(biāo)系。這時(shí),涵洞所在的拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸是y軸,開口向下,所以可設(shè)它的函數(shù)關(guān)系式是。此時(shí)只需拋物線上的一個(gè)點(diǎn)就能求出拋物線的函數(shù)關(guān)系式。
解由題意,得點(diǎn)B的坐標(biāo)為(0。8,-2。4),
又因?yàn)辄c(diǎn)B在拋物線上,將它的坐標(biāo)代入,得所以因此,函數(shù)關(guān)系式是。
例2、根據(jù)下列條件,分別求出對(duì)應(yīng)的二次函數(shù)的關(guān)系式。
(1)已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(0,-1)、B(1,0)、C(-1,2);
。2)已知拋物線的頂點(diǎn)為(1,-3),且與y軸交于點(diǎn)(0,1);
。3)已知拋物線與x軸交于點(diǎn)M(-3,0)(5,0)且與y軸交于點(diǎn)(0,-3);
。4)已知拋物線的頂點(diǎn)為(3,-2),且與x軸兩交點(diǎn)間的距離為4。
分析(1)根據(jù)二次函數(shù)的圖象經(jīng)過三個(gè)已知點(diǎn),可設(shè)函數(shù)關(guān)系式為的形式;(2)根據(jù)已知拋物線的頂點(diǎn)坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點(diǎn)可求出a的值;(3)根據(jù)拋物線與x軸的兩個(gè)交點(diǎn)的坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點(diǎn)可求出a的值;(4)根據(jù)已知拋物線的頂點(diǎn)坐標(biāo)(3,-2),可設(shè)函數(shù)關(guān)系式為,同時(shí)可知拋物線的對(duì)稱軸為x=3,再由與x軸兩交點(diǎn)間的距離為4,可得拋物線與x軸的兩個(gè)交點(diǎn)為(1,0)和(5,0),任選一個(gè)代入,即可求出a的值。
解(1)設(shè)二次函數(shù)關(guān)系式為,由已知,這個(gè)函數(shù)的圖象過(0,-1),可以得到c= -1。又由于其圖象過點(diǎn)(1,0)、(-1,2)兩點(diǎn),可以得到
解這個(gè)方程組,得a=2,b= -1。
所以,所求二次函數(shù)的關(guān)系式是。
。2)因?yàn)閽佄锞的頂點(diǎn)為(1,-3),所以設(shè)二此函數(shù)的關(guān)系式為,又由于拋物線與y軸交于點(diǎn)(0,1),可以得到解得。
所以,所求二次函數(shù)的關(guān)系式是。
。3)因?yàn)閽佄锞與x軸交于點(diǎn)M(-3,0)、(5,0),
所以設(shè)二此函數(shù)的`關(guān)系式為。
又由于拋物線與y軸交于點(diǎn)(0,3),可以得到解得。
所以,所求二次函數(shù)的關(guān)系式是。
。4)根據(jù)前面的分析,本題已轉(zhuǎn)化為與(2)相同的題型請(qǐng)同學(xué)們自己完成。
(四)題組訓(xùn)練,拓展遷移:
1、根據(jù)下列條件,分別求出對(duì)應(yīng)的二次函數(shù)的關(guān)系式。
。1)已知二次函數(shù)的圖象經(jīng)過點(diǎn)(0,2)、(1,1)、(3,5);
。2)已知拋物線的頂點(diǎn)為(-1,2),且過點(diǎn)(2,1);
(3)已知拋物線與x軸交于點(diǎn)M(-1,0)、(2,0),且經(jīng)過點(diǎn)(1,2)。
2、二次函數(shù)圖象的對(duì)稱軸是x= -1,與y軸交點(diǎn)的縱坐標(biāo)是–6,且經(jīng)過點(diǎn)(2,10),求此二次函數(shù)的關(guān)系式。
。ㄎ澹┙涣髟u(píng)價(jià),深化知識(shí):
確定二此函數(shù)的關(guān)系式的一般方法是待定系數(shù)法,在選擇把二次函數(shù)的關(guān)系式設(shè)成什么形式時(shí),可根據(jù)題目中的條件靈活選擇,以簡(jiǎn)單為原則。二次函數(shù)的關(guān)系式可設(shè)如下三種形式:(1)一般式:,給出三點(diǎn)坐標(biāo)可利用此式來求。
。2)頂點(diǎn)式:,給出兩點(diǎn),且其中一點(diǎn)為頂點(diǎn)時(shí)可利用此式來求。
(3)交點(diǎn)式:,給出三點(diǎn),其中兩點(diǎn)為與x軸的兩個(gè)交點(diǎn)、時(shí)可利用此式來求。
本課課外作業(yè)1。已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(-1,12)、B(2,-3),
。1)求該二次函數(shù)的關(guān)系式;
。2)用配方法把(1)所得的函數(shù)關(guān)系式化成的形式,并求出該拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸。
2、已知二次函數(shù)的圖象與一次函數(shù)的圖象有兩個(gè)公共點(diǎn)P(2,m)、Q(n,-8),如果拋物線的對(duì)稱軸是x= -1,求該二次函數(shù)的關(guān)系式
《二次函數(shù)》教案10
教學(xué)目標(biāo):
1.經(jīng)歷探索二次函數(shù)y=ax2的圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗(yàn)。
2.能夠利用描點(diǎn)法作出函數(shù)y=ax2的圖象,并能根據(jù)圖象認(rèn)識(shí)和理解二次函數(shù)y=ax2的性質(zhì),初步建立二次函數(shù)表達(dá)式與圖象之間的聯(lián)系。
3.能根據(jù)二次函數(shù)y=ax2的圖象,探索二次函數(shù)的性質(zhì)(開口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo))。
教學(xué)重點(diǎn):二次函數(shù)y=ax2的圖象的作法和性質(zhì)
教學(xué)難點(diǎn):建立二次函數(shù)表達(dá)式與圖象之間的聯(lián)系
教學(xué)方法:自主探索,數(shù)形結(jié)合
教學(xué)建議:
利用具體的二次函數(shù)圖象討論二次函數(shù)y=ax2的性質(zhì)時(shí),應(yīng)盡可能多地運(yùn)用小組活動(dòng)的形式,通過學(xué)生之間的合作與交流,進(jìn)行圖象和圖象之間的比較,表達(dá)式和表達(dá)式之間的比較,建立圖象和表達(dá)式之間的聯(lián)系,以達(dá)到學(xué)生對(duì)二次函數(shù)性質(zhì)的真正理解。
教學(xué)過程:
一 、認(rèn)知準(zhǔn)備:
1.正比例函數(shù)、一次函數(shù)、反比例函數(shù)的圖象分別是什么?
2.畫函數(shù)圖象的方法和步驟是什么?(學(xué)生口答)
你會(huì)作二次函數(shù)y=ax2的'圖象嗎?你想直觀地了解它的性質(zhì)嗎?本節(jié)課我們一起探索。
二 、 新授:
(一)動(dòng)手實(shí)踐:作二次函數(shù) y=x2和y=-x2的圖象
(同桌二人,南邊作二次函數(shù) y=x2的圖象,北邊作二次函數(shù)y=-x2的圖象,兩名學(xué)生黑板完成)
(二)對(duì)照黑板圖象 議一議:(先由學(xué)生獨(dú)立思考,再小組交流)
1.你能描述該圖象的形狀嗎?
2.該圖象與x軸有公共點(diǎn)嗎?如果有公共點(diǎn)坐標(biāo)是什么?
3. 當(dāng)x0時(shí),隨著x的增大,y如何變化?當(dāng)x0時(shí)呢?
4.當(dāng)x取什么值時(shí),y值最小?最小值是什么?你是如何知道的?
5.該圖象是軸對(duì)稱圖形嗎?如果是,它的對(duì)稱軸是什么?請(qǐng)你找出幾對(duì)對(duì)稱點(diǎn)。
(三) 學(xué)生交流:
1.交流上面的五個(gè)問題(由問題1引出拋物線的概念,由問題2引出拋物線的頂點(diǎn))
2.二次函數(shù) y=x2 和y=-x2的圖象有哪些相同點(diǎn)和不同點(diǎn)?
3.教師出示同一直角坐標(biāo)系中的 兩個(gè)函數(shù)y=x2 和y=-x2 圖象,根據(jù)圖象回答:
(1)二次函數(shù) y=x2和y=-x2 的圖象關(guān)于哪條直線對(duì)稱?
(2)兩個(gè)圖象關(guān)于哪個(gè)點(diǎn)對(duì)稱?
(3)由 y=x2 的圖象如何得到 y=-x2 的圖象?
(四) 動(dòng)手做一做:
1.作出函數(shù)y=2 x2 和 y= -2 x2的圖象
(同桌二人,南邊作二次函數(shù) y= -2 x2的圖象,北邊作二次函數(shù)y=2 x2的圖象,兩名學(xué)生黑板完成)
2.對(duì)照黑板圖象,數(shù)形結(jié)合,研討性質(zhì):
(1)你能說出二次函數(shù)y=2 x2具有哪些性質(zhì)嗎?
(2)你能說出二次函數(shù) y= -2 x2具有哪些性質(zhì)嗎?
(3)你能發(fā)現(xiàn)二次函數(shù)y=a x2的圖象有什么性質(zhì)嗎?
(學(xué)生分小組活動(dòng),交流各自的發(fā)現(xiàn))
3.師生歸納總結(jié)二次函數(shù)y=a x2的圖象及性質(zhì):
(1)二次函數(shù)y=a x2的圖象是一條拋物線
(2)性質(zhì)
a:開口方向:a0,拋物線開口向上,a〈 0,拋物線開口向下[
b:頂點(diǎn)坐標(biāo)是(0,0)
c:對(duì)稱軸是y軸
d:最值 :a0,當(dāng)x=0時(shí),y的最小值=0,a〈0,當(dāng)x=0時(shí),y的最大值=0
e:增減性:a0時(shí),在對(duì)稱軸的左側(cè)(X0),y隨x的增大而減小,在對(duì)稱軸的右側(cè)(x0),y隨x的增大而增大,a〈0時(shí),在對(duì)稱軸的左側(cè)(X0),y隨x的增大而增大,在對(duì)稱軸的右側(cè)(x0),y隨x的增大而減小。
4.應(yīng)用:(1)說出二次函數(shù)y=1/3 x2 和 y= -5 x2 有哪些性質(zhì)
(2)說出二次函數(shù)y=4 x2 和 y= -1/4 x2有哪些相同點(diǎn)和不同點(diǎn)?
三、小結(jié):
通過本節(jié)課學(xué)習(xí),你有哪些收獲?(學(xué)生小結(jié))
1.會(huì)畫二次函數(shù)y=a x2的圖象,知道它的圖象是一條拋物線
2.知道二次函數(shù)y=a x2的性質(zhì):
a:開口方向:a0,拋物線開口向上,a〈0,拋物線開口向下
b:頂點(diǎn)坐標(biāo)是(0,0)
c:對(duì)稱軸是y軸
d:最值 :a0,當(dāng)x=0時(shí),y的最小值=0,a〈0,當(dāng)x=0時(shí),y的最大值=0
e:增減性:a0時(shí),在對(duì)稱軸的左側(cè)(X0=,y隨x的增大而減小,在對(duì)稱軸的右側(cè)(x0),y隨x的增大而增大,a〈0時(shí),在對(duì)稱軸的左側(cè)(X0),y隨x的增大而增大,在對(duì)稱軸的右側(cè)(x0),y隨x的增大而減小。
《二次函數(shù)》教案11
教學(xué)目標(biāo):
1. 1. 理解二次函數(shù)的意義;會(huì)用描點(diǎn)法畫出函數(shù)y=ax2的圖象,知道拋物線的有關(guān)概念;
2. 2. 通過變式教學(xué),培養(yǎng)學(xué)生思維的敏捷性、廣闊性、深刻性;
3. 3. 通過二次函數(shù)的教學(xué)讓學(xué)生進(jìn)一步體會(huì)研究函數(shù)的一般方法;加深對(duì)于數(shù)形結(jié)合思想認(rèn)識(shí)。
教學(xué)重點(diǎn):二次函數(shù)的意義;會(huì)畫二次函數(shù)圖象。
教學(xué)難點(diǎn):描點(diǎn)法畫二次函數(shù)y=ax2的圖象,數(shù)與形相互聯(lián)系。
教學(xué)過程設(shè)計(jì):
一、 創(chuàng)設(shè)情景、建模引入
我們已學(xué)習(xí)了正比例函數(shù)及一次函數(shù),現(xiàn)在來看看下面幾個(gè)例子:
1.寫出圓的半徑是R(CM),它的面積S(CM2)與R的關(guān)系式
答:S=πR2. ①
2.寫出用總長(zhǎng)為60M的籬笆圍成矩形場(chǎng)地,矩形面積S(M2)與矩形一邊長(zhǎng)L(M)之間的關(guān)系
答:S=L(30-L)=30L-L2 ②
分析:①②兩個(gè)關(guān)系式中S與R、L之間是否存在函數(shù)關(guān)系?
S是否是R、L的一次函數(shù)?
由于①②兩個(gè)關(guān)系式中S不是R、L的'一次函數(shù),那么S是R、L的什么函數(shù)呢?這樣的函數(shù)大家能不能猜想一下它叫什么函數(shù)呢?
答:二次函數(shù)。
這一節(jié)課我們將研究二次函數(shù)的有關(guān)知識(shí)。(板書課題)
二、歸納抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a≠0) ,那么,y叫做x的二次函數(shù)。
注意:(1)必須a≠0,否則就不是二次函數(shù)了。而b,c兩數(shù)可以是零。(2) 由于二次函數(shù)的解析式是整式的形式,所以x的取值范圍是任意實(shí)數(shù)。
練習(xí):1.舉例子:請(qǐng)同學(xué)舉一些二次函數(shù)的例子,全班同學(xué)判斷是否正確。
2.出難題:請(qǐng)同學(xué)給大家出示一個(gè)函數(shù),請(qǐng)同學(xué)判斷是否是二次函數(shù)。
。ㄈ魧W(xué)生考慮不全,教師給予補(bǔ)充。如: ; ; ; 的形式。)
。ㄍㄟ^學(xué)生觀察、歸納定義加深對(duì)概念的理解,既培養(yǎng)了學(xué)生的。實(shí)踐能力,有培養(yǎng)了學(xué)生的探究精神。并通過開放性的練習(xí)培養(yǎng)學(xué)生思維的發(fā)散性、開放性。題目用了一些人性化的詞語,也增添了課堂的趣味性。)
由前面一次函數(shù)的學(xué)習(xí),我們已經(jīng)知道研究函數(shù)一般應(yīng)按照定義、圖象、性質(zhì)、求解析式幾個(gè)方面進(jìn)行研究。二次函數(shù)我們也會(huì)按照定義、圖象、性質(zhì)、求解析式幾個(gè)方面進(jìn)行研究。
。ㄔ谶@里指出學(xué)習(xí)函數(shù)的一般方法,旨在及時(shí)進(jìn)行學(xué)法指導(dǎo);并將此方法形成技能,以指導(dǎo)今后的學(xué)習(xí);進(jìn)一步培養(yǎng)終身學(xué)習(xí)的能力。)
三、嘗試模仿、鞏固提高
讓我們先從最簡(jiǎn)單的二次函數(shù)y=ax2入手展開研究
1. 1. 嘗試:大家知道一次函數(shù)的圖象是一條直線,那么二次函數(shù)的圖象是什么呢?
請(qǐng)同學(xué)們畫出函數(shù)y=x2的圖象。
。▽W(xué)生分別畫圖,教師巡視了解情況。)
《二次函數(shù)》教案12
二次函數(shù)的教學(xué)設(shè)計(jì)
教學(xué)內(nèi)容:人教版九年義務(wù)教育初中第三冊(cè)第108頁(yè)
教學(xué)目標(biāo):
1。 1。 理解二次函數(shù)的意義;會(huì)用描點(diǎn)法畫出函數(shù)y=ax2的圖象,知道拋物線的有關(guān)概念;
2。 2。 通過變式教學(xué),培養(yǎng)學(xué)生思維的敏捷性、廣闊性、深刻性;
3。 3。 通過二次函數(shù)的教學(xué)讓學(xué)生進(jìn)一步體會(huì)研究函數(shù)的一般方法;加深對(duì)于數(shù)形結(jié)合思想認(rèn)識(shí)。
教學(xué)重點(diǎn):二次函數(shù)的意義;會(huì)畫二次函數(shù)圖象。
教學(xué)難點(diǎn):描點(diǎn)法畫二次函數(shù)y=ax2的圖象,數(shù)與形相互聯(lián)系。
教學(xué)過程設(shè)計(jì):
一 創(chuàng)設(shè)情景、建模引入
我們已學(xué)習(xí)了正比例函數(shù)及一次函數(shù),現(xiàn)在來看看下面幾個(gè)例子:
1。寫出圓的半徑是R(CM),它的面積S(CM2)與R的關(guān)系式
答:S=πR2。 ①
2。寫出用總長(zhǎng)為60M的籬笆圍成矩形場(chǎng)地,矩形面積S(M2)與矩形一邊長(zhǎng)L(M)之間的關(guān)系
答:S=L(30-L)=30L-L2 ②
分析:①②兩個(gè)關(guān)系式中S與R、L之間是否存在函數(shù)關(guān)系?
S是否是R、L的一次函數(shù)?
由于①②兩個(gè)關(guān)系式中S不是R、L的一次函數(shù),那么S是R、L的什么函數(shù)呢?這樣的函數(shù)大家能不能猜想一下它叫什么函數(shù)呢?
答:二次函數(shù)。
這一節(jié)課我們將研究二次函數(shù)的有關(guān)知識(shí)。(板書課題)
二 歸納抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a≠0) ,
那么,y叫做x的二次函數(shù)。
注意:(1)必須a≠0,否則就不是二次函數(shù)了。而b,c兩數(shù)可以是零。(2) 由于二次函數(shù)的解析式是整式的形式,所以x的取值范圍是任意實(shí)數(shù)。
練習(xí):1。舉例子:請(qǐng)同學(xué)舉一些二次函數(shù)的例子,全班同學(xué)判斷是否正確。
2。出難題:請(qǐng)同學(xué)給大家出示一個(gè)函數(shù),請(qǐng)同學(xué)判斷是否是二次函數(shù)。
(若學(xué)生考慮不全,教師給予補(bǔ)充。如:;;; 的形式。)
。ㄍㄟ^學(xué)生觀察、歸納定義加深對(duì)概念的理解,既培養(yǎng)了學(xué)生的實(shí)踐能力,有培養(yǎng)了學(xué)生的探究精神。并通過開放性的練習(xí)培養(yǎng)學(xué)生思維的發(fā)散性、開放性。題目用了一些人性化的詞語,也增添了課堂的趣味性。)
由前面一次函數(shù)的學(xué)習(xí),我們已經(jīng)知道研究函數(shù)一般應(yīng)按照定義、圖象、性質(zhì)、求解析式幾個(gè)方面進(jìn)行研究。二次函數(shù)我們也會(huì)按照定義、圖象、性質(zhì)、求解析式幾個(gè)方面進(jìn)行研究。
。ㄔ谶@里指出學(xué)習(xí)函數(shù)的一般方法,旨在及時(shí)進(jìn)行學(xué)法指導(dǎo);并將此方法形成技能,以指導(dǎo)今后的'學(xué)習(xí);進(jìn)一步培養(yǎng)終身學(xué)習(xí)的能力。)
三 嘗試模仿、鞏固提高
讓我們先從最簡(jiǎn)單的二次函數(shù)y=ax2入手展開研究
1。 1。 嘗試:大家知道一次函數(shù)的圖象是一條直線,那么二次函數(shù)的圖象是什么呢?
請(qǐng)同學(xué)們畫出函數(shù)y=x2的圖象。
(學(xué)生分別畫圖,教師巡視了解情況。)
2。 2。 模仿鞏固:教師將了解到的各種不同圖象用實(shí)物投影向大家展示,到底哪一個(gè)對(duì)呢?下面師生共同畫出函數(shù)y=x2的圖象。
解:一、列表:
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
Y=x2 | 9 | 4 | 1 | 0 | 1 | 4 | 9 |
二、描點(diǎn)、連線: 按照表格,描出各點(diǎn)。然后用光滑的曲線,按照x(點(diǎn)的橫坐標(biāo))由小到大的順序把各點(diǎn)連結(jié)起來。
對(duì)照教師畫的圖象一一分析學(xué)生所畫圖象的正誤及原因,從而得到畫二次函數(shù)圖象的幾點(diǎn)注意。
練習(xí):畫出函數(shù);的圖象(請(qǐng)兩個(gè)同學(xué)板演)
X | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
Y=0。5X2 | 4。5 | 2 | 0。5 | 0 | 0。5 | 02 | 4。5 |
Y=-X2 | -9 | -4 | -1 | 0 | -1 | -4 | -9 |
畫好之后教師根據(jù)情況講評(píng),并引導(dǎo)學(xué)生觀察圖象形狀得出:二次函數(shù) y=ax2的圖象是一條拋物線。
。ㄟ@里,教師在學(xué)生自己探索嘗試的基礎(chǔ)上,示范畫圖象的方法和過程,希望學(xué)生學(xué)會(huì)畫圖象的方法;并及時(shí)安排練習(xí)鞏固剛剛學(xué)到的新知識(shí),通過觀察,感悟拋物線名稱的由來。)
三 運(yùn)用新知、變式探究
畫出函數(shù) y=5x2圖象
學(xué)生在畫圖象的過程當(dāng)中遇到函數(shù)值較大的困難,不知如何是好。
x | -0。5 | -0。4 | -0。3 | -0。2 | -0。1 | 0 | 0。1 | 0。2 | 0。3 | 0。4 | 0。5 |
Y=5x2 | 1。25 | 0。8 | 0。45 | 0。2 | 0。05 | 0 | 0。05 | 0。2 | 0。45 | 0。8 | 1。25 |
教師出示已畫好的圖象讓學(xué)生觀察
注意:1。 畫圖象應(yīng)描7個(gè)左右的點(diǎn),描的點(diǎn)越多圖象越準(zhǔn)確。
2。 自變量X的取值應(yīng)注意關(guān)于Y軸對(duì)稱。
3。 對(duì)于不同的二次函數(shù)自變量X的取值應(yīng)更加靈活,例如可以取分?jǐn)?shù)。
四。 四。 歸納小結(jié)、延續(xù)探究
教師引導(dǎo)學(xué)生觀察表格及圖象,歸納y=ax2的性質(zhì),學(xué)生們暢所欲言,各抒己見;互相改進(jìn),互相完善。最終得到如下性質(zhì):
一般的,二次函數(shù)y=ax2的圖象是一條拋物線,對(duì)稱軸是Y軸,頂點(diǎn)是坐標(biāo)原點(diǎn);當(dāng)a>0時(shí),圖象的開口向上,最低點(diǎn)為(0,0);當(dāng)a<0時(shí),圖象的開口向下,最高點(diǎn)為(0,0)。
五 回顧反思、總結(jié)收獲
在這一環(huán)節(jié)中,教師請(qǐng)同學(xué)們回顧一節(jié)課的學(xué)習(xí)暢談自己的收獲或多、或少、或幾點(diǎn)、或全面,總之是人人有所得,個(gè)個(gè)有提高。這也正是新課標(biāo)中所倡導(dǎo)的新的理念——不同的人在數(shù)學(xué)上得到不同的發(fā)展。
(在整個(gè)一節(jié)課上,基本上是學(xué)生講為主,教師講為輔。一些較為困難的問題,我也鼓勵(lì)學(xué)生大膽思考,積極嘗試,不怕困難,一個(gè)人完不成,講不透,第二個(gè)人、第三個(gè)人補(bǔ)充,直到完成整個(gè)例題。這樣上課氣氛非;钴S,學(xué)生之間常會(huì)因?yàn)槟硞(gè)觀點(diǎn)的不同而爭(zhēng)論,這就給教師提出了更高的要求,一方面要控制好整節(jié)課的節(jié)奏,另一方面又要察言觀色,適時(shí)地對(duì)某些觀點(diǎn)作出判斷,或與學(xué)生一同討論。)
《二次函數(shù)》教案13
通過學(xué)生的討論,使學(xué)生更清楚以下事實(shí):
(1)分解因式與整式的乘法是一種互逆關(guān)系;
(2)分解因式的結(jié)果要以積的形式表示;
(3)每個(gè)因式必須是整式,且每個(gè)因式的次數(shù)都必須低于原來的'多項(xiàng)式 的次數(shù);
(4)必須分解到每個(gè)多項(xiàng)式不能再分解為止。
活動(dòng)5:應(yīng)用新知
例題學(xué)習(xí):
P166例1、例2(略)
在教師的引導(dǎo)下,學(xué)生應(yīng)用提公因式法共同完成例題。
讓學(xué)生進(jìn)一步理解提公因式法進(jìn)行因式分解。
活動(dòng)6:課堂練習(xí)
1.P167練習(xí);
2. 看誰連得準(zhǔn)
x2-y2 (x+1)2
9-25 x 2 y(x -y)
x 2+2x+1 (3-5 x)(3+5 x)
xy-y2 (x+y)(x-y)
3.下列哪些變形是因式分解,為什么?
(1)(a+3)(a -3)= a 2-9
(2)a 2-4=( a +2)( a -2)
(3)a 2-b2+1=( a +b)( a -b)+1
(4)2πR+2πr=2π(R+r)
學(xué)生自主完成練習(xí)。
通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對(duì)因式分解意義的理解是否到位,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏。
活動(dòng)7:課堂小結(jié)
從今天的課程中,你學(xué)到了哪些知識(shí)?掌握了哪些方法?明白了哪些道理?
學(xué)生發(fā)言。
通過學(xué)生的回顧與反思,強(qiáng)化學(xué)生對(duì)因式分解意義的理解,進(jìn)一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對(duì)類比的數(shù)學(xué)思想的理解。
活動(dòng)8:課后作業(yè)
課本P170習(xí)題的第1、4大題。
學(xué)生自主完成
通過作業(yè)的鞏固對(duì)因式分解,特別是提公因式法理解并學(xué)會(huì)應(yīng)用。
板書設(shè)計(jì)(需要一直留在黑板上主板書)
15.4.1提公因式法 例題
1.因式分解的定義
2.提公因式法
《二次函數(shù)》教案14
教學(xué)目標(biāo):
1、使學(xué)生進(jìn)一步理解二次函數(shù)的基本性質(zhì);
2、滲透解析幾何,數(shù)形結(jié)合,函數(shù)等數(shù)學(xué)思想.培養(yǎng)學(xué)生發(fā)現(xiàn)問題解決問題,及邏輯思維的能力.
3、使學(xué)生參與教學(xué)過程,通過主體的積極思維,體驗(yàn)感悟數(shù)學(xué).逐步建立數(shù)學(xué)的觀念,培養(yǎng)學(xué)生獨(dú)立地獲取知識(shí)的能力.
教學(xué)重點(diǎn):初步理解數(shù)形結(jié)合的數(shù)學(xué)思想
教學(xué)難點(diǎn):初步理解數(shù)形結(jié)合的數(shù)學(xué)思想
教學(xué)用具:微機(jī)
教學(xué)方法:探究式、小組合作學(xué)習(xí)
教學(xué)過程:
例1、已知:拋物線y=x2-(m2-1)x-2m2-2
、徘笞C:無論m取什么實(shí)數(shù),拋物線與x軸一定有兩個(gè)交點(diǎn)
、苖取什么實(shí)數(shù)時(shí),兩交點(diǎn)間距離最短?是多少?
解:
△ =(m2-1)2+4(2m2+2)
=m4-2m2+1+8m2+8
=m4+6m2+9
=(m2+3)2
m2≥0
∴m2+3>0
∴△>0
∴拋物線與x軸有兩個(gè)交點(diǎn)
問題:為什么說當(dāng)△>0時(shí),拋物線y =ax2+bx+c與x軸有兩個(gè)交點(diǎn).(能否從數(shù)和形兩方面說明)
設(shè)計(jì)意圖:在課堂上創(chuàng)設(shè)讓學(xué)生說數(shù)學(xué)的機(jī)會(huì),學(xué)會(huì)合作學(xué)習(xí),以達(dá)到①經(jīng)驗(yàn)共享,在思維的碰撞中共同提高.②學(xué)會(huì)合作,消除個(gè)人中心.③發(fā)現(xiàn)自我,提高參與度.④弘揚(yáng)個(gè)體的主體性,形成健康,豐富的個(gè)性.
數(shù):點(diǎn)在曲線上,點(diǎn)的坐標(biāo)滿足曲線的方程.反之,曲線方程的每一個(gè)實(shí)數(shù)解對(duì)應(yīng)的點(diǎn)都在曲線上.拋物線與x軸的交點(diǎn),既在拋物線上,又在x軸上.所以交點(diǎn)的坐標(biāo)既滿足拋物線的解析式,也滿足x軸的解析式.設(shè)交點(diǎn)坐標(biāo)為(x,y)
∴
這樣交點(diǎn)問題就轉(zhuǎn)化成求這個(gè)二元二次方程組的解.代入y =0,消去y,轉(zhuǎn)化成ax2+bx+c=0這個(gè)一元二次方程求根問題.根據(jù)以前學(xué)過的知識(shí),當(dāng)△>0時(shí), ax2+bx+c=0有兩個(gè)不相等的實(shí)根.∴y =ax2+bx+c
y =0
有兩個(gè)不等的實(shí)數(shù)解
∴拋物線與x軸交于兩個(gè)不同的點(diǎn).
形:頂點(diǎn)在x軸上方,且開口向下.或者頂點(diǎn)在x軸下方,且開口向上.
設(shè)計(jì)意圖:滲透解析幾何的基本思想
使學(xué)生掌握轉(zhuǎn)化思想使學(xué)生在解題過程中,感知數(shù)學(xué)的直觀性和形式化這二重性.掌握數(shù)形結(jié)合,分類討論的思想方法.逐步學(xué)會(huì)數(shù)學(xué)的思維.
轉(zhuǎn)化成代數(shù)語言為:
小結(jié):第一種方法,根據(jù)解析幾何的基本思想.將求曲線的交點(diǎn)問題,轉(zhuǎn)化成求方程組的解的問題.
第二種方法,借助于圖象思考問題,比較直觀.發(fā)現(xiàn)規(guī)律后,再用數(shù)學(xué)的符號(hào)語言將其形式化.這既體現(xiàn)了數(shù)學(xué)中的數(shù)形結(jié)合的思想方法,也是探索解數(shù)學(xué)問題的一般方法.
思考:試從數(shù)、形兩方面說明拋物線與x軸的交點(diǎn)個(gè)數(shù)與判別 式的符號(hào)的關(guān)系.
設(shè)計(jì)意圖:數(shù)學(xué)學(xué)習(xí)是一個(gè)再創(chuàng)造的過程,不能等同于數(shù)學(xué)知識(shí)的匯集,而要讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的創(chuàng)造過程.使主體積極地參與到學(xué)習(xí)中去.以數(shù)學(xué)知識(shí)為載體,揭示出蘊(yùn)涵于其中的數(shù)學(xué)思想方法,逐步形成數(shù)學(xué)觀念.
、苖取什么實(shí)數(shù)時(shí),兩交點(diǎn)間距離最短?是多少?
解:設(shè)二次函數(shù)與x軸的兩交點(diǎn)為(x1,0),(x2,0)
解法㈠ 由⑴可知m為任何實(shí)數(shù)時(shí), 都有△>0
解①
∴ x1+x2=m2-1
x1·x2=-2(m2+1)
∴│x2-x1│=
=
=
=
=m2+3
∴當(dāng)m =0時(shí),兩交點(diǎn)最小距離為3
這里兩交點(diǎn)間距離是m的函數(shù)
設(shè)計(jì)意圖:培養(yǎng)學(xué)生的問題意識(shí).在解題過程中,發(fā)現(xiàn)問題,并能運(yùn)用已有的數(shù)學(xué)知識(shí),將其一般化,形式化,解決問題,體會(huì)數(shù)學(xué)問題解決的一般方法.培養(yǎng)學(xué)生獨(dú)立地獲取數(shù)學(xué)知識(shí)的能力.滲透函數(shù)思想
問題: 觀察本題兩交點(diǎn)間距離與判別式的值之間有何異同?具有一般的規(guī)律嗎?如何說明.
設(shè)x1、x2 為ax2+bx+c =0的兩根
可以推出:
還可以理解為頂點(diǎn)到x軸距離最短.
設(shè)計(jì)意圖:在對(duì)比、分析中,明確概念,揭示知識(shí)間的聯(lián)系,幫助學(xué)生建立良好的認(rèn)知結(jié)構(gòu).
小結(jié):觀察這道題的結(jié)論,我們猜測(cè)出規(guī)律,將其一般化,推導(dǎo)出這個(gè)公式,這是學(xué)習(xí)數(shù)學(xué)知識(shí)的一般方法.
解法㈡:用十字相乘法或求根公式法求根.
思考:一元二次方程與二次函數(shù)的`關(guān)系.
思考:求m取什么實(shí)數(shù)時(shí),y =x2-(m2-1)x -2 m2-2被直線y =2所截得的線段最短?是多少?
練習(xí):
觀察函數(shù) 的圖象,回答:
。1)y>0時(shí),x的取值范圍如何?
。2)y=0時(shí),x取什么值?
(1)y<0時(shí),x的取值范圍如何?
小結(jié):數(shù)與形是數(shù)學(xué)中相互依賴的兩個(gè)方面.圖形比較直觀,可以啟發(fā)思路;而數(shù)學(xué)的嚴(yán)格證明也是必不可少的.直觀性和形式化是數(shù)學(xué)的兩重性.
探究活動(dòng)
探究問題:
欣欣日用品零售商店,從某公司批發(fā)部每月按銷售合同以批發(fā)單價(jià)每把8元購(gòu)進(jìn)雨傘(數(shù)量至少為100把),欣欣商店根據(jù)銷售記錄,這批雨傘以零售單價(jià)每把為14元出售時(shí),月銷售量為100把,數(shù)學(xué)教案-二次函數(shù)y=ax2+bx+c 的圖象,初中數(shù)學(xué)教案《數(shù)學(xué)教案-二次函數(shù)y=ax2+bx+c 的圖象》。如果零售單價(jià)每降價(jià)0.1元 , 月銷售量就要增加5把.
(1) 欣欣日用品零售商店以零售單價(jià)14元出售時(shí),一個(gè)月的利潤(rùn)為多少元?
(2) 欣欣日用品零售商店為了擴(kuò)大銷售記錄,現(xiàn)實(shí)行降價(jià)銷售,問分別降價(jià)0.2元、0.8元、1.2元、1.6元、2.4元、3元時(shí)的利潤(rùn)是多少?
(3) 欣欣日用品零售商店實(shí)行降價(jià)銷售后,問降價(jià)多少元時(shí)利潤(rùn)最大?最大利潤(rùn)為多少元?
(4) 現(xiàn)在該公司的批發(fā)部為了再次擴(kuò)大這種雨傘的銷售量,給零售商制定如下優(yōu)惠措施:如果零售商每月從批發(fā)部購(gòu)進(jìn)雨傘的數(shù)量超過100把,其超過100把的部分每把按原價(jià)九五折(即百分之95)付費(fèi),但零售價(jià)每把不能低于10元。欣欣日用品零售商店應(yīng)將這種雨傘的零售單價(jià)定為每把多少元出售時(shí),才能使這種雨傘的月銷售利潤(rùn)最大?最大月銷售利潤(rùn)是多少元?(銷售利潤(rùn)=銷售款額—進(jìn)貨款額)
解:(1)(14—8) (元)
。2)638元、728元、748元、792元、792元、750元。
。3)設(shè)降價(jià) 元時(shí)利潤(rùn)最大,最大利潤(rùn)為 元
=
=
=
∴ 當(dāng) 時(shí), 有最大值
元
(4)設(shè)降價(jià) 元時(shí)利潤(rùn)最大,利潤(rùn)為 元
(其中 )。
化簡(jiǎn),得 。
,
∴ 當(dāng) 時(shí), 有最大值。
∴ 。
數(shù)學(xué)教案-二次函數(shù)y=ax2+bx+c 的圖象
《二次函數(shù)》教案15
1、知識(shí)與技能:
。1)體會(huì)函數(shù)與方程之間的聯(lián)系,初步體會(huì)利用函數(shù)圖象研究方程問題的方法;
。2)理解二次函數(shù)圖象與x軸(橫軸)交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)根和沒有實(shí)根的函數(shù)圖象特征;(3)理解一元二次方程的根就是二次函數(shù)與y=h(h是實(shí)數(shù))圖象交點(diǎn)的橫坐標(biāo)。
2、過程與方法:
。1)由一次函數(shù)與一元一次方程根的聯(lián)系類比探求二次函數(shù)與一元二次方程之間的聯(lián)系;
。2)經(jīng)歷類比、觀察、發(fā)現(xiàn)、歸納的探索過程,體會(huì)函數(shù)與方程相互轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)形結(jié)合的數(shù)學(xué)思想。 3、情感、態(tài)度與價(jià)值觀:
培養(yǎng)學(xué)生類比與猜想、不完全歸納、認(rèn)識(shí)到事物之間的聯(lián)系與轉(zhuǎn)化、體驗(yàn)探究的樂趣和學(xué)會(huì)用辨證的觀點(diǎn)看問題的思維品質(zhì)。
重點(diǎn):經(jīng)歷“類比__觀察__發(fā)現(xiàn)__歸納”而得出二次函數(shù)與一元二次方程的關(guān)系的探索過程。難點(diǎn):準(zhǔn)確理解二次函數(shù)與一元二次方程的`關(guān)系。
教法(=):命題課,采用“發(fā)現(xiàn)式學(xué)習(xí)”的方式,注重“最近發(fā)展區(qū)”,尋根問源,以舊知識(shí)為基礎(chǔ)創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生經(jīng)歷“類比—猜想—觀察—發(fā)現(xiàn)—?dú)w納—應(yīng)用”的探究過程。學(xué)法:探究式學(xué)習(xí)。
多媒體、PPT課件。
附:板書設(shè)計(jì):
《二次函數(shù)》教案3
一、教材分析
1.教材的地位和作用
。1)函數(shù)是初等數(shù)學(xué)中最基本的概念之一,貫穿于整個(gè)初等數(shù)學(xué)體系之中,也是實(shí)際生活中數(shù)學(xué)建模的重要工具之一,二次函數(shù)在初中函數(shù)的教學(xué)中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,也是初中數(shù)學(xué)教學(xué)的重點(diǎn)和難點(diǎn)之一,更為高中學(xué)習(xí)一元二次不等式和圓錐曲線奠定基礎(chǔ)。在歷屆佛山市中考試題中,二次函數(shù)都是必不可少的內(nèi)容。
。2)二次函數(shù)的圖像和性質(zhì)體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,對(duì)學(xué)生基本數(shù)學(xué)思想和素養(yǎng)的形成起推動(dòng)作用。
(3)二次函數(shù)與一元二次方程、不等式等知識(shí)的聯(lián)系,使學(xué)生能更好地將所學(xué)知識(shí)融會(huì)貫通。
2.課標(biāo)要求:
、偻ㄟ^對(duì)實(shí)際問題情境的分析確定二次函數(shù)的表達(dá)式,并體會(huì)二次函數(shù)的意義。
②會(huì)用描點(diǎn)法畫出二次函數(shù)的圖象,能從圖象上認(rèn)識(shí)二次函數(shù)的性質(zhì)。
、蹠(huì)根據(jù)公式確定圖象的頂點(diǎn)、開口方向和對(duì)稱軸(公式不要求記憶和推導(dǎo))。
④會(huì)根據(jù)二次函數(shù)的性質(zhì)解決簡(jiǎn)單的實(shí)際問題。
3.學(xué)情分析:
(1)初三學(xué)生在新課的學(xué)習(xí)中已掌握二次函數(shù)的定義、圖像及性質(zhì)等基本知識(shí)。
。2)學(xué)生的分析、理解能力較學(xué)習(xí)新課時(shí)有明顯提高。
。3)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情很高,思維敏捷,具有一定的自主探究和合作學(xué)習(xí)的能力。
。4)學(xué)生能力差異較大,兩極分化明顯。
4.教學(xué)目標(biāo)
認(rèn)知目標(biāo)
(1)掌握二次函數(shù)y=圖像與系數(shù)符號(hào)之間的關(guān)系。通過復(fù)習(xí),掌握各類形式的二次函數(shù)解析式求解方法和思路,能夠一題多解,發(fā)散提高學(xué)生的創(chuàng)造思維能力。
能力目標(biāo)
提高學(xué)生對(duì)知識(shí)的整合能力和分析能力。 情感目標(biāo)
制作動(dòng)畫增加直觀效果,激發(fā)學(xué)生興趣,感受數(shù)學(xué)之美。在教學(xué)中滲透美的教育,滲透數(shù)形結(jié)合的思想,讓學(xué)生在數(shù)學(xué)活動(dòng)中學(xué)會(huì)感受探索與創(chuàng)造,體驗(yàn)成功的。喜悅。
5.教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn):(1)掌握二次函數(shù)y=圖像與系數(shù)符號(hào)之間的關(guān)系。
(2)各類形式的二次函數(shù)解析式的求解方法和思路。
。ǎ常┍竟(jié)課主要目的,對(duì)歷屆中考題中的二次函數(shù)題目進(jìn)行類比分析,達(dá)到融會(huì)貫通的作用。
難點(diǎn):(1)已知二次函數(shù)的解析式說出函數(shù)性質(zhì)
(2)運(yùn)用數(shù)形結(jié)合思想,選用恰當(dāng)?shù)臄?shù)學(xué)關(guān)系式解決幾何問題。
二、教學(xué)方法:
1.運(yùn)用多媒體進(jìn)行輔助教學(xué),既直觀、生動(dòng)地反映圖形變換,增強(qiáng)教學(xué)的條理性和形象性,又豐富了課堂的內(nèi)容,有利于突出重點(diǎn)、分散難點(diǎn),更好地提高課堂效率。
2.將知識(shí)點(diǎn)分類,讓學(xué)生通過這個(gè)框架結(jié)構(gòu)很容易看出不同解析式表示的二次函數(shù)的內(nèi)在聯(lián)系,讓學(xué)生形成一個(gè)清晰、系統(tǒng)、完整的知識(shí)網(wǎng)絡(luò)。
3.師生互動(dòng)探究式教學(xué),以課標(biāo)為依據(jù),滲透新的教育理念,遵循教師為主導(dǎo)、學(xué)生為主體的原則,結(jié)合初三學(xué)生的求知心理和已有的認(rèn)知水平開展教學(xué).形成學(xué)生自動(dòng)、生生助動(dòng)、師生互動(dòng),教師著眼于引導(dǎo),學(xué)生著眼于探索,側(cè)重于學(xué)生能力的提高、思維的訓(xùn)練。同時(shí)考慮到學(xué)生的個(gè)體差異,在教學(xué)的各個(gè)環(huán)節(jié)中進(jìn)行分層施教,讓每一個(gè)學(xué)生都能獲得知識(shí),能力得到提高。
三、學(xué)法指導(dǎo):
1.學(xué)法引導(dǎo)
“授人之魚,不如授人之漁”在教學(xué)過程中,不但要傳授學(xué)生基本知識(shí),還要培育學(xué)生主動(dòng)思考,親自動(dòng)手,自我發(fā)現(xiàn)等能力,增強(qiáng)學(xué)生的綜合素質(zhì),從而達(dá)到教學(xué)終極目標(biāo)。
【《二次函數(shù)》教案】相關(guān)文章:
二次函數(shù)教案07-28
二次函數(shù)教案15篇02-20
《二次函數(shù)》教案15篇02-21
二次函數(shù)說課稿06-19
二次函數(shù)的教學(xué)反思04-22
二次函數(shù)概念說課稿12-29
二次函數(shù)教學(xué)反思02-13
二次函數(shù)教學(xué)反思05-27
二次函數(shù)的教學(xué)反思05-21