- 相關(guān)推薦
初中數(shù)學(xué)期末復(fù)習(xí)對稱知識點歸納
一、軸對稱與軸對稱圖形:
1.軸對稱:把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱,兩個圖形中的對應(yīng)點叫做對稱點,對應(yīng)線段叫做對稱線段。
2.軸對稱圖形:如果一個圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線就是它的對稱軸。
注意:對稱軸是直線而不是線段
3.軸對稱的性質(zhì):
(1)關(guān)于某條直線對稱的兩個圖形是全等形;
。2)如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線;
。3)兩個圖形關(guān)于某條直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上;
。4)如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。
4.線段垂直平分線:
。1)定義:垂直平分一條線段的直線是這條線的垂直平分線。
。2)性質(zhì):①線段垂直平分線上的點到這條線段兩個端點的距離相等;
、诘揭粭l線段兩個端點距離相等的點,在這條線段的垂直平分線上。
注意:根據(jù)線段垂直平分線的這一特性可以推出:三角形三邊的垂直平分線交于一點,并且這一點到三個頂點的距離相等。
5.角的平分線:
。1)定義:把一個角分成兩個相等的角的射線叫做角的平分線.
。2)性質(zhì):①在角的平分線上的點到這個角的兩邊的距離相等.
、诘揭粋角的兩邊距離相等的點,在這個角的平分線上.
注意:根據(jù)角平分線的性質(zhì),三角形的三個內(nèi)角的平分線交于一點,并且這一點到三條邊的距離相等.
6.等腰三角形的性質(zhì)與判定:
性質(zhì):
。1)對稱性:等腰三角形是軸對稱圖形,等腰三角形底邊上的中線所在的直線是它的對稱軸,或底邊上的高所在的直線是它的對稱軸,或頂角的平分線所在的直線是它的對稱軸;
。2)三線合一:等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合;
(3)等邊對等角:等腰三角形的兩個底角相等。
說明:等腰三角形的性質(zhì)除“三線合一”外,三角形中的主要線段之間也存在著特殊的性質(zhì),如:①等腰三角形兩底角的平分線相等;②等腰三角形兩腰上的中線相等;
③等腰三角形兩腰上的高相等;④等腰三角形底邊上的中點到兩腰的距離相等。
判定定理:如果一個三角形的兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。
7.等邊三角形的性質(zhì)與判定:
性質(zhì):(1)等邊三角形的三個角都相等,并且每個角都等于60°;
(2)等邊三角形具有等腰三角形的所有性質(zhì),并且在每條邊上都有“三線合一”。因此等邊三角形是軸對稱圖形,它有三條對稱軸,而等腰三角形(非等邊三角形)只有一條對稱軸。
判定定理:有一個角是60°的等腰三角形是等邊三角形。
說明:等邊三角形是一種特殊的三角形,容易知道等邊三角形的三條高(或三條中線、三條角平分線)都相等。
二、中心對稱與中心對稱圖形:
1.中心對稱:把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果它能夠和另外一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱,這個點叫做對稱中心,這兩個圖形中的對應(yīng)點叫做關(guān)于中心的對稱點。
2.中心對稱圖形:在平面內(nèi),一個圖形繞某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。
3.中心對稱的性質(zhì):(1)關(guān)于中心對稱的兩個圖形是全等形;
。2)在成中心對稱的兩個圖形中,連接對稱點的線段都經(jīng)過對稱中心,并且被對稱中心平分;
。3)成中心對稱的兩個圖形,對應(yīng)線段平行(或在同一直線上)且相等。
三、軸對稱與中心對稱的區(qū)別與聯(lián)系:
軸對稱中心對稱
有一條對稱軸——直線有一個對稱中心——點
圖形沿對稱軸對折(翻折180o)后重合圖形繞對稱中心旋轉(zhuǎn)180o后重合
對稱點的連線被對稱軸垂直平分對稱點連線經(jīng)過對稱中心,且被對稱中心平分
四、幾種常見的軸對稱圖形和中心對稱圖形:
軸對稱圖形:線段、角、等腰三角形、等邊三角形、菱形、矩形、正方形、等腰梯形、圓
對稱軸的條數(shù):角有一條對稱軸,即該角的角平分線;等腰三角形有一條對稱軸,是底邊的垂直平分線;等邊三角形有三條對稱軸,分別是三邊上的垂直平分線;菱形有兩條對稱軸,分別是兩條對角線所在的直線,矩形有兩條對稱軸分別是兩組對邊中點的直線;
中心對稱圖形:線段、平行四邊形、菱形、矩形、正方形、圓
對稱中心:線段的對稱中心是線段的中點;平行四邊形、菱形、矩形、正方形的對稱中心是對角線的交點,圓的對稱中心是圓心。
說明:線段、菱形、矩形、正方形以及圓它們即是軸對稱圖形又是中心對稱圖形。
五、坐標(biāo)系中的軸對稱變換與中心對稱變換:
點P(x,y)關(guān)于x軸對稱的點P1的坐標(biāo)為(x,-y),關(guān)于y軸對稱的點P2的坐標(biāo)為(-x,y)。關(guān)于原點對稱的點的坐標(biāo)P3的坐標(biāo)是(-x,-y)這個規(guī)律也可以記為:關(guān)于y軸(x軸)對稱的點的縱坐標(biāo)(橫坐標(biāo))相同,橫坐標(biāo)(縱坐標(biāo))互為相反數(shù)。關(guān)于原點成中心對稱的點的,橫坐標(biāo)為原橫坐標(biāo)的相反數(shù),縱坐標(biāo)為原縱坐標(biāo)的相反數(shù),即橫坐標(biāo)、縱坐標(biāo)同乘以-1。
常見考法
(1)判別某些圖形是不是軸對稱圖形能找出對稱軸,對稱軸的條數(shù)、判別某些圖形是中心對稱圖形能找到對稱中心;(2)利用垂直平分線性質(zhì)、角平分線性質(zhì)證明一些結(jié)論;(3)利用等腰三角形三線合一性質(zhì)證明線段相等、線段垂直;(4)直接證明某一個三角形是等腰三角形;(4)軸對稱圖形的實際應(yīng)用(如鏡子中的軸對稱問題、解決一些折疊問題、還有求幾個線段之和最短問題)。
誤區(qū)提醒
。1)把軸對稱與軸對稱圖形的概念、中心對稱與中心對稱圖形的概念混淆;(2)把軸對稱與全等混淆;(3)找軸對稱圖形的對稱軸不全、不準(zhǔn);(4)在解有關(guān)等腰三角形問題時,沒有進行分類討論,造成漏解。
【初中數(shù)學(xué)期末復(fù)習(xí)對稱知識點歸納】相關(guān)文章:
初中數(shù)學(xué)知識點歸納.07-30
初中數(shù)學(xué)知識點歸納總結(jié)12-02
初中數(shù)學(xué)垂線的性質(zhì)知識點歸納04-07