《三角形內(nèi)角和》說課稿范文通用
作為一名老師,總不可避免地需要編寫說課稿,認真擬定說課稿,我們應(yīng)該怎么寫說課稿呢?下面是小編為大家收集的《三角形內(nèi)角和》說課稿范文通用,僅供參考,歡迎大家閱讀。
大家好!
今天我說課的內(nèi)容是人教版義務(wù)教育課程標準實驗教材數(shù)學四年級下冊85頁內(nèi)容《三角形的內(nèi)角和》。
一、教材分析
新課標把三角形的內(nèi)角和作為第二學段中三角形的一個重要組成部分。本課是安排在三角形的特性及分類之后進行的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎(chǔ)。教材所呈現(xiàn)的內(nèi)容,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,安排了量一量、算一算和剪一剪、拼一拼兩個實驗操作活動,意圖使學生在動手操作、合作交流中發(fā)現(xiàn)并形成結(jié)論。
二、學情分析
。薄⑼ㄟ^前面的學習,學生已經(jīng)掌握了三角形的一些基礎(chǔ)知識,會用工具量角、畫角,具備了探索三角形內(nèi)角和的知識與技能基礎(chǔ)。
2、學生的生活經(jīng)驗是可利用的教學資源。我在課前了解到,已經(jīng)有不少學生知道了三角形內(nèi)角和是180度,但卻不知道怎樣才能得出這個結(jié)論,因此學生在這節(jié)課上的主要目標是驗證三角形的內(nèi)角和是180度。
三、教學目標
基于以上對教材的分析以及對學生情況的思考,我從知識與技能,過程與方法,情感態(tài)度價值觀三方面擬定了本節(jié)課的教學目標:
1、通過"量一量","算一算","拼一拼","折一折"的方法,讓學生推理歸納出三角形內(nèi)角和是180°,并能應(yīng)用這一知識解決一些簡單問題。
2、通過把三角形的內(nèi)角和轉(zhuǎn)化為平角進行探究實驗,滲透"轉(zhuǎn)化"的數(shù)學思想。
3、通過數(shù)學活動使學生獲得成功的體驗,增強自信心,培養(yǎng)學生的創(chuàng)新意識,探索精神和實踐能力。
教學重難點:理解并掌握三角形的內(nèi)角和是180度這一結(jié)論。
四、教學準備:
教具:多媒體課件,學具:各類三角形、長方形、量角器、活動記錄表等。
五、教法和學法
“三角形的內(nèi)角和”一課,知識與技能目標并不難,但我認為本節(jié)課更重要的是通過自主探索與合作交流使學生經(jīng)歷知識的形成過程,領(lǐng)悟轉(zhuǎn)化思想在解決問題中的應(yīng)用,以及在探索過程中,培養(yǎng)學生實事求是、敢于質(zhì)疑的科學態(tài)度,同時,在不同方法的交流中,開拓思維、提升能力;谝陨侠砟睿竟(jié)課,我準備引導學生采用自主探究、動手操作、猜想驗證、合作交流的學習方法,并在教學過程中談話激疑,引導探究;組織討論,適時地啟發(fā)幫助。使教法和學法和諧統(tǒng)一在“以學生的發(fā)展為本”這一教育目標之中。
六、教學過程
本節(jié)課,我遵循“學生主動和教師指導相統(tǒng)一,問題主線和活動主軸相統(tǒng)一”的原則,制定了以下教學程序:
。ㄒ唬﹦(chuàng)設(shè)情境,激發(fā)興趣
“興趣是最好的老師”。開課伊始我利用課件動態(tài)演示一只蝴蝶在把一條繩子圍成不同的三角形。讓學生觀察在圍的過程中,什么變了?什么沒變?讓學生在變與不變的觀察與對比中,激發(fā)學生的學習興趣,引出本節(jié)課的學習內(nèi)容(板書:三角形的內(nèi)角和),為后面的探索奠定基礎(chǔ)。
【設(shè)計意圖:以問題情境為出發(fā)點,既豐富了學生的感官認識,又激發(fā)了學生的學習熱情!
(二)動手操作,探索新知
本環(huán)節(jié)是學生獲取知識、提高能力的一個重要過程。我有目的、有意識的引導學生主動參與實踐活動、經(jīng)歷知識的形成過程。
1、揭示“內(nèi)角”和“內(nèi)角和”的概念
明確“內(nèi)角”和“內(nèi)角和”的概念是學生進一步探究內(nèi)角和度數(shù)的前提,本環(huán)節(jié)首先請學生都拿出一個三角形,指一指三個內(nèi)角,然后讓學生談?wù)勛约簩?nèi)角和的理解,在大家交流的基礎(chǔ)上得出:三角形的內(nèi)角和就是三個內(nèi)角的度數(shù)之和。
2、猜測內(nèi)角和
牛頓曾說:“沒有大膽的猜想,就沒有偉大的發(fā)現(xiàn)!”所以我放手讓學生猜測三角形內(nèi)角和的度數(shù),由于絕大多數(shù)學生有課外知識的積累,不難說出三角形的內(nèi)角和是180度,但猜想并不等于結(jié)論,三角形的內(nèi)角和到底是不是180度?還要進一步的驗證。猜想——驗證是學生探究數(shù)學的有效途徑。
3、動手驗證,匯報交流
。1)介紹學具筐
由教師介紹學具筐中都有什么學習材料。
(2)生獨立思考、動手操作
因為合作交流應(yīng)建立在獨立思考的基礎(chǔ)上,所以先讓學生獨立思考:打算選用什么材料,怎樣來驗證三角形的內(nèi)角和是不是180°。然后再讓學生把想法付諸實踐。此環(huán)節(jié)會留給學生充分的思考、操作、發(fā)現(xiàn)的時間,讓學生在探索中找到證明的切入點,體驗成功。在這期間,教師走下講臺,參與學生的活動,與學生一起尋找驗證的方法,對有困難的學生提供幫助,不放棄任何一個學生。
。3)組內(nèi)交流
經(jīng)過獨立思考和動手操作,每人都有了自己的驗證方法,先在小組內(nèi)交流各自的驗證方法。
(4)全班匯報交流。
在足夠的交流之后,開始進入全班匯報展示過程,達到智慧共享的目的。學生可能會出現(xiàn)以下幾種方法:
A、測量方法
活動記錄表
三角形的形狀每個內(nèi)角的度數(shù)三個內(nèi)角和
∠1∠2∠3
這個驗證方法應(yīng)是大多數(shù)學生都能想到的,在交流匯報結(jié)果時會發(fā)現(xiàn)答案不統(tǒng)一,可能會出現(xiàn)大于180度、等于180度或小于180度不同的結(jié)果。此時學生會在心中產(chǎn)生更大的疑惑,“三角形的內(nèi)角和到底是多少度?誰的答案正確呢?”在這里教師要抓住契機,肯定學生實事求是的態(tài)度和質(zhì)疑的精神,把這一問題拋給學生,再次激起學生的探究熱情,強烈的求知欲和好勝心讓學生躍躍欲試,讓學生充分發(fā)表觀點,最終使學生認識到測量法會有誤差,看來僅用一種測量的方法來驗證只能得到三角形的內(nèi)角和在180°左右,到底是不是180°,疑問依然存在,說服力還不夠,此時我順水推舟,讓用不同驗證方法的學生上臺匯報展示。
B、撕拼法
我認為數(shù)學課不僅是解決數(shù)學問題,更重要的是思維方式的點撥,使數(shù)學思想的種子播種在學生的頭腦中。本環(huán)節(jié)主要想實現(xiàn)向?qū)W生滲透“轉(zhuǎn)化”的數(shù)學思想的教學目標。四年級學生在以往的數(shù)學學習過程中都積累了不少“轉(zhuǎn)化”的體驗,但這種體驗基本上處于無意識的狀態(tài),只有合理呈現(xiàn)學習素材,才能使學生對轉(zhuǎn)化策略形成清晰的認識。所以我請用撕拼法的同學上臺展示撕拼的過程,學生可能會撕拼不同類型的三角形,如:
此時教師適時追問:你是怎么想到把三個內(nèi)角撕下來拼成一個平角來驗證的呢?因為平角是180度,三角形的三個內(nèi)角拼在一起正好形成了一個平角,所以三角形的內(nèi)角和就是180度。教師可及時評價點撥:“你們把本不在一起的三個角,通過移動位置,把它轉(zhuǎn)化成一個平角來驗證,運用了轉(zhuǎn)化策略,真了不起。”從而使學生清晰的感受到數(shù)學學習就是把新知轉(zhuǎn)化成舊知的過程。
C、其它方法
除了以上兩種驗證方法外,學生可能還會出現(xiàn)不同的驗證方法,比如折一折的方法,把三個完全相同的三角形用不同的三個內(nèi)角拼成一個平角來驗證的方法,例圖:
如果學生出現(xiàn)用長方形剪成兩個完全相同的直角三角形或把兩個完全相同的直角三角形拼成長方形來驗證的方法,例圖:
教師可追問:“這種方法只能證明哪一類的三角形呢?”使學生明白,這種驗證方法有局限性,只能證明直角三角形的內(nèi)角和是180°。然后教師引導學生歸納出這些不同方法都有異曲同工之妙,就是都運用了轉(zhuǎn)化的策略,讓學生在不知不覺中進一步感悟轉(zhuǎn)化在數(shù)學學習中的重要作用。通過各種方法的展示交流,學生對三角形內(nèi)角和是不是180度的疑問已經(jīng)消除,所以可以把“?”改成“!
【設(shè)計意圖:《標準》指出:“教師應(yīng)激發(fā)學生的積極性,向?qū)W生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動經(jīng)驗!痹诮虒W設(shè)計中我注意體現(xiàn)這一理念,允許學生根據(jù)已有的知識經(jīng)驗進行猜測,在猜測后先獨立思考驗證的方法,再進行小組交流。給學生充分的活動時間和空間,讓學生動手操作,使學生在量、剪、拼、折等一系列實驗活動中理解和掌握三角形內(nèi)角和是180°這個圖形性質(zhì)。在探索活動中,使學生學會與他人合作,同時也使學生學到了怎樣由已知探索未知的思維方式與方法,培養(yǎng)他們主動探索的精神,讓學生在活動中學習,在活動中發(fā)展。】
4、科學驗證方法
數(shù)學是一門嚴謹?shù)膶W科,數(shù)學結(jié)論的得出必須經(jīng)過嚴格的證明。那如何科學地驗證三角形內(nèi)角和是不是180°呢?用課件動態(tài)演示科學家的驗證方法。
【設(shè)計意圖:一方面使學生為自己猜想的結(jié)論能被證明而產(chǎn)生滿足感;另一方面使學生體會到數(shù)學是嚴謹?shù),從小就?yīng)該讓學生養(yǎng)成嚴謹、認真、實事求是的學習態(tài)度!
。ㄈ┱n外拓展,積淀文化
為了使學生在獲得數(shù)學知識的同時積淀數(shù)學文化,用課件介紹最早發(fā)現(xiàn)三角形內(nèi)角和秘密的法國科學家帕斯卡(課件)讓學生交流:聽了這個故事,你想說什么?在學生交流的基礎(chǔ)上,教師抓住契機,及時鼓勵學生:這節(jié)課才10歲的我們利用自己的智慧發(fā)現(xiàn)了帕斯卡12歲時數(shù)學發(fā)現(xiàn),我們同樣了不起,劉老師為大家感到驕傲。ò鍟海。┻@個感嘆號不僅表示教師對學生的贊嘆,更是學生對自我的一種肯定,獲得成功的自豪感。
【設(shè)計意圖:適當?shù)囊胝n外知識,它既可以激發(fā)學生的學習興趣,又有機的滲透了向帕斯卡學習,做一個善于思考、善于發(fā)現(xiàn)的孩子,對學生的情感、態(tài)度、價值觀的形成與發(fā)展能起到了潛移默化的作用!
。ㄋ模⿷(yīng)用新知,解決問題
數(shù)學規(guī)律的形成與深化,不僅靠感知,還要輔以靈活、有趣、有層次的課堂訓練,以達到練習的有效性。對此,我設(shè)計了三個層次的練習:
1、把兩個小三角形拼成一起,大三形的內(nèi)角和是多少度?為什么?
【設(shè)計意圖:通過兩個三角形分與合的過程,讓學生進一步理解三角形內(nèi)角和等于180度這個結(jié)論,認識到三角形的內(nèi)角和不因三角形的大小而改變!
2、想一想,做一做
在一個三角形ABC中,已知∠A═45°,∠B═85,求∠с的度數(shù)。
在一個直角三角形中,已知∠с═52,求∠A的度數(shù)。
爸爸給小紅買了一個等腰三角形的風箏。它的一個底角是70°,它的頂角是多少度?
【設(shè)計意圖:將三角形內(nèi)角和知識與三角形特征結(jié)合起來,引導學生綜合運用內(nèi)角和知識和直角三角形、等腰三角形等圖形特征求三角形內(nèi)角的度數(shù)!
3、思考:
你能畫出一個有兩個直角或兩個鈍角的三角形嗎?為什么?
【設(shè)計意圖:將三角形內(nèi)角和知識與三角形的分類知識結(jié)合起來,引導學生運用三角形內(nèi)角和的知識去解釋直角三角形、鈍角三角形中角的特征,較好地溝通了知識之間的聯(lián)系。】
。ㄎ澹┤n小結(jié),完善新知
你在這堂課中有什么收獲?
【設(shè)計意圖:這樣用談話的方式進行總結(jié),不僅總結(jié)了所學知識技能,還體現(xiàn)了學法的指導,增強了情感體驗!
板書設(shè)計:
三角形的內(nèi)角和180°
三角形的形狀每個內(nèi)角的度數(shù)三個內(nèi)角和
∠1∠2∠3
總之,本節(jié)課我力圖引導學生通過自主探究、合作交流,讓學生充分經(jīng)歷一個知識的學習過程,讓學生學會數(shù)學、會學數(shù)學、愛學數(shù)學。在教學中,隨時會生成一些新教學資源,課堂的生成一定大于課前預設(shè),我將及時調(diào)整我的預案,以達到最佳的教學效果。
教學特色:
本節(jié)課我努力體現(xiàn)以下2個教學特色:
1、引導學生自主探索,激發(fā)學生的學習興趣,體現(xiàn)以學生的發(fā)展為本的教學理念。
2、強化學生探究學習的心理體驗,把數(shù)學學習和情感態(tài)度的發(fā)展有機的結(jié)合起來。
【《三角形內(nèi)角和》說課稿】相關(guān)文章:
《三角形的內(nèi)角和》說課稿05-21
三角形的內(nèi)角和說課稿05-22
三角形內(nèi)角和說課稿06-27
《三角形內(nèi)角和》說課稿07-12
三角形內(nèi)角和說課稿12-01
三角形的內(nèi)角和說課稿02-09
《三角形內(nèi)角和》說課稿01-06
三角形內(nèi)角和說課稿15篇07-13