當(dāng)前位置:育文網(wǎng)>高中>高中數(shù)學(xué)> 高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2024-05-18 10:33:38 高中數(shù)學(xué) 我要投稿

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(熱)

  總結(jié)是在某一時(shí)期、某一項(xiàng)目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評(píng)價(jià),從而得出教訓(xùn)和一些規(guī)律性認(rèn)識(shí)的一種書(shū)面材料,它可以有效鍛煉我們的語(yǔ)言組織能力,因此我們要做好歸納,寫(xiě)好總結(jié)。那么總結(jié)要注意有什么內(nèi)容呢?下面是小編收集整理的高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),僅供參考,歡迎大家閱讀。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(熱)

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

  1、命題的四種形式及其相互關(guān)系是什么?

  (互為逆否關(guān)系的命題是等價(jià)命題。)

  原命題與逆否命題同真、同假;逆命題與否命題同真同假。

  2、對(duì)映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對(duì)應(yīng)元素的.唯一性,哪幾種對(duì)應(yīng)能構(gòu)成映射?

 。ㄒ粚(duì)一,多對(duì)一,允許B中有元素?zé)o原象。)

  3、函數(shù)的三要素是什么?如何比較兩個(gè)函數(shù)是否相同?

 。ǘx域、對(duì)應(yīng)法則、值域)

  4、反函數(shù)存在的條件是什么?

 。ㄒ灰粚(duì)應(yīng)函數(shù))

  求反函數(shù)的步驟掌握了嗎?

 。á俜唇鈞;②互換x、y;③注明定義域)

  5、反函數(shù)的性質(zhì)有哪些?

  ①互為反函數(shù)的圖象關(guān)于直線(xiàn)y=x對(duì)稱(chēng);

 、诒4媪嗽瓉(lái)函數(shù)的單調(diào)性、奇函數(shù)性;

  6、函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?

 。╢(x)定義域關(guān)于原點(diǎn)對(duì)稱(chēng))

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

  方差定義

  方差用來(lái)度量隨機(jī)變量和其數(shù)學(xué)期望(即均值)之間的偏離程度。統(tǒng)計(jì)中的方差(樣本方差)是各個(gè)數(shù)據(jù)分別與其平均數(shù)之差的平方的和的.平均數(shù)。

  方差性質(zhì)

  1.設(shè)C為常數(shù),則D(C)=0(常數(shù)無(wú)波動(dòng));

  2.D(CX)=C2D(X)(常數(shù)平方提取);

  3.若X、Y相互獨(dú)立,則前面兩項(xiàng)恰為D(X)和D(Y),第三項(xiàng)展開(kāi)后為

  當(dāng)X、Y相互獨(dú)立時(shí),故第三項(xiàng)為零。

  獨(dú)立前提的逐項(xiàng)求和,可推廣到有限項(xiàng)。

  方差的應(yīng)用

  計(jì)算下列一組數(shù)據(jù)的極差、方差及標(biāo)準(zhǔn)差(精確到0.01).

  50,55,96,98,65,100,70,90,85,100.

  答:極差為100-50=50.

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

  1.一些基本概念:

  (1)向量:既有大小,又有方向的量.

  (2)數(shù)量:只有大小,沒(méi)有方向的量.

  (3)有向線(xiàn)段的三要素:起點(diǎn)、方向、長(zhǎng)度.

  (4)零向量:長(zhǎng)度為0的向量.

  (5)單位向量:長(zhǎng)度等于1個(gè)單位的向量.

  (6)平行向量(共線(xiàn)向量):方向相同或相反的`非零向量.

  ※零向量與任一向量平行.

  (7)相等向量:長(zhǎng)度相等且方向相同的向量.

  2.向量加法運(yùn)算:

 、湃切畏▌t的特點(diǎn):首尾相連.

 、破叫兴倪呅畏▌t的特點(diǎn):共起點(diǎn)

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

  1、你掌握了空間圖形在平面上的直觀畫(huà)法嗎?(斜二測(cè)畫(huà)法)。

  2、線(xiàn)面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線(xiàn)線(xiàn)平行、線(xiàn)面平行、面面平行這三者之間的聯(lián)系和轉(zhuǎn)化在解決立幾問(wèn)題中的應(yīng)用是怎樣的?每種平行之間轉(zhuǎn)換的條件是什么?

  3、三垂線(xiàn)定理及其逆定理你記住了嗎?你知道三垂線(xiàn)定理的關(guān)鍵是什么嗎?(一面、四線(xiàn)、三垂直、立柱即面的垂線(xiàn)是關(guān)鍵)一面四直線(xiàn),立柱是關(guān)鍵,垂直三處見(jiàn)

  3、線(xiàn)面平行的判定定理和性質(zhì)定理在應(yīng)用時(shí)都是三個(gè)條件,但這三個(gè)條件易混為一談;面面平行的判定定理易把條件錯(cuò)誤地記為”一個(gè)平面內(nèi)的.兩條相交直線(xiàn)與另一個(gè)平面內(nèi)的兩條相交直線(xiàn)分別平行”而導(dǎo)致證明過(guò)程跨步太大。

  4、求兩條異面直線(xiàn)所成的角、直線(xiàn)與平面所成的角和二面角時(shí),如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。

  5、異面直線(xiàn)所成角利用“平移法”求解時(shí),一定要注意平移后所得角等于所求角(或其補(bǔ)角),特別是題目告訴異面直線(xiàn)所成角,應(yīng)用時(shí)一定要從題意出發(fā),是用銳角還是其補(bǔ)角,還是兩種情況都有可能。

  6、你知道公式:和中每一字母的意思嗎?能夠熟練地應(yīng)用它們解題嗎?

  7、兩條異面直線(xiàn)所成的角的范圍:0°《α≤90°

  直線(xiàn)與平面所成的角的范圍:0o≤α≤90°

  二面角的平面角的取值范圍:0°≤α≤180°

  8、你知道異面直線(xiàn)上兩點(diǎn)間的距離公式如何運(yùn)用嗎?

  9、平面圖形的翻折,立體圖形的展開(kāi)等一類(lèi)問(wèn)題,要注意翻折,展開(kāi)前后有關(guān)幾何元素的“不變量”與“不變性”。

  10、立幾問(wèn)題的求解分為“作”,“證”,“算”三個(gè)環(huán)節(jié),你是否只注重了“作”,“算”,而忽視了“證”這一重要環(huán)節(jié)?

  11、棱柱及其性質(zhì)、平行六面體與長(zhǎng)方體及其性質(zhì)。這些知識(shí)你掌握了嗎?(注意運(yùn)用向量的方法解題)

  12、球及其性質(zhì);經(jīng)緯度定義易混。經(jīng)度為二面角,緯度為線(xiàn)面角、球面距離的求法;球的表面積和體積公式。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

  一、高中數(shù)列基本公式:

  1、一般數(shù)列的通項(xiàng)an與前n項(xiàng)和Sn的關(guān)系:an=

  2、等差數(shù)列的通項(xiàng)公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項(xiàng)、ak為已知的第k項(xiàng)) 當(dāng)d≠0時(shí),an是關(guān)于n的一次式;當(dāng)d=0時(shí),an是一個(gè)常數(shù)。

  3、等差數(shù)列的前n項(xiàng)和公式:Sn=

  Sn=

  Sn=

  當(dāng)d≠0時(shí),Sn是關(guān)于n的二次式且常數(shù)項(xiàng)為0;當(dāng)d=0時(shí)(a1≠0),Sn=na1是關(guān)于n的正比例式。

  4、等比數(shù)列的通項(xiàng)公式: an= a1qn-1an= akqn-k

  (其中a1為首項(xiàng)、ak為已知的第k項(xiàng),an≠0)

  5、等比數(shù)列的'前n項(xiàng)和公式:當(dāng)q=1時(shí),Sn=n a1 (是關(guān)于n的正比例式);

  當(dāng)q≠1時(shí),Sn=

  Sn=

  二、高中數(shù)學(xué)中有關(guān)等差、等比數(shù)列的結(jié)論

  1、等差數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等差數(shù)列。

  2、等差數(shù)列{an}中,若m+n=p+q,則

  3、等比數(shù)列{an}中,若m+n=p+q,則

  4、等比數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等比數(shù)列。

  5、兩個(gè)等差數(shù)列{an}與{bn}的和差的數(shù)列{an+bn}、{an-bn}仍為等差數(shù)列。

  6、兩個(gè)等比數(shù)列{an}與{bn}的積、商、倒數(shù)組成的數(shù)列仍為等比數(shù)列。

  7、等差數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等差數(shù)列。

  8、等比數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等比數(shù)列。

  9、三個(gè)數(shù)成等差數(shù)列的設(shè)法:a-d,a,a+d;四個(gè)數(shù)成等差的設(shè)法:a-3d,a-d,,a+d,a+3d

  10、三個(gè)數(shù)成等比數(shù)列的設(shè)法:a/q,a,aq;

  四個(gè)數(shù)成等比的錯(cuò)誤設(shè)法:a/q3,a/q,aq,aq3 (為什么?)

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

  一、圓及圓的相關(guān)量的定義

  1.平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱(chēng)為圓心,定長(zhǎng)稱(chēng)為半徑。

  2.圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱(chēng)弧。大于半圓的弧稱(chēng)為優(yōu)弧,小于半圓的弧稱(chēng)為劣弧。連接圓上任意兩點(diǎn)的線(xiàn)段叫做弦。經(jīng)過(guò)圓心的弦叫

  做直徑。

  3.頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。

  4.過(guò)三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱(chēng)為內(nèi)心。

  5.直線(xiàn)與圓有3種位置關(guān)系:無(wú)公共點(diǎn)為相離;有2個(gè)公共點(diǎn)為相交;圓與直線(xiàn)有唯一公共點(diǎn)為相切,這條直線(xiàn)叫做圓的切線(xiàn),這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。

  6.兩圓之間有5種位置關(guān)系:無(wú)公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。

  7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開(kāi)圖是一個(gè)扇形。這個(gè)扇形的半徑成為圓錐的母線(xiàn)。

  二、有關(guān)圓的字母表示方法

  圓--⊙ 半徑—r 弧--⌒ 直徑—d

  扇形弧長(zhǎng)/圓錐母線(xiàn)—l 周長(zhǎng)—C 面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個(gè))

  1.點(diǎn)P與圓O的位置關(guān)系(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離):

  P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO

  2.圓是軸對(duì)稱(chēng)圖形,其對(duì)稱(chēng)軸是任意一條過(guò)圓心的直線(xiàn)。圓也是中心對(duì)稱(chēng)圖形,其對(duì)稱(chēng)中心是圓心。

  3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧。逆定

  理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的弧。

  4.在同圓或等圓中,如果2個(gè)圓心角,2個(gè)圓周角,2條弧,2條弦中有一組量相等,那么他們所對(duì)應(yīng)的其余各組量都分別相等。

  5.一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。

  6.直徑所對(duì)的圓周角是直角。90度的圓周角所對(duì)的弦是直徑。

  7.不在同一直線(xiàn)上的3個(gè)點(diǎn)確定一個(gè)圓。

  8.一個(gè)三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線(xiàn)的交點(diǎn),到三角形3個(gè)頂點(diǎn)距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線(xiàn)的交點(diǎn),到三角形3邊距離相等。

  9.直線(xiàn)AB與圓O的位置關(guān)系(設(shè)OP⊥AB于P,則PO是AB到圓心的距

  離):

  AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO

  10.圓的切線(xiàn)垂直于過(guò)切點(diǎn)的直徑;經(jīng)過(guò)直徑的一端,并且垂直于這條直徑的直線(xiàn),是這個(gè)圓的切線(xiàn)。

  11.圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P):

  外離P>R+r;外切P=R+r;相交R-r

  三、有關(guān)圓的計(jì)算公式

  1.圓的周長(zhǎng)C=2πr=πd

  2.圓的面積S=s=πr?

  3.扇形弧長(zhǎng)l=nπr/180

  4.扇形面積S=nπr? /360=rl/2

  5.圓錐側(cè)面積S=πrl

  四、圓的方程

  1.圓的標(biāo)準(zhǔn)方程

  在平面直角坐標(biāo)系中,以點(diǎn)O(a,b)為圓心,以r為半徑的圓的標(biāo)準(zhǔn)方程是

 。▁-a)^2+(y-b)^2=r^2

  2.圓的一般方程

  把圓的標(biāo)準(zhǔn)方程展開(kāi),移項(xiàng),合并同類(lèi)項(xiàng)后,可得圓的一般方程是

  x^2+y^2+Dx+Ey+F=0

  和標(biāo)準(zhǔn)方程對(duì)比,其實(shí)D=-2a,E=-2b,F=a^2+b^2

  相關(guān)知識(shí):圓的離心率e=0.在圓上任意一點(diǎn)的曲率半徑都是r.

  五、圓與直線(xiàn)的位置關(guān)系判斷

  平面內(nèi),直線(xiàn)Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是

  討論如下2種情況:

 。1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

  代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的一元二次方程f(x)=0.

  利用判別式b^2-4ac的符號(hào)可確定圓與直線(xiàn)的位置關(guān)系如下:

  如果b^2-4ac>0,則圓與直線(xiàn)有2交點(diǎn),即圓與直線(xiàn)相交

  如果b^2-4ac=0,則圓與直線(xiàn)有1交點(diǎn),即圓與直線(xiàn)相切

  如果b^2-4ac<0,則圓與直線(xiàn)有0交點(diǎn),即圓與直線(xiàn)相離

 。2)如果B=0即直線(xiàn)為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)

  將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2

  令y=b,求出此時(shí)的兩個(gè)x值x1,x2,并且我們規(guī)定x1

  當(dāng)x=-C/Ax2時(shí),直線(xiàn)與圓相離

  當(dāng)x1

  當(dāng)x=-C/A=x1或x=-C/A=x2時(shí),直線(xiàn)與圓相切

  圓的定理:

  1.不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

  推論1.①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

 、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧

 、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

  推論2.圓的兩條平行弦所夾的弧相等

  3.圓是以圓心為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形

  4.圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

  5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  7.同圓或等圓的半徑相等

  8.到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

  9.定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦 相等,所對(duì)的弦的弦心距相等

  10.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

  11.定理 圓的.內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對(duì)角

  12.①直線(xiàn)L和⊙O相交 d

 、谥本(xiàn)L和⊙O相切 d=r

 、壑本(xiàn)L和⊙O相離 d>r

  13.切線(xiàn)的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)

  14.切線(xiàn)的性質(zhì)定理 圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑

  15.推論1 經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)

  16.推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

  17.切線(xiàn)長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(zhǎng)相等, 圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角

  18.圓的外切四邊形的兩組對(duì)邊的和相等 外角等于內(nèi)對(duì)角

  19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上

  20.①兩圓外離 d>R+r ②兩圓外切 d=R+r

 、蹆蓤A相交 R-rr)

 、軆蓤A內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)

  21.定理 相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦

  22.定理 把圓分成n(n≥3):

 。1)依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

 。2)經(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  23.定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

  24.正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

  25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長(zhǎng)

  27.正三角形面積√3a/4 a表示邊長(zhǎng)

  28.如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應(yīng)為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29.弧長(zhǎng)計(jì)算公式:L=n兀R/180

  30.扇形面積公式:S扇形=n兀R^2/360=LR/2

  31.內(nèi)公切線(xiàn)長(zhǎng)= d-(R-r) 外公切線(xiàn)長(zhǎng)= d-(R+r)

  32.定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

  33.推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

  34.推論2 半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所 對(duì)的弦是直徑

  35.弧長(zhǎng)公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

  :平面

  1.經(jīng)過(guò)不在同一條直線(xiàn)上的三點(diǎn)確定一個(gè)面.

  注:兩兩相交且不過(guò)同一點(diǎn)的四條直線(xiàn)必在同一平面內(nèi).

  2.兩個(gè)平面可將平面分成3或4部分.(①兩個(gè)平面平行,②兩個(gè)平面相交)

  3.過(guò)三條互相平行的直線(xiàn)可以確定1或3個(gè)平面.(①三條直線(xiàn)在一個(gè)平面內(nèi)平行,②三條直線(xiàn)不在一個(gè)平面內(nèi)平行)

  [注]:三條直線(xiàn)可以確定三個(gè)平面,三條直線(xiàn)的公共點(diǎn)有0或1個(gè).

  4.三個(gè)平面最多可把空間分成8部分.(X、Y、Z三個(gè)方向)

 。嚎臻g的直線(xiàn)與平面

 、逼矫娴幕拘再|(zhì)⑴三個(gè)公理及公理三的三個(gè)推論和它們的用途.、菩倍䴗y(cè)畫(huà)法.

 、部臻g兩條直線(xiàn)的位置關(guān)系:相交直線(xiàn)、平行直線(xiàn)、異面直線(xiàn).

 、殴硭(平行線(xiàn)的傳遞性).等角定理.

 、飘惷嬷本(xiàn)的判定:判定定理、反證法.

 、钱惷嬷本(xiàn)所成的角:定義(求法)、范圍.

 、持本(xiàn)和平面平行直線(xiàn)和平面的位置關(guān)系、直線(xiàn)和平面平行的判定與性質(zhì).

 、粗本(xiàn)和平面垂直

 、胖本(xiàn)和平面垂直:定義、判定定理.

 、迫咕(xiàn)定理及逆定理.

  5.平面和平面平行

  兩個(gè)平面的位置關(guān)系、兩個(gè)平面平行的判定與性質(zhì).

  6.平面和平面垂直

  互相垂直的平面及其判定定理、性質(zhì)定理.

  (二)直線(xiàn)與平面的平行和垂直的證明思路(見(jiàn)附圖)

  (三)夾角與距離

  7.直線(xiàn)和平面所成的角與二面角

 、牌矫娴男本(xiàn)和平面所成的角:三面角余弦公式、最小角定理、斜線(xiàn)和平

  面所成的角、直線(xiàn)和平面所成的角.

  ⑵二面角:①定義、范圍、二面角的平面角、直二面角.

  ②互相垂直的平面及其判定定理、性質(zhì)定理.

  8.距離

 、劈c(diǎn)到平面的距離.

  ⑵直線(xiàn)到與它平行平面的.距離.

 、莾蓚(gè)平行平面的距離:兩個(gè)平行平面的公垂線(xiàn)、公垂線(xiàn)段.

 、犬惷嬷本(xiàn)的距離:異面直線(xiàn)的公垂線(xiàn)及其性質(zhì)、公垂線(xiàn)段.

  (四)簡(jiǎn)單多面體與球

  9.棱柱與棱錐

 、哦嗝骟w.

  ⑵棱柱與它的性質(zhì):棱柱、直棱柱、正棱柱、棱柱的性質(zhì).

  ⑶平行六面體與長(zhǎng)方體:平行六面體、直平行六面體、長(zhǎng)方體、正四棱柱、

  正方體;平行六面體的性質(zhì)、長(zhǎng)方體的性質(zhì).

 、壤忮F與它的性質(zhì):棱錐、正棱錐、棱錐的性質(zhì)、正棱錐的性質(zhì).

 、芍崩庵驼忮F的直觀圖的畫(huà)法.

  10.多面體歐拉定理的發(fā)現(xiàn)

  ⑴簡(jiǎn)單多面體的歐拉公式.

 、普嗝骟w.

  11.球

  ⑴球和它的性質(zhì):球體、球面、球的大圓、小圓、球面距離.

 、魄虻捏w積公式和表面積公式.

 。撼S媒Y(jié)論、方法和公式

  1.異面直線(xiàn)所成角的求法:

  (1)平移法:在異面直線(xiàn)中的一條直線(xiàn)中選擇一特殊點(diǎn),作另一條的平行線(xiàn);

  (2)補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線(xiàn)間的關(guān)系;

  2.直線(xiàn)與平面所成的角

  斜線(xiàn)和平面所成的是一個(gè)直角三角形的銳角,它的三條邊分別是平面的垂線(xiàn)段、斜線(xiàn)段及斜線(xiàn)段在平面上的射影。通常通過(guò)斜線(xiàn)上某個(gè)特殊點(diǎn)作出平面的垂線(xiàn)段,垂足和斜足的連線(xiàn),是產(chǎn)生線(xiàn)面角的關(guān)鍵;

  3.二面角的求法

  (1)定義法:直接在二面角的棱上取一點(diǎn)(特殊點(diǎn)),分別在兩個(gè)半平面內(nèi)作棱的垂線(xiàn),得出平面角,用定義法時(shí),要認(rèn)真觀察圖形的特性;

  (2)三垂線(xiàn)法:已知二面角其中一個(gè)面內(nèi)一點(diǎn)到一個(gè)面的垂線(xiàn),用三垂線(xiàn)定理或逆定理作出二面角的平面角;

  (3)垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線(xiàn)時(shí),過(guò)兩垂線(xiàn)作平面與兩個(gè)半平面的交線(xiàn)所成的角即為平面角,由此可知,二面角的平面角所在的平面與棱垂直;

  (4)射影法:利用面積射影公式S射=S原cos,其中為平面角的大小,此法不必在圖形中畫(huà)出平面角;

  特別:對(duì)于一類(lèi)沒(méi)有給出棱的二面角,應(yīng)先延伸兩個(gè)半平面,使之相交出現(xiàn)棱,然后再選用上述方法(尤其要考慮射影法)。

  4.空間距離的求法

  (1)兩異面直線(xiàn)間的距離,高考要求是給出公垂線(xiàn),所以一般先利用垂直作出公垂線(xiàn),然后再進(jìn)行計(jì)算;

  (2)求點(diǎn)到直線(xiàn)的距離,一般用三垂線(xiàn)定理作出垂線(xiàn)再求解;

  (3)求點(diǎn)到平面的距離,一是用垂面法,借助面面垂直的性質(zhì)來(lái)作,因此,確定已知面的垂面是關(guān)鍵;二是不作出公垂線(xiàn),轉(zhuǎn)化為求三棱錐的高,利用等體積法列方程求解;

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

  1.定義法:

  判斷B是A的條件,實(shí)際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫(huà)出箭頭示意圖,再利用定義判斷即可.

  2.轉(zhuǎn)換法:

  當(dāng)所給命題的充要條件不易判斷時(shí),可對(duì)命題進(jìn)行等價(jià)裝換,例如改用其逆否命題進(jìn)行判斷.

  3.集合法

  在命題的條件和結(jié)論間的'關(guān)系判斷有困難時(shí),可從集合的角度考慮,記條件p、q對(duì)應(yīng)的集合分別為A、B,則:

  若A∩B,則p是q的充分條件.

  若A∪B,則p是q的必要條件.

  若A=B,則p是q的充要條件.

  若A∈B,且B∈A,則p是q的既不充分也不必要條件.

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

  數(shù)學(xué)知識(shí)點(diǎn)1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

 。1)棱柱:

  幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

 。2)棱錐

  幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到

  截面距離與高的比的平方。

 。3)棱臺(tái):

  幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

  (4)圓柱:定義:以矩形的一邊所在的直線(xiàn)為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

  幾何特征:①底面是全等的圓;②母線(xiàn)與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開(kāi)圖

  是一個(gè)矩形。

 。5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①底面是一個(gè)圓;②母線(xiàn)交于圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)扇形。

 。6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線(xiàn)交于原圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)弓形。

 。7)球體:定義:以半圓的直徑所在直線(xiàn)為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

  數(shù)學(xué)知識(shí)點(diǎn)2、空間幾何體的三視圖

  定義三視圖:正視圖(光線(xiàn)從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

  注:正視圖反映了物體的高度和長(zhǎng)度;俯視圖反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體的高度和寬度。

  數(shù)學(xué)知識(shí)點(diǎn)3、空間幾何體的直觀圖——斜二測(cè)畫(huà)法

  斜二測(cè)畫(huà)法特點(diǎn):①原來(lái)與x軸平行的線(xiàn)段仍然與x平行且長(zhǎng)度不變;

  ②原來(lái)與y軸平行的線(xiàn)段仍然與y平行,長(zhǎng)度為原來(lái)的一半。

  平面

  通常用一個(gè)平行四邊形來(lái)表示。

  平面常用希臘字母α、β、γ…或拉丁字母M、N、P來(lái)表示,也可用表示平行四邊形的兩個(gè)相對(duì)頂點(diǎn)字母表示,如平面AC。

  在立體幾何中,大寫(xiě)字母A,B,C,…表示點(diǎn),小寫(xiě)字母,a,b,c,…l,m,n,…表示直線(xiàn),且把直線(xiàn)和平面看成點(diǎn)的集合,因而能借用集合論中的符號(hào)表示它們之間的關(guān)系,例如:

  a) A∈l—點(diǎn)A在直線(xiàn)l上;Aα—點(diǎn)A不在平面α內(nèi);

  b) lα—直線(xiàn)l在平面α內(nèi);

  c) aα—直線(xiàn)a不在平面α內(nèi);

  d) l∩m=A—直線(xiàn)l與直線(xiàn)m相交于A點(diǎn);

  e) α∩l=A—平面α與直線(xiàn)l交于A點(diǎn);

  f) α∩β=l—平面α與平面β相交于直線(xiàn)l。

  二、平面的基本性質(zhì)

  公理1如果一條直線(xiàn)上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線(xiàn)上所有的點(diǎn)都在這個(gè)平面內(nèi)。

  公理2如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們有且只有一條通過(guò)這個(gè)點(diǎn)的公共直線(xiàn)。

  公理3經(jīng)過(guò)不在同一直線(xiàn)上的三個(gè)點(diǎn),有且只有一個(gè)平面。

  根據(jù)上面的公理,可得以下推論。

  推論1經(jīng)過(guò)一條直線(xiàn)和這條直線(xiàn)外一點(diǎn),有且只有一個(gè)平面。

  推論2經(jīng)過(guò)兩條相交直線(xiàn),有且只有一個(gè)平面。

  推論3經(jīng)過(guò)兩條平行直線(xiàn),有且只有一個(gè)平面。

  公理4平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行

  如何讓數(shù)學(xué)學(xué)科預(yù)習(xí)變得更高效

  一、讀一讀。預(yù)習(xí)時(shí)要認(rèn)真,要逐字逐詞逐句的閱讀,用筆把重點(diǎn)畫(huà)出來(lái),重點(diǎn)加以理解。遇到自己解決不了的問(wèn)題,作出記號(hào),教師講解時(shí)作為聽(tīng)課的重點(diǎn)。

  二、想一想。對(duì)預(yù)習(xí)中感到困難的問(wèn)題要先思考。如果是基礎(chǔ)問(wèn)題,可以用以前的知識(shí)看看能不能弄通。如果是理解上的問(wèn)題,可以記下來(lái)課上認(rèn)真聽(tīng)講,通過(guò)積極思考去解決。這樣有利于提高對(duì)知識(shí)的理解,養(yǎng)成學(xué)習(xí)數(shù)學(xué)的良好思維習(xí)慣。

  三、說(shuō)一說(shuō)。預(yù)習(xí)時(shí)可能感到認(rèn)識(shí)模糊,可以與父母或同學(xué)進(jìn)行討論,在同學(xué)們的.合作交流與探討中找到正確的答案。這樣即增加了學(xué)生探求新課的興趣,有可以弄懂?dāng)?shù)學(xué)知識(shí)的實(shí)際用法,對(duì)知識(shí)有個(gè)準(zhǔn)確的概念。

  四、寫(xiě)一寫(xiě)。寫(xiě)一寫(xiě)在課前預(yù)習(xí)中也是很有必要的,預(yù)習(xí)時(shí)要適當(dāng)做學(xué)習(xí)筆記,主要包括看書(shū)時(shí)的初步體會(huì)和心得,讀明白了的問(wèn)題的理解,對(duì)疑難問(wèn)題的記錄和思考等。

  五、做一做。預(yù)習(xí)應(yīng)用題,可以用畫(huà)線(xiàn)段的方法幫助理解數(shù)量間的關(guān)系,弄清已知條件和所求問(wèn)題,找到解題的思路。對(duì)于一些有關(guān)圖形方面的問(wèn)題,可以在預(yù)習(xí)中動(dòng)手操作,剪剪拼拼,增加感性認(rèn)識(shí)。

  六、補(bǔ)一補(bǔ)。數(shù)學(xué)課新舊知識(shí)間往往存在緊密的聯(lián)系,預(yù)習(xí)時(shí)如發(fā)現(xiàn)學(xué)習(xí)過(guò)的要領(lǐng)有不清楚的地方,一定要在預(yù)習(xí)時(shí)弄明白,并對(duì)舊的知識(shí)加以鞏固和記憶,同時(shí)為學(xué)習(xí)新的知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。

  七、練一練。往往每課時(shí)的例題都是很典型的,預(yù)習(xí)時(shí)應(yīng)把例題都做一遍,加深領(lǐng)悟的能力。如果做題時(shí)出現(xiàn)錯(cuò)誤,要想想錯(cuò)在哪,為什么錯(cuò),怎么改錯(cuò)。如果仍是找不到錯(cuò)誤的根源,可在聽(tīng)課時(shí)重點(diǎn)聽(tīng),逐步領(lǐng)會(huì)。

  該怎么提高數(shù)學(xué)課堂學(xué)習(xí)效率

  課堂學(xué)習(xí)是學(xué)習(xí)過(guò)程中最基本,最重要的環(huán)節(jié),要堅(jiān)持做到“五到”即耳到、眼到、口到、心到、手到;

  手到:就是以簡(jiǎn)單扼要的方法記下聽(tīng)課的要點(diǎn),思維方法,以備復(fù)習(xí)、消化、再思考,但要以聽(tīng)課為主,記錄為輔;

  耳到:專(zhuān)心聽(tīng)講,聽(tīng)老師如何講課,如何分析、如何歸納總結(jié)。另外,還要聽(tīng)同學(xué)們的解答,看是否對(duì)自己有所啟發(fā),特別要注意聽(tīng)自己預(yù)習(xí)未看懂的問(wèn)題;

  口到:主動(dòng)與老師、同學(xué)們進(jìn)行合作、探究,敢于提出問(wèn)題,并發(fā)表自己的看法,不要人云亦云;

  眼到:就是一看老師講課的表情,手勢(shì)所表達(dá)的意思,看老師的演示實(shí)驗(yàn)、板書(shū)內(nèi)容,二看老師要求看的課本內(nèi)容,把書(shū)上知識(shí)與老師課堂講的知識(shí)聯(lián)系起來(lái);

  心到:就是課堂上要認(rèn)真思考,注意理解課堂的新知識(shí),課堂上的思考要主動(dòng)積極。關(guān)鍵是理解并能融匯貫通,靈活使用。對(duì)于老師講的新概念,應(yīng)抓住關(guān)鍵字眼,變換角度去理解。

  數(shù)學(xué)復(fù)習(xí)方法學(xué)霸分享

  1、重點(diǎn)練習(xí)幾種類(lèi)型的題目

  不要鉆偏題、怪題、過(guò)難題的牛角尖,根據(jù)平時(shí)做套卷時(shí)的感受,多練習(xí)以下幾個(gè)類(lèi)型的題目。

  (1)初看沒(méi)有思路,但分析后能順利做出的。通過(guò)對(duì)這類(lèi)問(wèn)題的練習(xí),能夠使我們對(duì)題目的考點(diǎn)和重點(diǎn)更熟悉,提高建立思路的速度和切入點(diǎn)的準(zhǔn)確度,讓我們能在考試中留出更多時(shí)間來(lái)處理后面難度高、閱讀量大的綜合題。

 。2)自己經(jīng)常出錯(cuò)的中檔題。中檔題在中考中每年的考查內(nèi)容都差不多,題目位置也相對(duì)固定,屬于解決了一個(gè)板塊就能得到相應(yīng)版塊分?jǐn)?shù)的類(lèi)型。在中檔題的某個(gè)題型經(jīng)常出錯(cuò)說(shuō)明對(duì)這部分內(nèi)容的基本概念和常用方法理解不到位。通過(guò)練習(xí),多總結(jié)這類(lèi)題目的解題思路和技巧,把不穩(wěn)定的得分變成到手的分?jǐn)?shù)。中檔題難度一般不會(huì)太高,所以對(duì)于自己薄弱的中檔題進(jìn)行突擊練習(xí)一般都會(huì)有很好的效果。

 。3)基礎(chǔ)相對(duì)薄弱的同學(xué)也應(yīng)該做一些?嫉念}目類(lèi)型。比如圓的切線(xiàn)的判定以及與圓相關(guān)的線(xiàn)段計(jì)算、一次函數(shù)和反比例函數(shù)的綜合、二元一次方程整數(shù)根問(wèn)題等,通過(guò)練習(xí),進(jìn)一步提高我們解決這些問(wèn)題的熟練度

  2、學(xué)會(huì)看錯(cuò)題的正確方式

  大部分學(xué)生都有錯(cuò)題本,在復(fù)習(xí)時(shí)看錯(cuò)題本,鞏固自己的錯(cuò)誤是不錯(cuò)的復(fù)習(xí)方式,但在看錯(cuò)題時(shí)一定要杜絕連題目帶答案一起順著看下來(lái)的方式。盡量能夠?qū)⒋鸢笓踝,自己再(lài)L試做一遍,如果做的過(guò)程中遇到問(wèn)題再去看答案,并做好標(biāo)注,過(guò)兩天再試做一遍,爭(zhēng)取能在期末考試前將之前的錯(cuò)題整體過(guò)兩到三遍、加深印象。

  3、認(rèn)真研究每道題目的考點(diǎn)

  做題時(shí),我們心中要對(duì)相應(yīng)題目所對(duì)應(yīng)的考點(diǎn)有所了解,比如填空題中如果出現(xiàn)幾何問(wèn)題,主要是對(duì)圖形基本性質(zhì)和面積的考察,而很少考到全等三角形的證明(尺規(guī)作圖寫(xiě)依據(jù)除外),所以我們?cè)谔羁疹}中看到幾何問(wèn)題,就不用從全等方面找突破口,而是更多地注重圖形的基本性質(zhì)。比如平行四邊形對(duì)角線(xiàn)互相平分、等腰三角形三線(xiàn)合一等。

  4、盡量避免只看不算

  很多同學(xué)在復(fù)習(xí)時(shí)不喜歡動(dòng)筆,覺(jué)得自己看明白了就行,但俗話(huà)說(shuō)“眼過(guò)千遍不如手過(guò)一遍”,不去實(shí)際操作只是看一遍題目,對(duì)題目解法和思路的印象其實(shí)是很低的。而且在計(jì)算過(guò)程中還能鍛煉我們的計(jì)算能力,提高解題速度和準(zhǔn)確性。許多同學(xué)在寫(xiě)證明題時(shí)很不熟練,邏輯不順暢,也是由于平時(shí)對(duì)書(shū)寫(xiě)的不重視,應(yīng)該趁著期末考試前的時(shí)間,多練練書(shū)寫(xiě)。

  學(xué)好數(shù)學(xué)要重視“四個(gè)依據(jù)”是什么

  讀好一本教科書(shū)——它是教學(xué)、考試的主要依據(jù);

  記好一本筆記——它是教師多年經(jīng)驗(yàn)的結(jié)晶;

  做好一本習(xí)題集——它是知識(shí)的拓寬;

  記好一本心得筆記——它是你自己的知識(shí)。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。

  2、集合的中元素的三個(gè)特性:1.元素的確定性;2.元素的互異性;3.元素的無(wú)序性.

  3、集合的表示:(1){?}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}(2).用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}4

 。系谋硎痉椒ǎ毫信e法與描述法。

  常用數(shù)集及其記法:非負(fù)整數(shù)集(即自然數(shù)集)記作:N正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

  5.關(guān)于“屬于”的概念

  集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A

  列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上。

  描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。用確定的條件表

  示某些對(duì)象是否屬于這個(gè)集合的方法。6、集合的分類(lèi):

  (1).有限集含有有限個(gè)元素的集合(2).無(wú)限集含有無(wú)限個(gè)元素的集合

  (3).空集不含任何元素的集合例:{x|x2=-5}=Φ

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集注意:A?B有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集?B或B??A合A不包含于集合B,或集合B不包含集合A,記作A?

  2.“相等”關(guān)系:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B

 、偃魏我粋(gè)集合是它本身的子集。即A?A

  ②如果A?B,且A?B那就說(shuō)集合A是集合B的真子集,記作A B(或BA)

 、廴绻鸄?B,B?C,那么A?C④如果A?B同時(shí)B?A那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的運(yùn)算

  1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

  記作A∩B(讀作"A交B"),即A∩B={x|x∈A,且x∈B}.

  2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作"A并B"),即A∪B={x|x∈A,或x∈B}.

  3、交集與并集的性質(zhì):A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,

  A∪φ=A,A∪B=B∪A.

  4、全集與補(bǔ)集(1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即A?S),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)記作:CSA即CSA={x?x?S且x?A}

 。2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,看作一個(gè)全集。通常用U來(lái)表示。

 。3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U二、函數(shù)的有關(guān)概念

  合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.

  能使函數(shù)式有意義的實(shí)數(shù)x的集合稱(chēng)為函數(shù)的定義域,求函數(shù)的`定義域時(shí)列不等式組的主要依據(jù)是:(1)分式的分母不等于零;(2)偶次方根的被開(kāi)方數(shù)不小于零;(3)對(duì)數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.(5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零(7)實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義.

  2.構(gòu)成函數(shù)的三要素:定義域、對(duì)應(yīng)關(guān)系和值域

  再注意:(1)由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱(chēng)這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))(2)兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無(wú)關(guān)。相同函數(shù)的判斷方法:①表達(dá)式相同;②定義域一致(兩點(diǎn)必須同時(shí)具備)

  3.區(qū)間的概念(1)區(qū)間的分類(lèi):開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間;(2)無(wú)窮區(qū)間;(3)區(qū)間的數(shù)軸表示.4.映射一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱(chēng)對(duì)應(yīng)f:A?B為從集合A到集合B的一個(gè)映射。記作“f:A?B”

  給定一個(gè)集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對(duì)應(yīng),那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象

  說(shuō)明:函數(shù)是一種特殊的映射,映射是一種特殊的對(duì)應(yīng),①集合A、B及對(duì)應(yīng)法則f是確定的;②對(duì)應(yīng)法則有“方向性”,即強(qiáng)調(diào)從集合A到集合B的對(duì)應(yīng),它與從B到A的對(duì)應(yīng)關(guān)系一般是不同的;③對(duì)于映射f:A→B來(lái)說(shuō),則應(yīng)滿(mǎn)足:(Ⅰ)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對(duì)應(yīng)的象可以是同一個(gè);(Ⅲ)不要求集合B中的每一個(gè)元素在集合A中都有原象。

  5.常用的函數(shù)表示法:解析法:圖象法:列表法:

  6.分段函數(shù)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。(1)分段函數(shù)是一個(gè)函數(shù),不要把它誤認(rèn)為是幾個(gè)函數(shù);

 。2)分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集.7.函數(shù)單調(diào)性(1).設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1

  如果對(duì)于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1

  注意:函數(shù)的單調(diào)性是在定義域內(nèi)的某個(gè)區(qū)間上的性質(zhì),是函數(shù)的局部性質(zhì);

 。2)圖象的特點(diǎn)如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說(shuō)函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

  (A)定義法:○1任取x1,x2∈D,且x1

  8.函數(shù)的奇偶性

 。1)一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

 。2).一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

  注意:○1函數(shù)是奇函數(shù)或是偶函數(shù)稱(chēng)為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);函數(shù)可能沒(méi)有奇偶性,也可能既是奇函數(shù)又是偶函數(shù)。

  2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,○

  則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱(chēng)).(3)具有奇偶性的函數(shù)的圖象的特征

  偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng).

  總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:○1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng);○2確定f(-x)與f(x)的關(guān)系;○3作出相應(yīng)結(jié)論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).9、函數(shù)的解析表達(dá)式

 。1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.

 。2).求函數(shù)的解析式的主要方法有:待定系數(shù)法、換元法、消參法等,如果已知函數(shù)解析式的構(gòu)造時(shí),可用待定系數(shù)法;已知復(fù)合函數(shù)f[g(x)]的表達(dá)式時(shí),可用換元法,這時(shí)要注意元的取值范圍;當(dāng)已知表達(dá)式較簡(jiǎn)單時(shí),也可用湊配法;若已知抽象函數(shù)表達(dá)式,則常用解方程組消參的方法求出f(x)。

  補(bǔ)充不等式的解法與二次函數(shù)(方程)的性質(zhì)

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

  一、函數(shù)對(duì)稱(chēng)性:

  1.2.3.4.5.6.7.8.

  f(a+x)=f(a-x)==>f(x)關(guān)于x=a對(duì)稱(chēng)

  f(a+x)=f(b-x)==>f(x)關(guān)于x=(a+b)/2對(duì)稱(chēng)f(a+x)=-f(a-x)==>f(x)關(guān)于點(diǎn)(a,0)對(duì)稱(chēng)f(a+x)=-f(a-x)+2b==>f(x)關(guān)于點(diǎn)(a,b)對(duì)稱(chēng)

  f(a+x)=-f(b-x)+c==>f(x)關(guān)于點(diǎn)[(a+b)/2,c/2]對(duì)稱(chēng)y=f(x)與y=f(-x)關(guān)于x=0對(duì)稱(chēng)y=f(x)與y=-f(x)關(guān)于y=0對(duì)稱(chēng)y=f(x)與y=-f(-x)關(guān)于點(diǎn)(0,0)對(duì)稱(chēng)

  例1:證明函數(shù)y=f(a+x)與y=f(b-x)關(guān)于x=(b-a)/2對(duì)稱(chēng)。

  【解析】求兩個(gè)不同函數(shù)的對(duì)稱(chēng)軸,用設(shè)點(diǎn)和對(duì)稱(chēng)原理作解。

  證明:假設(shè)任意一點(diǎn)P(m,n)在函數(shù)y=f(a+x)上,令關(guān)于x=t的對(duì)稱(chēng)點(diǎn)Q(2tm,n),那么n=f(a+m)=f[b(2tm)]

  ∴b2t=a,==>t=(b-a)/2,即證得對(duì)稱(chēng)軸為x=(b-a)/2.

  例2:證明函數(shù)y=f(a-x)與y=f(xb)關(guān)于x=(a+b)/2對(duì)稱(chēng)。

  證明:假設(shè)任意一點(diǎn)P(m,n)在函數(shù)y=f(a-x)上,令關(guān)于x=t的對(duì)稱(chēng)點(diǎn)Q(2tm,n),那么n=f(a-m)=f[(2tm)b]

  ∴2t-b=a,==>t=(a+b)/2,即證得對(duì)稱(chēng)軸為x=(a+b)/2.

  二、函數(shù)的周期性

  令a,b均不為零,若:

  1、函數(shù)y=f(x)存在f(x)=f(x+a)==>函數(shù)最小正周期T=|a|

  2、函數(shù)y=f(x)存在f(a+x)=f(b+x)==>函數(shù)最小正周期T=|b-a|

  3、函數(shù)y=f(x)存在f(x)=-f(x+a)==>函數(shù)最小正周期T=|2a|

  4、函數(shù)y=f(x)存在f(x+a)=1/f(x)==>函數(shù)最小正周期T=|2a|

  5、函數(shù)y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函數(shù)最小正周期T=|4a|

  這里只對(duì)第2~5點(diǎn)進(jìn)行解析。

  第2點(diǎn)解析:

  令X=x+a,f[a+(xa)]=f[b+(xa)]∴f(x)=f(x+ba)==>T=ba

  第3點(diǎn)解析:同理,f(x+a)=-f(x+2a)……

 、賔(x)=-f(x+a)……

  ②∴由①和②解得f(x)=f(x+2a)∴函數(shù)最小正周期T=|2a|

  第4點(diǎn)解析:

  f(x+2a)=1/f(x+a)==>f(x+a)=1/f(x+2a)

  又∵f(x+a)=1/f(x)∴f(x)=f(x+2a)

  ∴函數(shù)最小正周期T=|2a|

  第5點(diǎn)解析:

  ∵f(x+a)={2[1f(x)]}/[1f(x)]=2/[1f(x)]1

  ∴1f(x)=2/[f(x)+1]移項(xiàng)得f(x)=12/[f(x+a)+1]

  那么f(x-a)=12/[f(x)+1],等式右邊通分得f(x-a)=[f(x)1]/[1+f(x)]∴1/[f(x-a)=[1+f(x)]/[f(x)1],即-1/[f(x-a)=[1+f(x)]/[1-f(x)]∴-1/[f(x-a)=f(x+a),-1/[f(x2a)=f(x)==>-1/f(x)=f(x-2a)①,又∵-1/f(x)=f(x+2a)②,

  由①②得f(x+2a)=f(x-2a)==>f(x)=f(x+4a)

  ∴函數(shù)最小正周期T=|4a|

  擴(kuò)展閱讀:函數(shù)對(duì)稱(chēng)性、周期性和奇偶性的規(guī)律總結(jié)

  函數(shù)對(duì)稱(chēng)性、周期性和奇偶性規(guī)律總結(jié)

 。ㄒ唬┩缓瘮(shù)的函數(shù)的奇偶性與對(duì)稱(chēng)性:(奇偶性是一種特殊的'對(duì)稱(chēng)性)

  1、奇偶性:

 。1)奇函數(shù)關(guān)于(0,0)對(duì)稱(chēng),奇函數(shù)有關(guān)系式f(x)f(x)0

 。2)偶函數(shù)關(guān)于y(即x=0)軸對(duì)稱(chēng),偶函數(shù)有關(guān)系式f(x)f(x)

  2、奇偶性的拓展:同一函數(shù)的對(duì)稱(chēng)性

 。1)函數(shù)的軸對(duì)稱(chēng):

  函數(shù)yf(x)關(guān)于xa對(duì)稱(chēng)f(ax)f(ax)

  f(ax)f(ax)也可以寫(xiě)成f(x)f(2ax)或f(x)f(2ax)

  若寫(xiě)成:f(ax)f(bx),則函數(shù)yf(x)關(guān)于直線(xiàn)x稱(chēng)

  (ax)(bx)ab對(duì)22證明:設(shè)點(diǎn)(x1,y1)在yf(x)上,通過(guò)f(x)f(2ax)可知,y1f(x1)f(2ax1),

  即點(diǎn)(2ax1,y1)也在yf(x)上,而點(diǎn)(x1,y1)與點(diǎn)(2ax1,y1)關(guān)于x=a對(duì)稱(chēng)。得證。

  說(shuō)明:關(guān)于xa對(duì)稱(chēng)要求橫坐標(biāo)之和為2a,縱坐標(biāo)相等。

  ∵(ax1,y1)與(ax1,y1)關(guān)于xa對(duì)稱(chēng),∴函數(shù)yf(x)關(guān)于xa對(duì)稱(chēng)

  f(ax)f(ax)

  ∵(x1,y1)與(2ax1,y1)關(guān)于xa對(duì)稱(chēng),∴函數(shù)yf(x)關(guān)于xa對(duì)稱(chēng)

  f(x)f(2ax)

  ∵(x1,y1)與(2ax1,y1)關(guān)于xa對(duì)稱(chēng),∴函數(shù)yf(x)關(guān)于xa對(duì)稱(chēng)

  f(x)f(2ax)

 。2)函數(shù)的點(diǎn)對(duì)稱(chēng):

  函數(shù)yf(x)關(guān)于點(diǎn)(a,b)對(duì)稱(chēng)f(ax)f(ax)2b

  上述關(guān)系也可以寫(xiě)成f(2ax)f(x)2b或f(2ax)f(x)2b

  若寫(xiě)成:f(ax)f(bx)c,函數(shù)yf(x)關(guān)于點(diǎn)(abc,)對(duì)稱(chēng)2證明:設(shè)點(diǎn)(x1,y1)在yf(x)上,即y1f(x1),通過(guò)f(2ax)f(x)2b可知,f(2ax1)f(x1)2b,所以f(2ax1)2bf(x1)2by1,所以點(diǎn)(2ax1,2by1)也在yf(x)上,而點(diǎn)(2ax1,2by1)與(x1,y1)關(guān)于(a,b)對(duì)稱(chēng)。得證。

  說(shuō)明:關(guān)于點(diǎn)(a,b)對(duì)稱(chēng)要求橫坐標(biāo)之和為2a,縱坐標(biāo)之和為2b,如(ax)與(ax)之和為2a。

  (3)函數(shù)yf(x)關(guān)于點(diǎn)yb對(duì)稱(chēng):假設(shè)函數(shù)關(guān)于yb對(duì)稱(chēng),即關(guān)于任一個(gè)x值,都有兩個(gè)y值與其對(duì)應(yīng),顯然這不符合函數(shù)的定義,故函數(shù)自身不可能關(guān)于yb對(duì)稱(chēng)。但在曲線(xiàn)c(x,y)=0,則有可能會(huì)出現(xiàn)關(guān)于yb對(duì)稱(chēng),比如圓c(x,y)x2y240它會(huì)關(guān)于y=0對(duì)稱(chēng)。

 。4)復(fù)合函數(shù)的奇偶性的性質(zhì)定理:

  性質(zhì)1、復(fù)數(shù)函數(shù)y=f[g(x)]為偶函數(shù),則f[g(-x)]=f[g(x)]。復(fù)合函數(shù)y=f[g(x)]為奇函數(shù),則f[g(-x)]=-f[g(x)]。

  性質(zhì)2、復(fù)合函數(shù)y=f(x+a)為偶函數(shù),則f(x+a)=f(-x+a);復(fù)合函數(shù)y=f(x+a)為奇函數(shù),則f(-x+a)=-f(a+x)。

  性質(zhì)3、復(fù)合函數(shù)y=f(x+a)為偶函數(shù),則y=f(x)關(guān)于直線(xiàn)x=a軸對(duì)稱(chēng)。復(fù)合函數(shù)y=f(x+a)為奇函數(shù),則y=f(x)關(guān)于點(diǎn)(a,0)中心對(duì)稱(chēng)。

  總結(jié):x的系數(shù)一個(gè)為1,一個(gè)為-1,相加除以2,可得對(duì)稱(chēng)軸方程

  總結(jié):x的系數(shù)一個(gè)為1,一個(gè)為-1,f(x)整理成兩邊,其中一個(gè)的系數(shù)是為1,另一個(gè)為-1,存在對(duì)稱(chēng)中心。

  總結(jié):x的系數(shù)同為為1,具有周期性。

 。ǘ﹥蓚(gè)函數(shù)的圖象對(duì)稱(chēng)性

  1、yf(x)與yf(x)關(guān)于X軸對(duì)稱(chēng)。

  證明:設(shè)yf(x)上任一點(diǎn)為(x1,y1)則y1f(x1),所以yf(x)經(jīng)過(guò)點(diǎn)(x1,y1)

  ∵(x1,y1)與(x1,y1)關(guān)于X軸對(duì)稱(chēng),∴y1f(x1)與yf(x)關(guān)于X軸對(duì)稱(chēng).注:換種說(shuō)法:yf(x)與yg(x)f(x)若滿(mǎn)足f(x)g(x),即它們關(guān)于y0對(duì)稱(chēng)。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

  函數(shù)與導(dǎo)數(shù)。主要考查集合運(yùn)算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。

  平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些基礎(chǔ)題或中檔題。

  數(shù)列及其應(yīng)用。這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。

  不等式。主要考查不等式的求解和證明,而且很少單獨(dú)考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)。

  概率和統(tǒng)計(jì)。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。

  空間位置關(guān)系的定性與定量分析。主要是證明平行或垂直,求角和距離。主要考察對(duì)定理的熟悉程度、運(yùn)用程度。

  解析幾何。高考的難點(diǎn),運(yùn)算量大,一般含參數(shù)。

  高考對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的考查,既全面又突出重點(diǎn),扎實(shí)的數(shù)學(xué)基礎(chǔ)是成功解題的關(guān)鍵。

  掌握分類(lèi)計(jì)數(shù)原理與分步計(jì)數(shù)原理,并能用它們分析和解決一些簡(jiǎn)單的應(yīng)用問(wèn)題。

  理解排列的意義,掌握排列數(shù)計(jì)算公式,并能用它解決一些簡(jiǎn)單的應(yīng)用問(wèn)題。

  理解組合的意義,掌握組合數(shù)計(jì)算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡(jiǎn)單的應(yīng)用問(wèn)題。

  掌握二項(xiàng)式定理和二項(xiàng)展開(kāi)式的性質(zhì),并能用它們計(jì)算和證明一些簡(jiǎn)單的問(wèn)題。

  了解隨機(jī)事件的發(fā)生存在著規(guī)律性和隨機(jī)事件概率的意義。

  了解等可能性事件的概率的.意義,會(huì)用排列組合的基本公式計(jì)算一些等可能性事件的概率。

  了解互斥事件、相互獨(dú)立事件的意義,會(huì)用互斥事件的概率加法公式與相互獨(dú)立事件的概率乘法公式計(jì)算一些事件的概率。

  會(huì)計(jì)算事件在n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

  高考數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)

  (一)導(dǎo)數(shù)第一定義

  設(shè)函數(shù)y = f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有增量△x(x0 + △x也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)取得增量△y = f(x0 + △x)— f(x0);如果△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱(chēng)函數(shù)y = f(x)在點(diǎn)x0處可導(dǎo),并稱(chēng)這個(gè)極限值為函數(shù)y = f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第一定義

 。ǘ⿲(dǎo)數(shù)第二定義

  設(shè)函數(shù)y = f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有變化△x(x — x0也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)變化△y = f(x)— f(x0);如果△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱(chēng)函數(shù)y = f(x)在點(diǎn)x0處可導(dǎo),并稱(chēng)這個(gè)極限值為函數(shù)y = f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第二定義

 。ㄈ⿲(dǎo)函數(shù)與導(dǎo)數(shù)

  如果函數(shù)y = f(x)在開(kāi)區(qū)間I內(nèi)每一點(diǎn)都可導(dǎo),就稱(chēng)函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這時(shí)函數(shù)y = f(x)對(duì)于區(qū)間I內(nèi)的每一個(gè)確定的x值,都對(duì)應(yīng)著一個(gè)確定的導(dǎo)數(shù),這就構(gòu)成一個(gè)新的函數(shù),稱(chēng)這個(gè)函數(shù)為原來(lái)函數(shù)y = f(x)的導(dǎo)函數(shù),記作y',f'(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡(jiǎn)稱(chēng)導(dǎo)數(shù)。

 。ㄋ模﹩握{(diào)性及其應(yīng)用

  1。利用導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一般步驟

 。1)求f¢(x)

 。2)確定f¢(x)在(a,b)內(nèi)符號(hào)(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)

  2。用導(dǎo)數(shù)求多項(xiàng)式函數(shù)單調(diào)區(qū)間的一般步驟

 。1)求f¢(x)

  (2)f¢(x)>0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為減區(qū)間

  高中數(shù)學(xué)重難點(diǎn)知識(shí)點(diǎn)

  高中數(shù)學(xué)包含5本必修、2本選修,(理)包含5本必修、3本選修,每學(xué)期學(xué)習(xí)兩本書(shū)。

  必修一:1、集合與函數(shù)的概念(這部分知識(shí)抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對(duì)數(shù)函數(shù))3、函數(shù)的性質(zhì)及應(yīng)用(比較抽象,較難理解)

  必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問(wèn)題,包括線(xiàn)面角和面面角

  這部分知識(shí)是高一學(xué)生的難點(diǎn),比如:一個(gè)角實(shí)際上是一個(gè)銳角,但是在圖中顯示的鈍角等等一些問(wèn)題,需要學(xué)生的立體意識(shí)較強(qiáng)。這部分知識(shí)高考占22———27分

  2、直線(xiàn)方程:高考時(shí)不單獨(dú)命題,易和圓錐曲線(xiàn)結(jié)合命題

  3、圓方程:

  必修三:1、算法初步:高考必考內(nèi)容,5分(選擇或填空)2、統(tǒng)計(jì):3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學(xué)占到5分

  必修四:1、三角函數(shù):(圖像、性質(zhì)、高中重難點(diǎn),)必考大題:15———20分,并且經(jīng)常和其他函數(shù)混合起來(lái)考查

  2、平面向量:高考不單獨(dú)命題,易和三角函數(shù)、圓錐曲線(xiàn)結(jié)合命題。09年理科占到5分,文科占到13分

  必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學(xué)占到13分左右2、數(shù)列:高考必考,17———22分3、不等式:(線(xiàn)性規(guī)劃,聽(tīng)課時(shí)易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨(dú)命題,一般和函數(shù)結(jié)合求最值、解集。

  高中數(shù)學(xué)知識(shí)點(diǎn)大全

  一、集合與簡(jiǎn)易邏輯

  1、集合的元素具有確定性、無(wú)序性和互異性。

  2、對(duì)集合,時(shí),必須注意到“極端”情況:或;求集合的子集時(shí)是否注意到是任何集合的子集、是任何非空集合的真子集。

  3、判斷命題的真假關(guān)鍵是“抓住關(guān)聯(lián)字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”。

  4、“或命題”的真假特點(diǎn)是“一真即真,要假全假”;“且命題”的真假特點(diǎn)是“一假即假,要真全真”;“非命題”的真假特點(diǎn)是“一真一假”。

  5、四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”。

  原命題等價(jià)于逆否命題,但原命題與逆命題、否命題都不等價(jià)。反證法分為三步:假設(shè)、推矛、得果。

  6、充要條件

  二、函數(shù)

  1、指數(shù)式、對(duì)數(shù)式,

  2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個(gè)集合中的元素必有像,但第二個(gè)集合中的元素不一定有原像(中元素的像有且僅有下一個(gè),但中元素的原像可能沒(méi)有,也可任意個(gè));函數(shù)是“非空數(shù)集上的映射”,其中“值域是映射中像集的子集”。

  (2)函數(shù)圖像與軸垂線(xiàn)至多一個(gè)公共點(diǎn),但與軸垂線(xiàn)的公共點(diǎn)可能沒(méi)有,也可任意個(gè)。

 。3)函數(shù)圖像一定是坐標(biāo)系中的曲線(xiàn),但坐標(biāo)系中的曲線(xiàn)不一定能成為函數(shù)圖像。

  3、單調(diào)性和奇偶性

 。1)奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱(chēng)的區(qū)間上若有單調(diào)性,則其單調(diào)性完全相同。

  偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱(chēng)的區(qū)間上若有單調(diào)性,則其單調(diào)性恰恰相反。

 。2)復(fù)合函數(shù)的單調(diào)性特點(diǎn)是:“同性得增,增必同性;異性得減,減必異性”。

  復(fù)合函數(shù)的奇偶性特點(diǎn)是:“內(nèi)偶則偶,內(nèi)奇同外”。復(fù)合函數(shù)要考慮定義域的變化。(即復(fù)合有意義)

  4、對(duì)稱(chēng)性與周期性(以下結(jié)論要消化吸收,不可強(qiáng)記)

  (1)函數(shù)與函數(shù)的圖像關(guān)于直線(xiàn)(軸)對(duì)稱(chēng)。

  推廣一:如果函數(shù)對(duì)于一切,都有成立,那么的圖像關(guān)于直線(xiàn)(由“和的一半確定”)對(duì)稱(chēng)。

  推廣二:函數(shù),的圖像關(guān)于直線(xiàn)對(duì)稱(chēng)。

 。2)函數(shù)與函數(shù)的圖像關(guān)于直線(xiàn)(軸)對(duì)稱(chēng)。

 。3)函數(shù)與函數(shù)的圖像關(guān)于坐標(biāo)原點(diǎn)中心對(duì)稱(chēng)。

  三、數(shù)列

  1、數(shù)列的通項(xiàng)、數(shù)列項(xiàng)的項(xiàng)數(shù),遞推公式與遞推數(shù)列,數(shù)列的通項(xiàng)與數(shù)列的前項(xiàng)和公式的關(guān)系

  2、等差數(shù)列中

 。1)等差數(shù)列公差的取值與等差數(shù)列的單調(diào)性。

  (2)也成等差數(shù)列。

  (3)兩等差數(shù)列對(duì)應(yīng)項(xiàng)和(差)組成的新數(shù)列仍成等差數(shù)列。

 。4)仍成等差數(shù)列。

  (5)“首正”的遞等差數(shù)列中,前項(xiàng)和的最大值是所有非負(fù)項(xiàng)之和;“首負(fù)”的遞增等差數(shù)列中,前項(xiàng)和的最小值是所有非正項(xiàng)之和;

 。6)有限等差數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然聯(lián)系,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定。若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和“奇數(shù)項(xiàng)和=總項(xiàng)數(shù)的一半與其公差的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和—偶數(shù)項(xiàng)和”=此數(shù)列的中項(xiàng)。

 。7)兩數(shù)的等差中項(xiàng)惟一存在。在遇到三數(shù)或四數(shù)成等差數(shù)列時(shí),常考慮選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解。

 。8)判定數(shù)列是否是等差數(shù)列的主要方法有:定義法、中項(xiàng)法、通項(xiàng)法、和式法、圖像法(也就是說(shuō)數(shù)列是等差數(shù)列的充要條件主要有這五種形式)。

  3、等比數(shù)列中:

 。1)等比數(shù)列的符號(hào)特征(全正或全負(fù)或一正一負(fù)),等比數(shù)列的首項(xiàng)、公比與等比數(shù)列的單調(diào)性。

 。2)兩等比數(shù)列對(duì)應(yīng)項(xiàng)積(商)組成的新數(shù)列仍成等比數(shù)列。

  (3)“首大于1”的正值遞減等比數(shù)列中,前項(xiàng)積的最大值是所有大于或等于1的項(xiàng)的積;“首小于1”的正值遞增等比數(shù)列中,前項(xiàng)積的最小值是所有小于或等于1的項(xiàng)的積;

 。4)有限等比數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然聯(lián)系,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定。若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和”=“奇數(shù)項(xiàng)和”與“公比”的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和“首項(xiàng)”加上“公比”與“偶數(shù)項(xiàng)和”積的和。

 。5)并非任何兩數(shù)總有等比中項(xiàng)。僅當(dāng)實(shí)數(shù)同號(hào)時(shí),實(shí)數(shù)存在等比中項(xiàng)。對(duì)同號(hào)兩實(shí)數(shù)的等比中項(xiàng)不僅存在,而且有一對(duì)。也就是說(shuō),兩實(shí)數(shù)要么沒(méi)有等比中項(xiàng)(非同號(hào)時(shí)),如果有,必有一對(duì)(同號(hào)時(shí))。在遇到三數(shù)或四數(shù)成等差數(shù)列時(shí),常優(yōu)先考慮選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解。

 。6)判定數(shù)列是否是等比數(shù)列的方法主要有:定義法、中項(xiàng)法、通項(xiàng)法、和式法(也就是說(shuō)數(shù)列是等比數(shù)列的充要條件主要有這四種形式)。

  4、等差數(shù)列與等比數(shù)列的聯(lián)系

 。1)如果數(shù)列成等差數(shù)列,那么數(shù)列(總有意義)必成等比數(shù)列。

 。2)如果數(shù)列成等比數(shù)列,那么數(shù)列必成等差數(shù)列。

 。3)如果數(shù)列既成等差數(shù)列又成等比數(shù)列,那么數(shù)列是非零常數(shù)數(shù)列;但數(shù)列是常數(shù)數(shù)列僅是數(shù)列既成等差數(shù)列又成等比數(shù)列的必要非充分條件。

 。4)如果兩等差數(shù)列有公共項(xiàng),那么由他們的公共項(xiàng)順次組成的新數(shù)列也是等差數(shù)列,且新等差數(shù)列的公差是原兩等差數(shù)列公差的最小公倍數(shù)。

  如果一個(gè)等差數(shù)列與一個(gè)等比數(shù)列有公共項(xiàng)順次組成新數(shù)列,那么常選用“由特殊到一般的方法”進(jìn)行研討,且以其等比數(shù)列的項(xiàng)為主,探求等比數(shù)列中那些項(xiàng)是他們的公共項(xiàng),并構(gòu)成新的數(shù)列。

  5、數(shù)列求和的常用方法:

 。1)公式法:①等差數(shù)列求和公式(三種形式),

 、诘缺葦(shù)列求和公式(三種形式),

 。2)分組求和法:在直接運(yùn)用公式法求和有困難時(shí),常將“和式”中“同類(lèi)項(xiàng)”先合并在一起,再運(yùn)用公式法求和。

 。3)倒序相加法:在數(shù)列求和中,若和式中到首尾距離相等的兩項(xiàng)和有其共性或數(shù)列的通項(xiàng)與組合數(shù)相關(guān)聯(lián),則常可考慮選用倒序相加法,發(fā)揮其共性的作用求和(這也是等差數(shù)列前和公式的'推導(dǎo)方法)。

 。4)錯(cuò)位相減法:如果數(shù)列的通項(xiàng)是由一個(gè)等差數(shù)列的通項(xiàng)與一個(gè)等比數(shù)列的通項(xiàng)相乘構(gòu)成,那么常選用錯(cuò)位相減法,將其和轉(zhuǎn)化為“一個(gè)新的的等比數(shù)列的和”求解(注意:一般錯(cuò)位相減后,其中“新等比數(shù)列的項(xiàng)數(shù)是原數(shù)列的項(xiàng)數(shù)減一的差”。ㄟ@也是等比數(shù)列前和公式的推導(dǎo)方法之一)。

  (5)裂項(xiàng)相消法:如果數(shù)列的通項(xiàng)可“分裂成兩項(xiàng)差”的形式,且相鄰項(xiàng)分裂后相關(guān)聯(lián),那么常選用裂項(xiàng)相消法求和

 。6)通項(xiàng)轉(zhuǎn)換法。

  四、三角函數(shù)

  1、終邊與終邊相同(的終邊在終邊所在射線(xiàn)上)。

  終邊與終邊共線(xiàn)(的終邊在終邊所在直線(xiàn)上)。

  終邊與終邊關(guān)于軸對(duì)稱(chēng)

  終邊與終邊關(guān)于軸對(duì)稱(chēng)

  終邊與終邊關(guān)于原點(diǎn)對(duì)稱(chēng)

  一般地:終邊與終邊關(guān)于角的終邊對(duì)稱(chēng)。

  與的終邊關(guān)系由“兩等分各象限、一二三四”確定。

  2、弧長(zhǎng)公式:,扇形面積公式:1弧度(1rad)。

  3、三角函數(shù)符號(hào)特征是:一是全正、二正弦正、三是切正、四余弦正。

  4、三角函數(shù)線(xiàn)的特征是:正弦線(xiàn)“站在軸上(起點(diǎn)在軸上)”、余弦線(xiàn)“躺在軸上(起點(diǎn)是原點(diǎn))”、正切線(xiàn)“站在點(diǎn)處(起點(diǎn)是)”。務(wù)必重視“三角函數(shù)值的大小與單位圓上相應(yīng)點(diǎn)的坐標(biāo)之間的關(guān)系,‘正弦’‘縱坐標(biāo)’、‘余弦’‘橫坐標(biāo)’、‘正切’‘縱坐標(biāo)除以橫坐標(biāo)之商’”;務(wù)必記。?jiǎn)挝粓A中角終邊的變化與值的大小變化的關(guān)系為銳角

  5、三角函數(shù)同角關(guān)系中,平方關(guān)系的運(yùn)用中,務(wù)必重視“根據(jù)已知角的范圍和三角函數(shù)的取值,精確確定角的范圍,并進(jìn)行定號(hào)”;

  6、三角函數(shù)誘導(dǎo)公式的本質(zhì)是:奇變偶不變,符號(hào)看象限。

  7、三角函數(shù)變換主要是:角、函數(shù)名、次數(shù)、系數(shù)(常值)的變換,其核心是“角的變換”!

  角的變換主要有:已知角與特殊角的變換、已知角與目標(biāo)角的變換、角與其倍角的變換、兩角與其和差角的變換。

  8、三角函數(shù)性質(zhì)、圖像及其變換:

 。1)三角函數(shù)的定義域、值域、單調(diào)性、奇偶性、有界性和周期性

  注意:正切函數(shù)、余切函數(shù)的定義域;絕對(duì)值對(duì)三角函數(shù)周期性的影響:一般說(shuō)來(lái),某一周期函數(shù)解析式加絕對(duì)值或平方,其周期性是:弦減半、切不變。既為周期函數(shù)又是偶函數(shù)的函數(shù)自變量加絕對(duì)值,其周期性不變;其他不定。如的周期都是,但的周期為,y=|tanx|的周期不變,問(wèn)函數(shù)y=cos|x|,,y=cos|x|是周期函數(shù)嗎?

 。2)三角函數(shù)圖像及其幾何性質(zhì):

  (3)三角函數(shù)圖像的變換:兩軸方向的平移、伸縮及其向量的平移變換。

 。4)三角函數(shù)圖像的作法:三角函數(shù)線(xiàn)法、五點(diǎn)法(五點(diǎn)橫坐標(biāo)成等差數(shù)列)和變換法。

  9、三角形中的三角函數(shù):

 。1)內(nèi)角和定理:三角形三角和為,任意兩角和與第三個(gè)角總互補(bǔ),任意兩半角和與第三個(gè)角的半角總互余。銳角三角形三內(nèi)角都是銳角三內(nèi)角的余弦值為正值任兩角和都是鈍角任意兩邊的平方和大于第三邊的平方。

 。2)正弦定理:(R為三角形外接圓的半徑)。

 。3)余弦定理:常選用余弦定理鑒定三角形的類(lèi)型。

  五、向量

  1、向量運(yùn)算的幾何形式和坐標(biāo)形式,請(qǐng)注意:向量運(yùn)算中向量起點(diǎn)、終點(diǎn)及其坐標(biāo)的特征。

  2、幾個(gè)概念:零向量、單位向量(與共線(xiàn)的單位向量是,平行(共線(xiàn))向量(無(wú)傳遞性,是因?yàn)橛校⑾嗟认蛄浚ㄓ袀鬟f性)、相反向量、向量垂直、以及一個(gè)向量在另一向量方向上的投影(在上的投影是)。

  3、兩非零向量平行(共線(xiàn))的充要條件

  4、平面向量的基本定理:如果e1和e2是同一平面內(nèi)的兩個(gè)不共線(xiàn)向量,那么對(duì)該平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù),使a= e1+ e2。

  5、三點(diǎn)共線(xiàn);

  6、向量的數(shù)量積:

  六、不等式

  1、(1)解不等式是求不等式的解集,最后務(wù)必有集合的形式表示;不等式解集的端點(diǎn)值往往是不等式對(duì)應(yīng)方程的根或不等式有意義范圍的端點(diǎn)值。

  (2)解分式不等式的一般解題思路是什么?(移項(xiàng)通分,分子分母分解因式,x的系數(shù)變?yōu)檎,?biāo)根及奇穿過(guò)偶彈回);

 。3)含有兩個(gè)絕對(duì)值的不等式如何去絕對(duì)值?(一般是根據(jù)定義分類(lèi)討論、平方轉(zhuǎn)化或換元轉(zhuǎn)化);

 。4)解含參不等式常分類(lèi)等價(jià)轉(zhuǎn)化,必要時(shí)需分類(lèi)討論。注意:按參數(shù)討論,最后按參數(shù)取值分別說(shuō)明其解集,但若按未知數(shù)討論,最后應(yīng)求并集。

  2、利用重要不等式以及變式等求函數(shù)的最值時(shí),務(wù)必注意a,b(或a,b非負(fù)),且“等號(hào)成立”時(shí)的條件是積ab或和a+b其中之一應(yīng)是定值(一正二定三等四同時(shí))。

  3、常用不等式有:(根據(jù)目標(biāo)不等式左右的運(yùn)算結(jié)構(gòu)選用)

  a、b、c R,(當(dāng)且僅當(dāng)時(shí),取等號(hào))

  4、比較大小的方法和證明不等式的方法主要有:差比較法、商比較法、函數(shù)性質(zhì)法、綜合法、分析法

  5、含絕對(duì)值不等式的性質(zhì):

  6、不等式的恒成立,能成立,恰成立等問(wèn)題

  (1)恒成立問(wèn)題

  若不等式在區(qū)間上恒成立,則等價(jià)于在區(qū)間上

  若不等式在區(qū)間上恒成立,則等價(jià)于在區(qū)間上

  (2)能成立問(wèn)題

 。3)恰成立問(wèn)題

  若不等式在區(qū)間上恰成立,則等價(jià)于不等式的解集為。

  若不等式在區(qū)間上恰成立,則等價(jià)于不等式的解集為,

  七、直線(xiàn)和圓

  1、直線(xiàn)傾斜角與斜率的存在性及其取值范圍;直線(xiàn)方向向量的意義(或)及其直線(xiàn)方程的向量式((為直線(xiàn)的方向向量))。應(yīng)用直線(xiàn)方程的點(diǎn)斜式、斜截式設(shè)直線(xiàn)方程時(shí),一般可設(shè)直線(xiàn)的斜率為k,但你是否注意到直線(xiàn)垂直于x軸時(shí),即斜率k不存在的情況?

  2、知直線(xiàn)縱截距,常設(shè)其方程為或;知直線(xiàn)橫截距,常設(shè)其方程為(直線(xiàn)斜率k存在時(shí),為k的倒數(shù))或知直線(xiàn)過(guò)點(diǎn),常設(shè)其方程為。

  (2)直線(xiàn)在坐標(biāo)軸上的截距可正、可負(fù)、也可為0。直線(xiàn)兩截距相等直線(xiàn)的斜率為—1或直線(xiàn)過(guò)原點(diǎn);直線(xiàn)兩截距互為相反數(shù)直線(xiàn)的斜率為1或直線(xiàn)過(guò)原點(diǎn);直線(xiàn)兩截距絕對(duì)值相等直線(xiàn)的斜率為或直線(xiàn)過(guò)原點(diǎn)。

 。3)在解析幾何中,研究?jī)蓷l直線(xiàn)的位置關(guān)系時(shí),有可能這兩條直線(xiàn)重合,而在立體幾何中一般提到的兩條直線(xiàn)可以理解為它們不重合。

  3、相交兩直線(xiàn)的夾角和兩直線(xiàn)間的到角是兩個(gè)不同的概念:夾角特指相交兩直線(xiàn)所成的較小角,范圍是。而其到角是帶有方向的角,范圍是

  4、線(xiàn)性規(guī)劃中幾個(gè)概念:約束條件、可行解、可行域、目標(biāo)函數(shù)、最優(yōu)解。

  5、圓的方程:最簡(jiǎn)方程;標(biāo)準(zhǔn)方程;

  6、解決直線(xiàn)與圓的關(guān)系問(wèn)題有“函數(shù)方程思想”和“數(shù)形結(jié)合思想”兩種思路,等價(jià)轉(zhuǎn)化求解,重要的是發(fā)揮“圓的平面幾何性質(zhì)(如半徑、半弦長(zhǎng)、弦心距構(gòu)成直角三角形,切線(xiàn)長(zhǎng)定理、割線(xiàn)定理、弦切角定理等等)的作用!”

 。1)過(guò)圓上一點(diǎn)圓的切線(xiàn)方程

  過(guò)圓上一點(diǎn)圓的切線(xiàn)方程

  過(guò)圓上一點(diǎn)圓的切線(xiàn)方程

  如果點(diǎn)在圓外,那么上述直線(xiàn)方程表示過(guò)點(diǎn)兩切線(xiàn)上兩切點(diǎn)的“切點(diǎn)弦”方程。

  如果點(diǎn)在圓內(nèi),那么上述直線(xiàn)方程表示與圓相離且垂直于(為圓心)的直線(xiàn)方程,(為圓心到直線(xiàn)的距離)。

  7、曲線(xiàn)與的交點(diǎn)坐標(biāo)方程組的解;

  過(guò)兩圓交點(diǎn)的圓(公共弦)系為,當(dāng)且僅當(dāng)無(wú)平方項(xiàng)時(shí),為兩圓公共弦所在直線(xiàn)方程。

  八、圓錐曲線(xiàn)

  1、圓錐曲線(xiàn)的兩個(gè)定義,及其“括號(hào)”內(nèi)的限制條件,在圓錐曲線(xiàn)問(wèn)題中,如果涉及到其兩焦點(diǎn)(兩相異定點(diǎn)),那么將優(yōu)先選用圓錐曲線(xiàn)第一定義;如果涉及到其焦點(diǎn)、準(zhǔn)線(xiàn)(一定點(diǎn)和不過(guò)該點(diǎn)的一定直線(xiàn))或離心率,那么將優(yōu)先選用圓錐曲線(xiàn)第二定義;涉及到焦點(diǎn)三角形的問(wèn)題,也要重視焦半徑和三角形中正余弦定理等幾何性質(zhì)的應(yīng)用。

 。1)注意:①圓錐曲線(xiàn)第一定義與配方法的綜合運(yùn)用;

 、趫A錐曲線(xiàn)第二定義是:“點(diǎn)點(diǎn)距為分子、點(diǎn)線(xiàn)距為分母”,橢圓點(diǎn)點(diǎn)距除以點(diǎn)線(xiàn)距商是小于1的正數(shù),雙曲線(xiàn)點(diǎn)點(diǎn)距除以點(diǎn)線(xiàn)距商是大于1的正數(shù),拋物線(xiàn)點(diǎn)點(diǎn)距除以點(diǎn)線(xiàn)距商是等于1。

  2、圓錐曲線(xiàn)的幾何性質(zhì):圓錐曲線(xiàn)的對(duì)稱(chēng)性、圓錐曲線(xiàn)的范圍、圓錐曲線(xiàn)的特殊點(diǎn)線(xiàn)、圓錐曲線(xiàn)的變化趨勢(shì)。其中,橢圓中、雙曲線(xiàn)中。

  重視“特征直角三角形、焦半徑的最值、焦點(diǎn)弦的最值及其‘頂點(diǎn)、焦點(diǎn)、準(zhǔn)線(xiàn)等相互之間與坐標(biāo)系無(wú)關(guān)的幾何性質(zhì)’”,尤其是雙曲線(xiàn)中焦半徑最值、焦點(diǎn)弦最值的特點(diǎn)。

  3、在直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系問(wèn)題中,有“函數(shù)方程思想”和“數(shù)形結(jié)合思想”兩種思路,等價(jià)轉(zhuǎn)化求解。特別是:

 、僦本(xiàn)與圓錐曲線(xiàn)相交的必要條件是他們構(gòu)成的方程組有實(shí)數(shù)解,當(dāng)出現(xiàn)一元二次方程時(shí),務(wù)必“判別式≥0”,尤其是在應(yīng)用韋達(dá)定理解決問(wèn)題時(shí),必須先有“判別式≥0”。

 、谥本(xiàn)與拋物線(xiàn)(相交不一定交于兩點(diǎn))、雙曲線(xiàn)位置關(guān)系(相交的四種情況)的特殊性,應(yīng)謹(jǐn)慎處理。

  ③在直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系問(wèn)題中,常與“弦”相關(guān),“平行弦”問(wèn)題的關(guān)鍵是“斜率”、“中點(diǎn)弦”問(wèn)題關(guān)鍵是“韋達(dá)定理”或“小小直角三角形”或“點(diǎn)差法”、“長(zhǎng)度(弦長(zhǎng))”問(wèn)題關(guān)鍵是長(zhǎng)度(弦長(zhǎng))公式

 、苋绻谝粭l直線(xiàn)上出現(xiàn)“三個(gè)或三個(gè)以上的點(diǎn)”,那么可選擇應(yīng)用“斜率”為橋梁轉(zhuǎn)化。

  4、要重視常見(jiàn)的尋求曲線(xiàn)方程的方法(待定系數(shù)法、定義法、直譯法、代點(diǎn)法、參數(shù)法、交軌法、向量法等),以及如何利用曲線(xiàn)的方程討論曲線(xiàn)的幾何性質(zhì)(定義法、幾何法、代數(shù)法、方程函數(shù)思想、數(shù)形結(jié)合思想、分類(lèi)討論思想和等價(jià)轉(zhuǎn)化思想等),這是解析幾何的兩類(lèi)基本問(wèn)題,也是解析幾何的基本出發(fā)點(diǎn)。

  注意:①如果問(wèn)題中涉及到平面向量知識(shí),那么應(yīng)從已知向量的特點(diǎn)出發(fā),考慮選擇向量的幾何形式進(jìn)行“摘帽子或脫靴子”轉(zhuǎn)化,還是選擇向量的代數(shù)形式進(jìn)行“摘帽子或脫靴子”轉(zhuǎn)化。

  ②曲線(xiàn)與曲線(xiàn)方程、軌跡與軌跡方程是兩個(gè)不同的概念,尋求軌跡或軌跡方程時(shí)應(yīng)注意軌跡上特殊點(diǎn)對(duì)軌跡的“完備性與純粹性”的影響。

  ③在與圓錐曲線(xiàn)相關(guān)的綜合題中,常借助于“平面幾何性質(zhì)”數(shù)形結(jié)合(如角平分線(xiàn)的雙重身份)、“方程與函數(shù)性質(zhì)”化解析幾何問(wèn)題為代數(shù)問(wèn)題、“分類(lèi)討論思想”化整為零分化處理、“求值構(gòu)造等式、求變量范圍構(gòu)造不等關(guān)系”等等。

  九、直線(xiàn)、平面、簡(jiǎn)單多面體

  1、計(jì)算異面直線(xiàn)所成角的關(guān)鍵是平移(補(bǔ)形)轉(zhuǎn)化為兩直線(xiàn)的夾角計(jì)算

  2、計(jì)算直線(xiàn)與平面所成的角關(guān)鍵是作面的垂線(xiàn)找射影,或向量法(直線(xiàn)上向量與平面法向量夾角的余角),三余弦公式(最小角定理),或先運(yùn)用等積法求點(diǎn)到直線(xiàn)的距離,后虛擬直角三角形求解。注:一斜線(xiàn)與平面上以斜足為頂點(diǎn)的角的兩邊所成角相等斜線(xiàn)在平面上射影為角的平分線(xiàn)。

  3、空間平行垂直關(guān)系的證明,主要依據(jù)相關(guān)定義、公理、定理和空間向量進(jìn)行,請(qǐng)重視線(xiàn)面平行關(guān)系、線(xiàn)面垂直關(guān)系(三垂線(xiàn)定理及其逆定理)的橋梁作用。注意:書(shū)寫(xiě)證明過(guò)程需規(guī)范。

  4、直棱柱、正棱柱、平行六面體、長(zhǎng)方體、正方體、正四面體、棱錐、正棱錐關(guān)于側(cè)棱、側(cè)面、對(duì)角面、平行于底的截面的幾何體性質(zhì)。

  如長(zhǎng)方體中:對(duì)角線(xiàn)長(zhǎng),棱長(zhǎng)總和為,全(表)面積為,(結(jié)合可得關(guān)于他們的等量關(guān)系,結(jié)合基本不等式還可建立關(guān)于他們的不等關(guān)系式),

  如三棱錐中:側(cè)棱長(zhǎng)相等(側(cè)棱與底面所成角相等)頂點(diǎn)在底上射影為底面外心,側(cè)棱兩兩垂直(兩對(duì)對(duì)棱垂直)頂點(diǎn)在底上射影為底面垂心,斜高長(zhǎng)相等(側(cè)面與底面所成相等)且頂點(diǎn)在底上在底面內(nèi)頂點(diǎn)在底上射影為底面內(nèi)心。

  5、求幾何體體積的常規(guī)方法是:公式法、割補(bǔ)法、等積(轉(zhuǎn)換)法、比例(性質(zhì)轉(zhuǎn)換)法等。注意:補(bǔ)形:三棱錐三棱柱平行六面體

  6、多面體是由若干個(gè)多邊形圍成的幾何體。棱柱和棱錐是特殊的多面體。

  正多面體的每個(gè)面都是相同邊數(shù)的正多邊形,以每個(gè)頂點(diǎn)為其一端都有相同數(shù)目的棱,這樣的多面體只有五種,即正四面體、正六面體、正八面體、正十二面體、正二十面體。

  7、球體積公式。球表面積公式,是兩個(gè)關(guān)于球的幾何度量公式。它們都是球半徑及的函數(shù)。

  十、導(dǎo)數(shù)

  1、導(dǎo)數(shù)的意義:曲線(xiàn)在該點(diǎn)處的切線(xiàn)的斜率(幾何意義)、瞬時(shí)速度、邊際成本(成本為因變量、產(chǎn)量為自變量的函數(shù)的導(dǎo)數(shù),C為常數(shù))

  2、多項(xiàng)式函數(shù)的導(dǎo)數(shù)與函數(shù)的單調(diào)性

  在一個(gè)區(qū)間上(個(gè)別點(diǎn)取等號(hào))在此區(qū)間上為增函數(shù)。

  在一個(gè)區(qū)間上(個(gè)別點(diǎn)取等號(hào))在此區(qū)間上為減函數(shù)。

  3、導(dǎo)數(shù)與極值、導(dǎo)數(shù)與最值:

 。1)函數(shù)處有且“左正右負(fù)”在處取極大值;

  函數(shù)在處有且左負(fù)右正”在處取極小值。

  注意:①在處有是函數(shù)在處取極值的必要非充分條件。

 、谇蠛瘮(shù)極值的方法:先找定義域,再求導(dǎo),找出定義域的分界點(diǎn),列表求出極值。特別是給出函數(shù)極大(。┲档臈l件,一定要既考慮,又要考慮驗(yàn)“左正右負(fù)”(“左負(fù)右正”)的轉(zhuǎn)化,否則條件沒(méi)有用完,這一點(diǎn)一定要切記。

  ③單調(diào)性與最值(極值)的研究要注意列表!

  (2)函數(shù)在一閉區(qū)間上的最大值是此函數(shù)在此區(qū)間上的極大值與其端點(diǎn)值中的“最大值”

  函數(shù)在一閉區(qū)間上的最小值是此函數(shù)在此區(qū)間上的極小值與其端點(diǎn)值中的“最小值”;

  注意:利用導(dǎo)數(shù)求最值的步驟:先找定義域再求出導(dǎo)數(shù)為0及導(dǎo)數(shù)不存在的的點(diǎn),然后比較定義域的端點(diǎn)值和導(dǎo)數(shù)為0的點(diǎn)對(duì)應(yīng)函數(shù)值的大小,其中最大的就是最大值,最小就為最小。

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

  集合的分類(lèi):

 。1)按元素屬性分類(lèi),如點(diǎn)集,數(shù)集。

 。2)按元素的個(gè)數(shù)多少,分為有/無(wú)限集

  關(guān)于集合的概念:

 。1)確定性:作為一個(gè)集合的元素,必須是確定的,這就是說(shuō),不能確定的對(duì)象就不能構(gòu)成集合,也就是說(shuō),給定一個(gè)集合,任何一個(gè)對(duì)象是不是這個(gè)集合的元素也就確定了。

 。2)互異性:對(duì)于一個(gè)給定的集合,集合中的元素一定是不同的(或說(shuō)是互異的),這就是說(shuō),集合中的任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入同一個(gè)集合時(shí)只能算作集合的一個(gè)元素。

 。3)無(wú)序性:判斷一些對(duì)象時(shí)候構(gòu)成集合,關(guān)鍵在于看這些對(duì)象是否有明確的標(biāo)準(zhǔn)。

  集合可以根據(jù)它含有的元素的個(gè)數(shù)分為兩類(lèi):

  含有有限個(gè)元素的集合叫做有限集,含有無(wú)限個(gè)元素的集合叫做無(wú)限集。

  非負(fù)整數(shù)全體構(gòu)成的.集合,叫做自然數(shù)集,記作N。

  在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N_。

  整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z。

  有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q。(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱(chēng),一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)

  實(shí)數(shù)全體構(gòu)成的集合,叫做實(shí)數(shù)集,記作R。(包括有理數(shù)和無(wú)理數(shù)。其中無(wú)理數(shù)就是無(wú)限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實(shí)數(shù)直觀地定義為和數(shù)軸上的'點(diǎn)一一對(duì)應(yīng)的數(shù)。)

  1、列舉法:如果一個(gè)集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來(lái),寫(xiě)在花括號(hào)“{}”內(nèi)表示這個(gè)集合,例如,由兩個(gè)元素0,1構(gòu)成的集合可表示為{0,1}。

  有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個(gè)元素作為代表,其他元素用省略號(hào)表示。

  例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}。

  無(wú)限集有時(shí)也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}。

  2、描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來(lái)描述。

  例如:正偶數(shù)構(gòu)成的集合,它的每一個(gè)元素都具有性質(zhì):“能被2整除,且大于0”

  而這個(gè)集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號(hào)內(nèi)豎線(xiàn)左邊的X表示這個(gè)集合的任意一個(gè)元素,元素X從實(shí)數(shù)集合中取值,在豎線(xiàn)右邊寫(xiě)出只有集合內(nèi)的元素x才具有的性質(zhì)。

  一般地,如果在集合I中,屬于集合A的任意一個(gè)元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個(gè)特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡(jiǎn)稱(chēng)描述法。

  例如:集合A={x∈R│x2—1=0}的特征是X2—1=0

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

  1、算法的概念:

 、儆苫具\(yùn)算及規(guī)定的運(yùn)算順序所構(gòu)成的完整的解題步驟,或者是按照要求設(shè)計(jì)好的有限的計(jì)算序列,并且這樣的步驟或序列能解決一類(lèi)問(wèn)題。

  ②算法的五個(gè)重要特征:

 、∮懈F性:一個(gè)算法必須保證執(zhí)行有限步后結(jié)束;

 、⒋_切性:算法的每一步必須有確切的定義;

 、?尚行裕核惴ㄔ瓌t上能夠精確地運(yùn)行,而且人們用筆和紙做有限次即可完成;

 、ぽ斎耄阂粋(gè)算法有0個(gè)或多個(gè)輸入,以刻劃運(yùn)算對(duì)象的初始條件。所謂0個(gè)輸入是指算法本身定出了初始條件。

 、ポ敵觯阂粋(gè)算法有1個(gè)或多個(gè)輸出,以反映對(duì)輸入數(shù)據(jù)加工后的結(jié)果。沒(méi)有輸出的算法是毫無(wú)意義的。

  2、程序框圖也叫流程圖,是人們將思考的過(guò)程和工作的順序進(jìn)行分析、整理,用規(guī)定的文字、符號(hào)、圖形的組合加以直觀描述的方法

 。1)程序框圖的基本符號(hào):

 。2)畫(huà)流程圖的基本規(guī)則:

 、偈褂脴(biāo)準(zhǔn)的框圖符號(hào)

 、趶纳系瓜隆淖蟮接

 、坶_(kāi)始符號(hào)只有一個(gè)退出點(diǎn),結(jié)束符號(hào)只有一個(gè)進(jìn)入點(diǎn),判斷符號(hào)允許有多個(gè)退出點(diǎn)

 、芘袛嗫梢允莾煞种ЫY(jié)構(gòu),也可以是多分支結(jié)構(gòu)

 、菡Z(yǔ)言簡(jiǎn)練

  ⑥循環(huán)框可以被替代

  3、三種基本的邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)

  (1)順序結(jié)構(gòu):

  順序結(jié)構(gòu)描述的是是最簡(jiǎn)單的算法結(jié)構(gòu),語(yǔ)句與語(yǔ)句之間,框與框之間是按從上到下的順序進(jìn)行的。

  (2)條件結(jié)構(gòu):分支結(jié)構(gòu)的一般形式

  兩種結(jié)構(gòu)的共性:

 、僖粋(gè)入口,一個(gè)出口。特別注意:一個(gè)判斷框可以有兩個(gè)出口,但一個(gè)條件分支結(jié)構(gòu)只有一個(gè)出口。

 、诮Y(jié)構(gòu)中每個(gè)部分都有可能被執(zhí)行,即對(duì)每一個(gè)框都有從入口進(jìn)、出口出的路徑。

  以上兩點(diǎn)是用來(lái)檢查流程圖是否合理的基本方法(當(dāng)然,學(xué)習(xí)循環(huán)結(jié)構(gòu)后,循環(huán)結(jié)構(gòu)也有此特點(diǎn))

 。3)循環(huán)結(jié)構(gòu)的一般形式:

  在一些算法中,經(jīng)常會(huì)出現(xiàn)從某處開(kāi)始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),反復(fù)執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)。

  循環(huán)結(jié)構(gòu)又稱(chēng)重復(fù)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類(lèi):

 、偃缱笙聢D所示,它的功能是當(dāng)給定的條件成立時(shí),執(zhí)行A框,框執(zhí)行完畢后,再判斷條件是否成立,如果仍然成立,再執(zhí)行A框,如此反復(fù)執(zhí)行框,直到某一次條件不成立為止,此時(shí)不再執(zhí)行A框,從b離開(kāi)循環(huán)結(jié)構(gòu)。

 、谌缬疑蠄D所示,它的功能是先執(zhí)行,然后判斷給定的條件是否成立,如果仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件成立為止,此時(shí)不再執(zhí)行A框,從b點(diǎn)離開(kāi)循環(huán)結(jié)構(gòu)。

  高中數(shù)學(xué)算法初步知識(shí)點(diǎn):算法的基本語(yǔ)句

 。1)賦值語(yǔ)句:在表述一個(gè)算法時(shí),經(jīng)常要引入變量,并賦給該變量一個(gè)值,用來(lái)表明賦給某一個(gè)變量的一個(gè)具體的確定值的語(yǔ)句叫做賦值語(yǔ)句。

  賦值語(yǔ)句的一般格式:變量名表達(dá)式

 、=的意義和作用:賦值語(yǔ)句中的=號(hào),稱(chēng)作賦值號(hào)。

 、谫x值語(yǔ)句的作用:先計(jì)算出賦值號(hào)右邊表達(dá)式的值,然后把該值賦給賦值號(hào)左邊的變量,使該變量的值等于表達(dá)式的值。

 、坳P(guān)于賦值語(yǔ)句,需要注意幾點(diǎn):

  ⅰ賦值號(hào)左邊只能是變量名,而不是表達(dá)式。例如3。6=X,5=y;都是錯(cuò)誤的

 、①x值號(hào)左右不能對(duì)換:賦值語(yǔ)句是將賦值號(hào)右邊的表達(dá)式賦值給賦值號(hào)左邊的變量,例如:Y=X,表示用X的值替代變量Y原先的取值,不能改寫(xiě)成X=Y,因?yàn)楹笳弑硎居肶的值替代變量X的值。

 、2荒芾觅x值語(yǔ)句進(jìn)行代數(shù)式(或符號(hào))的演算:在賦值語(yǔ)句中的賦值符號(hào)右邊的表達(dá)式中的每一個(gè)變量都必須事先賦值給確定的.值,不能用賦值語(yǔ)句進(jìn)行如化簡(jiǎn)、因式分解等演算,在一個(gè)賦值語(yǔ)句中只能給一個(gè)變量賦值,不能出現(xiàn)兩個(gè)或多個(gè)=。

  ⅳ賦值號(hào)和數(shù)學(xué)中的等號(hào)的意義不同:賦值號(hào)左邊的變量如果原來(lái)沒(méi)有值,則在執(zhí)行賦值語(yǔ)句后,獲得一個(gè)值。例如X=5;Y=1等;如果原來(lái)已經(jīng)有值,則執(zhí)行該語(yǔ)句后,以賦值號(hào)右邊表達(dá)式的值代替該變量的原值,即將原值沖掉。例如:N=N+1在數(shù)學(xué)中是不成立的,但在賦值語(yǔ)句中,意思是將N的原值加1再賦給N,即N的值增加1。

  計(jì)算機(jī)執(zhí)行這種形式的條件語(yǔ)句時(shí),也是首先對(duì)IF后的條件進(jìn)行判斷,如果條件符合,就執(zhí)行語(yǔ)句,如果條件不符合,則直接結(jié)束該條件語(yǔ)句,轉(zhuǎn)而執(zhí)行其他語(yǔ)句。其對(duì)應(yīng)的程序框圖為:(如下圖)

  條件語(yǔ)句的作用:在程序執(zhí)行過(guò)程中,根據(jù)判斷是否滿(mǎn)足約定的條件而決定是否需要轉(zhuǎn)換到何處去。需要計(jì)算機(jī)按條件進(jìn)行分析、比較、判斷,并按判斷后的不同情況進(jìn)行不同的處理。

 。3)循環(huán)結(jié)構(gòu):

  算法中的循環(huán)結(jié)構(gòu)是由循環(huán)語(yǔ)句來(lái)實(shí)現(xiàn)的。對(duì)應(yīng)于程序框圖中的兩種循環(huán)結(jié)構(gòu),一般程序設(shè)計(jì)語(yǔ)言中也有當(dāng)型(WHILE型)和直到型(for型)兩種語(yǔ)句結(jié)構(gòu)。即WHILE語(yǔ)句和UNTIL語(yǔ)句。

 、賅HILE語(yǔ)句的一般格式是:

  其中循環(huán)體是由計(jì)算機(jī)反復(fù)執(zhí)行的一組語(yǔ)句構(gòu)成的。WHLIE后面的條件是用于控制計(jì)算機(jī)執(zhí)行循環(huán)體或跳出循環(huán)體的。

  當(dāng)計(jì)算機(jī)遇到WHILE語(yǔ)句時(shí),先判斷條件的真假,如果條件符合,就執(zhí)行WHILE與END之間的循環(huán)體;然后再檢查上述條件,如果條件仍符合,再次執(zhí)行循環(huán)體,這個(gè)過(guò)程反復(fù)進(jìn)行,直到某一次條件不符合為止。這時(shí),計(jì)算機(jī)將不執(zhí)行循環(huán)體,直接跳到END語(yǔ)句后,接著執(zhí)行END之后的語(yǔ)句。其對(duì)應(yīng)的程序結(jié)構(gòu)框圖為:(如下圖)

  其對(duì)應(yīng)的程序結(jié)構(gòu)框圖為:(如上圖)

  從for型循環(huán)結(jié)構(gòu)分析,計(jì)算機(jī)執(zhí)行該語(yǔ)句時(shí),先把初始值賦給循環(huán)變量,記下終值和步長(zhǎng),并比較初值和中止,如果初值超過(guò)終值,就執(zhí)行end以后的語(yǔ)句,否則執(zhí)行for語(yǔ)句下面的語(yǔ)句,執(zhí)行到end語(yǔ)句時(shí),計(jì)算機(jī)讓循環(huán)變量增加一個(gè)步長(zhǎng)值,然后用增值后的循環(huán)變量值與終值比較,如果超過(guò)終值,就執(zhí)行for語(yǔ)句以后的語(yǔ)句。是先執(zhí)行循環(huán)體后進(jìn)行條件判斷的循環(huán)語(yǔ)句。

  高中數(shù)學(xué)算法初步知識(shí)點(diǎn):復(fù)習(xí)點(diǎn)睛

  1、什么是算法:一般地,算法是指在解決問(wèn)題時(shí)按照某種機(jī)械程序步驟一定可以得到結(jié)果的處理過(guò)程。這種程序必須是確定的、有效的、有限的。要了解算法的基本思想、基本結(jié)構(gòu)、程序框圖、基本語(yǔ)句、算法案例等。

  2、四種基本的程序框:

  4、基本算法語(yǔ)句:賦值語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句;

  5、解決分段函數(shù)的求值等問(wèn)題,一般可采用條件結(jié)構(gòu)來(lái)設(shè)計(jì)算法;

  6、對(duì)于有規(guī)律的計(jì)算問(wèn)題,一般可采用循環(huán)結(jié)構(gòu)設(shè)計(jì)算法;

  7、在WHILE語(yǔ)句中,是當(dāng)條件滿(mǎn)足時(shí)執(zhí)行循環(huán)體,而在for語(yǔ)句中,是當(dāng)條件不滿(mǎn)足時(shí)執(zhí)行循環(huán)體

【高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

高中數(shù)學(xué)統(tǒng)計(jì)知識(shí)點(diǎn)總結(jié)10-21

高中數(shù)學(xué)知識(shí)點(diǎn)的總結(jié)03-07

高中數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)總結(jié)04-10

高中數(shù)學(xué)復(fù)數(shù)知識(shí)點(diǎn)總結(jié)05-10

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-15

高中數(shù)學(xué)基本的知識(shí)點(diǎn)總結(jié)05-17

高中數(shù)學(xué)求切線(xiàn)知識(shí)點(diǎn)總結(jié)10-27

高中數(shù)學(xué)必修2知識(shí)點(diǎn)總結(jié)11-22

高中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)總結(jié)11-18

高中數(shù)學(xué)基本的知識(shí)點(diǎn)總結(jié)(合集)05-17