- 相關(guān)推薦
高中數(shù)學(xué)圓的知識(shí)點(diǎn)歸納
在我們平凡的學(xué)生生涯里,看到知識(shí)點(diǎn),都是先收藏再說(shuō)吧!知識(shí)點(diǎn)就是掌握某個(gè)問(wèn)題/知識(shí)的學(xué)習(xí)要點(diǎn)。哪些知識(shí)點(diǎn)能夠真正幫助到我們呢?下面是小編為大家整理的高中數(shù)學(xué)圓的知識(shí)點(diǎn)歸納,歡迎閱讀與收藏。
圓與圓的位置關(guān)系的判斷方法
一、設(shè)兩個(gè)圓的半徑為R和r,圓心距為d。
則有以下五種關(guān)系:
1、d>R+r 兩圓外離; 兩圓的圓心距離之和大于兩圓的半徑之和。
2、d=R+r 兩圓外切; 兩圓的圓心距離之和等于兩圓的半徑之和。
3、d=R-r 兩圓內(nèi)切; 兩圓的圓心距離之和等于兩圓的半徑之差。
4、d<r-r p="" 兩圓內(nèi)含;兩圓的圓心距離之和小于兩圓的半徑之差。
5、d<r+r p="" 兩園相交;兩圓的圓心距離之和小于兩圓的半徑之和。
二、圓和圓的位置關(guān)系,還可用有無(wú)公共點(diǎn)來(lái)判斷:
1、無(wú)公共點(diǎn),一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含。
2、有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切。
3、有兩個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。
高中數(shù)學(xué)直線與圓的關(guān)系
高中數(shù)學(xué)直線與圓的方位置關(guān)系一
1、平面內(nèi),直線Ax+By+C=0與圓x2+y2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是利用判別式b2-4ac的符號(hào)可確定圓與直線的位置關(guān)系如下:
如果b2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交。
如果b2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切。
如果b2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離。
高中數(shù)學(xué)直線與圓的方位置關(guān)系二
圓上一點(diǎn)的切線方程
(x-a)2+(y-b)2=r2上任意一點(diǎn)(X0,Y0)該點(diǎn)的切線方程:
(X-a)(X0-a)+(Y-b)(Y0-b)=r—2
如果在平面直角坐標(biāo)系中還可以直接將
直線方程: 與圓的方程: 聯(lián)立得出
若判別式>0 則該方程有兩個(gè)根,即直線與圓有兩個(gè)交點(diǎn),相交;
若判別式=0 則該方程有一個(gè)根,即直線與圓有一個(gè)交點(diǎn),相切;
若判別式<0 則該方程有零個(gè)根,即直線與圓有零個(gè)交點(diǎn),相離。
圓的位置與什么有關(guān)系
圓的大小與半徑有關(guān)系,圓的位置與圓心有關(guān)系。在一個(gè)平面內(nèi),一動(dòng)點(diǎn)以一定點(diǎn)為中心,以一定長(zhǎng)度為距離旋轉(zhuǎn)一周所形成的封閉曲線叫做圓。圓有無(wú)數(shù)個(gè)點(diǎn)。在同一平面內(nèi),到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫做圓。
在一個(gè)平面內(nèi),一動(dòng)點(diǎn)以一定點(diǎn)為中心,以一定長(zhǎng)度為距離旋轉(zhuǎn)一周所形成的封閉曲線叫圓。圓有無(wú)數(shù)條對(duì)稱(chēng)軸。
在同一平面內(nèi),到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫做圓。圓可以表示為集合{M||MO|=r},其中O是圓心,r是半徑。圓的標(biāo)準(zhǔn)方程是(x-a)2+(y-b)2=r2,其中點(diǎn)(a,b)是圓心,r是半徑。
圓形是一種圓錐曲線,由平行于圓錐底面的平面截圓錐得到。
圓是一種幾何圖形。根據(jù)定義,通常用圓規(guī)來(lái)畫(huà)圓。同圓內(nèi)圓的直徑、半徑的長(zhǎng)度永遠(yuǎn)相同,圓有無(wú)數(shù)條半徑和無(wú)數(shù)條直徑。圓是軸對(duì)稱(chēng)、中心對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸是直徑所在的直線。同時(shí),圓又是“正無(wú)限多邊形”,而“無(wú)限”只是一個(gè)概念。當(dāng)多邊形的邊數(shù)越多時(shí),其形狀、周長(zhǎng)、面積就都越接近于圓。所以,世界上沒(méi)有真正的圓,圓實(shí)際上只是一種概念性的圖形。
數(shù)列的函數(shù)理解:
①數(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。數(shù)列可以看作一個(gè)定義域?yàn)檎麛?shù)集N_或其有限子集{1,2,3,…,n}的函數(shù),其中的{1,2,3,…,n}不能省略。②用函數(shù)的觀點(diǎn)認(rèn)識(shí)數(shù)列是重要的思想方法,一般情況下函數(shù)有三種表示方法,數(shù)列也不例外,通常也有三種表示方法:a。列表法;b。圖像法;c。解析法。其中解析法包括以通項(xiàng)公式給出數(shù)列和以遞推公式給出數(shù)列。③函數(shù)不一定有解析式,同樣數(shù)列也并非都有通項(xiàng)公式。
通項(xiàng)公式:數(shù)列的第N項(xiàng)an與項(xiàng)的序數(shù)n之間的關(guān)系可以用一個(gè)公式an=f(n)來(lái)表示,這個(gè)公式就叫做這個(gè)數(shù)列的通項(xiàng)公式(注:通項(xiàng)公式不)。
數(shù)列通項(xiàng)公式的特點(diǎn):
。1)有些數(shù)列的通項(xiàng)公式可以有不同形式,即不。
(2)有些數(shù)列沒(méi)有通項(xiàng)公式(如:素?cái)?shù)由小到大排成一列2,3,5,7,11,。。。)。
遞推公式:如果數(shù)列{an}的第n項(xiàng)與它前一項(xiàng)或幾項(xiàng)的關(guān)系可以用一個(gè)式子來(lái)表示,那么這個(gè)公式叫做這個(gè)數(shù)列的遞推公式。
數(shù)列遞推公式特點(diǎn):
(1)有些數(shù)列的遞推公式可以有不同形式,即不。
。2)有些數(shù)列沒(méi)有遞推公式。
有遞推公式不一定有通項(xiàng)公式。
注:數(shù)列中的項(xiàng)必須是數(shù),它可以是實(shí)數(shù),也可以是復(fù)數(shù)。
等差數(shù)列通項(xiàng)公式
an=a1+(n—1)d
n=1時(shí)a1=S1
n≥2時(shí)an=Sn—Sn—1
an=kn+b(k,b為常數(shù))推導(dǎo)過(guò)程:an=dn+a1—d令d=k,a1—d=b則得到an=kn+b
等差中項(xiàng)
由三個(gè)數(shù)a,A,b組成的等差數(shù)列可以堪稱(chēng)最簡(jiǎn)單的等差數(shù)列。這時(shí),A叫做a與b的等差中項(xiàng)(arithmeticmean)。
有關(guān)系:A=(a+b)÷2
前n項(xiàng)和
倒序相加法推導(dǎo)前n項(xiàng)和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n—1)d]①
Sn=an+an—1+an—2+······+a1
=an+(an—d)+(an—2d)+······+[an—(n—1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個(gè))=n(a1+an)
∴Sn=n(a1+an)÷2
等差數(shù)列的前n項(xiàng)和等于首末兩項(xiàng)的和與項(xiàng)數(shù)乘積的一半:
Sn=n(a1+an)÷2=na1+n(n—1)d÷2
Sn=dn2÷2+n(a1—d÷2)
亦可得
a1=2sn÷n—an=[sn—n(n—1)d÷2]÷n
an=2sn÷n—a1
有趣的是S2n—1=(2n—1)an,S2n+1=(2n+1)an+1
等差數(shù)列性質(zhì)
一、任意兩項(xiàng)am,an的關(guān)系為:
an=am+(n—m)d
它可以看作等差數(shù)列廣義的通項(xiàng)公式。
二、從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:
a1+an=a2+an—1=a3+an—2=…=ak+an—k+1,k∈N_
三、若m,n,p,q∈N_,且m+n=p+q,則有am+an=ap+aq
四、對(duì)任意的k∈N_,有Sk,S2k—Sk,S3k—S2k,…,Snk—S(n—1)k…成等差數(shù)列。
怎么樣提高數(shù)學(xué)成績(jī)
首先想要提升數(shù)學(xué)成績(jī),成為數(shù)學(xué)學(xué)霸的前提是要對(duì)數(shù)學(xué)有良好的學(xué)習(xí)興趣。其次要學(xué)會(huì)課前預(yù)習(xí),方便自己能夠更加深入的吃透課堂上的知識(shí)點(diǎn)。然后還要學(xué)會(huì)總結(jié)復(fù)習(xí),總結(jié)自己課堂上的問(wèn)題,復(fù)習(xí)課堂上的重要知識(shí)點(diǎn),從而提高自己的數(shù)學(xué)成績(jī)。
提升數(shù)學(xué)成績(jī)還要擁有一個(gè)錯(cuò)題本,和數(shù)學(xué)資料。認(rèn)真對(duì)待自己的學(xué)習(xí)工具,多做練習(xí)題,找出自己的薄弱環(huán)節(jié)和自己常犯的題型,記在錯(cuò)題本上,常練習(xí),常鞏固。在自己的數(shù)學(xué)資料中摸索出適合自己的解題技巧,反復(fù)練習(xí)加以運(yùn)用,一定會(huì)提升你的數(shù)學(xué)成績(jī)。
學(xué)會(huì)聽(tīng)課,在課堂上勇于提問(wèn)。數(shù)學(xué)最重要的部分都是在課本上,所以必須要掌握好課堂的45分鐘。把握好數(shù)學(xué)課本,為自己打下一個(gè)好基礎(chǔ),這樣才能更有效的提升你的數(shù)學(xué)成績(jī)。學(xué)會(huì)做課堂筆記,把每節(jié)課的重要知識(shí)點(diǎn)記下來(lái),以便接下來(lái)的復(fù)習(xí)。
學(xué)好數(shù)學(xué)的方法技巧整理
預(yù)習(xí)的方法
上課之前一定要抽時(shí)間進(jìn)行預(yù)習(xí),有時(shí)預(yù)習(xí)比做作業(yè)更重要,因?yàn)橥ㄟ^(guò)預(yù)習(xí)我們可以初步掌握課程的大致內(nèi)容,聽(tīng)課就能夠把握好重點(diǎn),針對(duì)性比較強(qiáng),還會(huì)帶著問(wèn)題去聽(tīng)課,聽(tīng)課效率就會(huì)比較高,上課聽(tīng)明白了,完成作業(yè)也會(huì)更好更快,最終會(huì)形成良性循環(huán)。
聽(tīng)懂課的習(xí)慣
注意聽(tīng)教師每節(jié)課強(qiáng)調(diào)的學(xué)習(xí)重點(diǎn),注意聽(tīng)對(duì)定理、公式、法則的引入與推導(dǎo)的方法和過(guò)程,注意聽(tīng)對(duì)例題關(guān)鍵部分的提示和處理方法,注意聽(tīng)對(duì)疑難問(wèn)題的解釋及一節(jié)課最后的小結(jié),這樣,抓住重、難點(diǎn),沿著知識(shí)的發(fā)生發(fā)展的過(guò)程來(lái)聽(tīng)課,不僅能提高聽(tīng)課效率,而且能由“聽(tīng)會(huì)”轉(zhuǎn)變?yōu)椤皶?huì)聽(tīng)”。
不斷練習(xí)
不斷練習(xí)是指多做數(shù)學(xué)練習(xí)題。希望學(xué)好數(shù)學(xué),多做練習(xí)是必不可少的。做練習(xí)的原因有以下三點(diǎn):第一,熟練和鞏固學(xué)到的數(shù)學(xué)知識(shí);二,引導(dǎo)同學(xué)靈活運(yùn)用所學(xué)知識(shí)點(diǎn)以及獨(dú)立思考獨(dú)立做題的水平;第三,融會(huì)貫通。通過(guò)做題將所學(xué)的所有知識(shí)點(diǎn)結(jié)合起來(lái),加深同學(xué)對(duì)數(shù)學(xué)體系化的理解。
一、圓及圓的相關(guān)量的定義
1.平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱(chēng)為圓心,定長(zhǎng)稱(chēng)為半徑。
2.圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱(chēng)弧。大于半圓的弧稱(chēng)為優(yōu)弧,小于半圓的弧稱(chēng)為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過(guò)圓心的弦叫
做直徑。
3.頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。
4.過(guò)三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱(chēng)為內(nèi)心。
5.直線與圓有3種位置關(guān)系:無(wú)公共點(diǎn)為相離;有2個(gè)公共點(diǎn)為相交;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。
6.兩圓之間有5種位置關(guān)系:無(wú)公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。
7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開(kāi)圖是一個(gè)扇形。這個(gè)扇形的半徑成為圓錐的母線。
二、有關(guān)圓的字母表示方法
圓--⊙ 半徑—r 弧--⌒ 直徑—d
扇形弧長(zhǎng)/圓錐母線—l 周長(zhǎng)—C 面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個(gè))
1.點(diǎn)P與圓O的位置關(guān)系(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離):
P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO
2.圓是軸對(duì)稱(chēng)圖形,其對(duì)稱(chēng)軸是任意一條過(guò)圓心的直線。圓也是中心對(duì)稱(chēng)圖形,其對(duì)稱(chēng)中心是圓心。
3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧。逆定
理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的弧。
4.在同圓或等圓中,如果2個(gè)圓心角,2個(gè)圓周角,2條弧,2條弦中有一組量相等,那么他們所對(duì)應(yīng)的其余各組量都分別相等。
5.一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。
6.直徑所對(duì)的圓周角是直角。90度的圓周角所對(duì)的弦是直徑。
7.不在同一直線上的3個(gè)點(diǎn)確定一個(gè)圓。
8.一個(gè)三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),到三角形3個(gè)頂點(diǎn)距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形3邊距離相等。
9.直線AB與圓O的位置關(guān)系(設(shè)OP⊥AB于P,則PO是AB到圓心的距
離):
AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO
10.圓的切線垂直于過(guò)切點(diǎn)的直徑;經(jīng)過(guò)直徑的一端,并且垂直于這條直徑的直線,是這個(gè)圓的切線。
11.圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P):
外離P>R+r;外切P=R+r;相交R-r
三、有關(guān)圓的計(jì)算公式
1.圓的周長(zhǎng)C=2πr=πd
2.圓的面積S=s=πr?
3.扇形弧長(zhǎng)l=nπr/180
4.扇形面積S=nπr? /360=rl/2
5.圓錐側(cè)面積S=πrl
四、圓的方程
1.圓的標(biāo)準(zhǔn)方程
在平面直角坐標(biāo)系中,以點(diǎn)O(a,b)為圓心,以r為半徑的圓的標(biāo)準(zhǔn)方程是
。▁-a)^2+(y-b)^2=r^2
2.圓的一般方程
把圓的標(biāo)準(zhǔn)方程展開(kāi),移項(xiàng),合并同類(lèi)項(xiàng)后,可得圓的一般方程是
x^2+y^2+Dx+Ey+F=0
和標(biāo)準(zhǔn)方程對(duì)比,其實(shí)D=-2a,E=-2b,F=a^2+b^2
相關(guān)知識(shí):圓的離心率e=0.在圓上任意一點(diǎn)的曲率半徑都是r.
人教版高中數(shù)學(xué)知識(shí)點(diǎn)
1、含n個(gè)元素的有限集合其子集共有2n個(gè),非空子集有2n—1個(gè),非空真子集有2n—2個(gè)。
2、集合中,Cu(A∩B)=(CuA)U(CuB),交之補(bǔ)等于補(bǔ)之并。
Cu(AUB)=(CuA)∩(CuB),并之補(bǔ)等于補(bǔ)之交。
3、ax2+bx+c<0的解集為x(0
+c>0的解集為x,cx2+bx+a>0的解集為>x或x<;ax2—bx+
4、c<0的解集為x,cx2—bx+a>0的解集為—>x或x<—。
5、原命題與其逆否命題是等價(jià)命題。
原命題的逆命題與原命題的否命題也是等價(jià)命題。
6、函數(shù)是一種特殊的映射,函數(shù)與映射都可用:f:A→B表示。
A表示原像,B表示像。當(dāng)f:A→B表示函數(shù)時(shí),A表示定義域,B大于或等于其值域范圍。只有一一映射的函數(shù)才具有反函數(shù)。
7、原函數(shù)與反函數(shù)的單調(diào)性一致,且都為奇函數(shù)。
偶函數(shù)和周期函數(shù)沒(méi)有反函數(shù)。若f(x)與g(x)關(guān)于點(diǎn)(a,b)對(duì)稱(chēng),則g(x)=2b—f(2a—x)。
8、若f(—x)=f(x),則f(x)為偶函數(shù),若f(—x)=f(x),則f(x)為奇函數(shù);
偶函數(shù)關(guān)于y軸對(duì)稱(chēng),且對(duì)稱(chēng)軸兩邊的單調(diào)性相反;奇函數(shù)關(guān)于原點(diǎn)對(duì)稱(chēng),且在整個(gè)定義域上的單調(diào)性一致。反之亦然。若奇函數(shù)在x=0處有意義,則f(0)=0。函數(shù)的單調(diào)性可用定義法和導(dǎo)數(shù)法求出。偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù),奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù)。對(duì)于任意常數(shù)T(T≠0),在定義域范圍內(nèi),都有f(x+T)=f(x),則稱(chēng)f(x)是周期為T(mén)的周期函數(shù),且f(x+kT)=f(x),k≠0。
9、周期函數(shù)的特征性:①f(x+a)=—f(x),是T=2a的函數(shù),②若f(x+a)+f(x+b)=0,即f(x+a)=—f(x+b),T=2(b—a)的函數(shù),③若f(x)既x=a關(guān)對(duì)稱(chēng),又關(guān)于x=b對(duì)稱(chēng),則f(x)是T=2(b—a)的函數(shù)④若f(x
+a)?f(x+b)=±1,即f(x+a)=±,則f(x)是T=2(b—a)的函數(shù)⑤f(x+a)=±,則f(x)
是T=4(b—a)的函數(shù)
10、復(fù)合函數(shù)的單調(diào)性滿足“同增異減”原理。
定義域都是指函數(shù)中自變量的取值范圍。
11、抽象函數(shù)主要有f(xy)=f(x)+f(y)(對(duì)數(shù)型),f(x+y)=f(x)?f(y)(指數(shù)型),f(x+y)=f(x)+f(y)(直線型)。
解此類(lèi)抽象函數(shù)比較實(shí)用的方法是特殊值法和周期法。
12、指數(shù)函數(shù)圖像的規(guī)律是:底數(shù)按逆時(shí)針增大。
對(duì)數(shù)函數(shù)與之相反。
13、ar?as=ar+s,ar÷as=ar—s,(ar)s=ars,(ab)r=arbr。
在解可化為a2x+Bax+C=0或a2x+Bax+C≥0(≤0)的指數(shù)方程或不等式時(shí),常借助于換元法,應(yīng)特別注意換元后新變?cè)娜≈捣秶?/p>
14、log10N=lgN;logeN=lnN(e=2。718???);對(duì)數(shù)的性質(zhì):如果a>0,a≠0,M>0N>0,
那么loga(MN)=logaM+logaN,;loga()=logaM—logaN;logaMn=nlogaM;alogaN=N。
換底公式:logaN=;logamlogbnlogck=logbmlogcnlogak=logcmloganlogbk。
15、函數(shù)圖像的變換:
。1)水平平移:y=f(x±a)(a>0)的圖像可由y=f(x)向左或向右平移a個(gè)單位得到;
。2)豎直平移:y=f(x)±b(b>0)圖像,可由y=f(x)向上或向下平移b個(gè)單位得到;
。3)對(duì)稱(chēng):若對(duì)于定義域內(nèi)的一切x均有f(x+m)=f(x—m),則y=f(x)的圖像關(guān)于直線x=m對(duì)稱(chēng);y=f(x)關(guān)于(a,b)對(duì)稱(chēng)的函數(shù)為y!=2b—f(2a—x)。
。4),學(xué)習(xí)計(jì)劃;翻折:①y=|f(x)|是將y=f(x)位于x軸下方的部分以x軸為對(duì)稱(chēng)軸將期翻折到x軸上方的圖像。②y=f(|x|)是將y=f(x)位于y軸左方的圖像翻折到y(tǒng)軸的右方而成的圖像。
(5)有關(guān)結(jié)論:①若f(a+x)=f(b—x),在x為一切實(shí)數(shù)上成立,則y=f(x)的圖像關(guān)于
x=對(duì)稱(chēng)。②函數(shù)y=f(a+x)與函數(shù)y=f(b—x)的圖像有關(guān)于直線x=對(duì)稱(chēng)。
15、等差數(shù)列中,an=a1+(n—1)d=am+(n—m)d;sn=n=na1+
16、若n+m=p+q,則am+an=ap+aq;
sk,s2k—k,s3k—2k成以k2d為公差的等差數(shù)列。an是等差數(shù)列,若ap=q,aq=p,則ap+q=0;若sp=q,sq=p,則sp+q=—(p+q);若已知sk,sn,sn—k,sn=(sk+sn+sn—k)/2k;若an是等差數(shù)列,則可設(shè)前n項(xiàng)和為sn=an2+bn(注:沒(méi)有常數(shù)項(xiàng)),用方程的思想求解a,b。在等差數(shù)列中,若將其腳碼成等差數(shù)列的項(xiàng)取出組成數(shù)列,則新的數(shù)列仍舊是等差數(shù)列。
17、等比數(shù)列中,an=a1?qn—1=am?qn—m,若n+m=p+q,則am?an=ap?aq;sn=na1(q=1),
sn=,(q≠1);若q≠1,則有=q,若q≠—1,=q;
sk,s2k—k,s3k—2k也是等比數(shù)列。a1+a2+a3,a2+a3+a4,a3+a4+a5也成等比數(shù)列。在等比數(shù)列中,若將其腳碼成等差數(shù)列的項(xiàng)取出組成數(shù)列,則新的數(shù)列仍舊是等比數(shù)列。裂項(xiàng)公式:
=—,=?(—),常用數(shù)列遞推形式:疊加,疊乘,
18、弧長(zhǎng)公式:l=|α|?r。
s扇=?lr=?|α|r2=?;當(dāng)一個(gè)扇形的周長(zhǎng)一定時(shí)(為L(zhǎng)時(shí)),
其面積為,其圓心角為2弧度。
19、Sina(α+β)=sinαcosβ+cosαsinβ;Sina(α—β)=sinαcosβ—cosαsinβ;
Cos(α+β)=cosαcosβ—sinαsinβ;cos(α—β)=cosαcosβ+sinαsinβ
【高中數(shù)學(xué)圓的知識(shí)點(diǎn)歸納】相關(guān)文章:
初中數(shù)學(xué)圓的知識(shí)點(diǎn)歸納04-15
高中數(shù)學(xué)水平考知識(shí)點(diǎn)歸納12-07
初中數(shù)學(xué)知識(shí)點(diǎn)歸納.07-30
初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)12-05
初中數(shù)學(xué)圓的方程知識(shí)點(diǎn)04-07
初中數(shù)學(xué)圓知識(shí)點(diǎn)總結(jié)04-06
高中數(shù)學(xué)重要知識(shí)總復(fù)習(xí)歸納04-25