當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 《勾股定理應(yīng)用》教案

《勾股定理應(yīng)用》教案

時(shí)間:2022-08-28 10:29:42 教案 我要投稿

《勾股定理應(yīng)用》教案

  作為一位兢兢業(yè)業(yè)的人民教師,常常要根據(jù)教學(xué)需要編寫教案,編寫教案有利于我們科學(xué)、合理地支配課堂時(shí)間。我們應(yīng)該怎么寫教案呢?以下是小編精心整理的《勾股定理應(yīng)用》教案,歡迎閱讀,希望大家能夠喜歡。

《勾股定理應(yīng)用》教案

《勾股定理應(yīng)用》教案1

  一、學(xué)生知識(shí)狀況分析

  本節(jié)將利用勾股定理及其逆定理解決一些具體的實(shí)際問題,其中需要學(xué)生了解空間圖形、對(duì)一些空間圖形進(jìn)行展開、折疊等活動(dòng)。學(xué)生在學(xué)習(xí)七年級(jí)上第一章時(shí)對(duì)生活中的立體圖形已經(jīng)有了一定的認(rèn)識(shí),并從事過相應(yīng)的實(shí)踐活動(dòng),因而學(xué)生已經(jīng)具備解決本課問題所需的知識(shí)基礎(chǔ)和活動(dòng)經(jīng)驗(yàn)基礎(chǔ)。

  二、教學(xué)任務(wù)分析

  本節(jié)是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實(shí)驗(yàn)教科書八年級(jí)(上)第一章《勾股定理》第3節(jié)。具體內(nèi)容是運(yùn)用勾股定理及其逆定理解決簡單的實(shí)際問題。當(dāng)然,在這些具體問題的解決過程中,需要經(jīng)歷幾何圖形的抽象過程,需要借助觀察、操作等實(shí)踐活動(dòng),這些都有助于發(fā)展學(xué)生的分析問題、解決問題能力和應(yīng)用意識(shí);一些探究活動(dòng)具體一定的難度,需要學(xué)生相互間的合作交流,有助于發(fā)展學(xué)生合作交流的.能力。

  三、本節(jié)課的教學(xué)目標(biāo)是:

  1.通過觀察圖形,探索圖形間的關(guān)系,發(fā)展學(xué)生的空間觀念.

  2.在將實(shí)際問題抽象成數(shù)學(xué)問題的過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想.

  3.在利用勾股定理解決實(shí)際問題的過程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性.

  利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問題是本節(jié)課的重點(diǎn)也是難點(diǎn).

  四、教法學(xué)法

  1.教學(xué)方法

  引導(dǎo)—探究—?dú)w納

  本節(jié)課的教學(xué)對(duì)象是初二學(xué)生,他們的參與意識(shí)教強(qiáng),思維活躍,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求以下三個(gè)方面對(duì)學(xué)生進(jìn)行引導(dǎo):

  (1)從創(chuàng)設(shè)問題情景入手,通過知識(shí)再現(xiàn),孕育教學(xué)過程;

  (2)從學(xué)生活動(dòng)出發(fā),順勢教學(xué)過程;

  (3)利用探索研究手段,通過思維深入,領(lǐng)悟教學(xué)過程.

  2.課前準(zhǔn)備

  教具:教材、電腦、多媒體課件.

  學(xué)具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習(xí)本、文具.

  五、教學(xué)過程分析

  本節(jié)課設(shè)計(jì)了七個(gè)環(huán)節(jié).第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):做一做;第四環(huán)節(jié):小試牛刀;第五環(huán)節(jié):舉一反三;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè).

  1.3勾股定理的應(yīng)用:課后練習(xí)

  一、問題引入:

  1、勾股定理:直角三角形兩直角邊的________等于________。如果用a,b和c表示直角三角形的兩直角邊和斜邊,那么________。

  2、勾股定理逆定理:如果三角形三邊長a,b,c滿足________,那么這個(gè)三角形是直角三角形

  1.3勾股定理的應(yīng)用:同步檢測

  1.為迎接新年的到來,同學(xué)們做了許多拉花布置教室,準(zhǔn)備召開新年晚會(huì),小劉搬來一架高2.5米的木梯,準(zhǔn)備把拉花掛到2.4米高的墻上,則梯腳與墻角距離應(yīng)為( )

  A.0.7米B.0.8米C.0.9米D.1.0米

  2.小華和小剛兄弟兩個(gè)同時(shí)從家去同一所學(xué)校上學(xué),速度都是每分鐘走50米.小華從家到學(xué)校走直線用了10分鐘,而小剛從家出發(fā)先去找小明再到學(xué)校(均走直線),小剛到小明家用了6分鐘,小明家到學(xué)校用了8分鐘,小剛上學(xué)走了個(gè)( )

  A.銳角彎B.鈍角彎C.直角彎D.不能確定

  3.如圖,是一個(gè)圓柱形飲料罐,底面半徑是5,高是12,上底面中心有一個(gè)小圓孔,則一條到達(dá)底部的直吸管在罐內(nèi)部分a的長度(罐壁的厚度和小圓孔的大小忽略不計(jì))范圍是( )

  A.5≤a≤12 B.5≤a≤13 C.12≤a≤13 D.12≤a≤15

  4.一個(gè)木工師傅測量了一個(gè)等腰三角形木板的腰、底邊和高的長,但他把這三個(gè)數(shù)據(jù)與其它的數(shù)據(jù)弄混了,請(qǐng)你幫助他找出來,是第( )組.

  A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,4

《勾股定理應(yīng)用》教案2

 一、利用勾股定理進(jìn)行計(jì)算

  1.求面積

  例1:如圖1,在等腰△ABC中,腰長AB=10cm,底BC=16cm,試求這個(gè)三角形面積。

  析解:若能求出這個(gè)等腰三角形底邊上的高,就可以求出這個(gè)三角形面積。而由等腰三角形"三線合一"性質(zhì),可聯(lián)想作底邊上的高AD,此時(shí)D也為底邊的中點(diǎn),這樣在Rt△ABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以這個(gè)三角形面積為×BC×AD=×16×6=48cm2。

  2.求邊長

  例2:如圖2,在△ABC中,∠C=135?,BC=,AC=2,試求AB的長。

  析解:題中沒有直角三角形,不能直接用勾股定理,可考慮過點(diǎn)B作BD⊥AC,交AC的延長線于D點(diǎn),構(gòu)成Rt△CBD和Rt△ABD。在Rt△CBD中,因?yàn)椤螦CB=135?,所以∠BCB=45?,所以BD=CD,由BC=,根據(jù)勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在Rt△ABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。

  點(diǎn)評(píng):這兩道題有一個(gè)共同的特征,都沒有現(xiàn)成的直角三角形,都是通過添加適當(dāng)?shù)妮o助線,巧妙構(gòu)造直角三角形,借助勾股定理來解決問題的,這種解決問題的方法里蘊(yùn)含著數(shù)學(xué)中很重要的轉(zhuǎn)化思想,請(qǐng)同學(xué)們要留心。

  二、利用勾股定理的逆定理判斷直角三角形

  例3:已知a,b,c為△ABC的三邊長,且滿足a2+b2+c2+338=10a+24b+26c。試判斷△ABC的形狀。

  析解:由于所給條件是關(guān)于a,b,c的.一個(gè)等式,要判斷△ABC的形狀,設(shè)法求出式中的a,b,c的值或找出它們之間的關(guān)系(相等與否)等,因此考慮利用因式分解將所給式子進(jìn)行變形。因?yàn)閍2+b2+c2+338=10a+24b+26c,所以a2-10a+b2-24b+c2-26c+338=0,所以a2-10a+25+b2-24b+144+c2-26c+169=0,所以(a-5)2+(b-12)2+(c-13)2=0。因?yàn)?a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因?yàn)?2+122=132,所以a2+b2=c2,即△ABC是直角三角形。

  點(diǎn)評(píng):用代數(shù)方法來研究幾何問題是勾股定理的逆定理的"數(shù)形結(jié)合思想"的重要體現(xiàn)。

  三、利用勾股定理說明線段平方和、差之間的關(guān)系

  例4:如圖3,在△ABC中,∠C=90?,D是AC的中點(diǎn),DE⊥AB于E點(diǎn),試說明:BC2=BE2-AE2。

  析解:由于要說明的是線段平方差問題,故可考慮利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可連結(jié)BD來解決。因?yàn)椤螩=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2=DE2+AE2。又D是AC的中點(diǎn),所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2-AE2。

  點(diǎn)評(píng):若所給題目的已知或結(jié)論中含有線段的平方和或平方差關(guān)系時(shí),則可考慮構(gòu)造直角三角形,利用勾股定理來解決問題。

《勾股定理應(yīng)用》教案3

  教學(xué)課題:

  勾股定理的應(yīng)用

  教學(xué)時(shí)間(日期、課時(shí)):

  教材分析:

  學(xué)情分析:

  教學(xué)目標(biāo):

  能運(yùn)用勾股定理及直角三角形的判定條件解決實(shí)際問題.

  在運(yùn)用勾股定理解決實(shí)際問題的過程中,感受數(shù)學(xué)的“轉(zhuǎn)化” 思想(把解斜三角形問題轉(zhuǎn)化為解直角三角形的問題),進(jìn)一步發(fā)展有條理思考和有條理表達(dá)的能力,體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值.

  教學(xué)準(zhǔn)備

  《數(shù)學(xué)學(xué)與練》

  集體備課意見和主要參考資料

  頁邊批注

  教學(xué)過程

  一.新課導(dǎo)入

  本課時(shí)的教學(xué)內(nèi)容是勾股定理在實(shí)際中的應(yīng)用。除課本提供的情境外,教學(xué)中可以根據(jù)實(shí)際情況另行設(shè)計(jì)一些具體情境,也利用課本提供的素材組織數(shù)學(xué)活動(dòng)。比如,把課本例2改編為開放式的問題情境:

  一架長為10m的梯子斜靠在墻上,梯子的頂端距地面的垂直距離為8m.如果梯子的頂端下滑0.5m,你認(rèn)為梯子的底端會(huì)發(fā)生什么變化?與同學(xué)交流.

  創(chuàng)設(shè)學(xué)生身邊的問題情境,為每一個(gè)學(xué)生提供探索的空間,有利于發(fā)揮學(xué)生的主體性;這樣的問題學(xué)生常常會(huì)從自己的生活經(jīng)驗(yàn)出發(fā),產(chǎn)生不同的思考方法和結(jié)論(教學(xué)中學(xué)生可能的結(jié)論有:

  底端也滑動(dòng)0.5m;如果梯子的頂端滑到地面上,梯子的頂端則滑動(dòng)8m,估計(jì)梯子底端的滑動(dòng)小于8m,所以梯子的頂端下滑0.5m,它的底端的滑動(dòng)小于0.5m;構(gòu)造直角三角形,運(yùn)用勾股定理計(jì)算梯子滑動(dòng)前、后底端到墻的垂直距離的差,得出梯子底端滑動(dòng)約0.61m的結(jié)論等)。

  通過與同學(xué)交流,完善各自的想法,有利于學(xué)生主動(dòng)地把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,從中感受用數(shù)學(xué)的眼光審視客觀世界的樂趣.

  二.新課講授

  問題一在上面的情境中,如果梯子的頂端下滑1m,那么梯子的底端滑動(dòng)多少米?

  組織學(xué)生嘗試用勾股定理解決問題,對(duì)有困難的學(xué)生教師給予及時(shí)的幫助和指導(dǎo).

  問題二從上面所獲得的信息中,你對(duì)梯子下滑的變化過程有進(jìn)一步的'思考嗎?與同學(xué)交流.

  設(shè)計(jì)問題二促使學(xué)生能主動(dòng)積極地從數(shù)學(xué)的角度思考實(shí)際問題.教學(xué)中學(xué)生可能會(huì)有多種思考.比如,

 、龠@個(gè)變化過程中,梯子底端滑動(dòng)的距離總比頂端下滑的距離大;

 、谝?yàn)樘葑禹敹讼禄降孛鏁r(shí),頂端下滑了8m,而底端只滑動(dòng)4m,所以這個(gè)變化過程中,梯子底端滑動(dòng)的距離不一定比頂端下滑的距離大;

 、塾晒垂蓴(shù)可知,當(dāng)梯子頂端下滑到離地面的垂直距離為6m,即頂端下滑2m時(shí),底端到墻的垂直距離是8m,即底端電滑動(dòng)2m等。

  教學(xué)中不要把尋找規(guī)律作為這個(gè)探索活動(dòng)的目標(biāo),應(yīng)讓學(xué)生進(jìn)行充分的交流,使學(xué)生逐步學(xué)會(huì)運(yùn)用數(shù)學(xué)的眼光去審視客觀世界,從不同的角度去思考問題,獲得一些研究問題的經(jīng)驗(yàn)和方法.

  3.例題教學(xué)

  課本的例1是勾股定理的簡單應(yīng)用,教學(xué)中可根據(jù)教學(xué)的實(shí)際情況補(bǔ)充一些實(shí)際應(yīng)用問題,把課本習(xí)題2.7第4題作為補(bǔ)充例題.通過這個(gè)問題的討論,把“32+b2=c2”看作一個(gè)方程,設(shè)折斷處離地面x尺,依據(jù)問題給出的條件就把它轉(zhuǎn)化為熟悉的會(huì)解的一元二次方程32+x2=(10—x)2,從中可以讓學(xué)生感受數(shù)學(xué)的“轉(zhuǎn)化”思想,進(jìn)一步了解勾股定理的悠久歷史和我國古代人民的聰明才智.

  三.鞏固練習(xí)

  1.甲、乙兩人同時(shí)從同一地點(diǎn)出發(fā),甲往東走了4km,乙往南走了6km,這時(shí)甲、乙兩人相距__________km.

  2.如圖,一圓柱高8cm,底面半徑2cm,一只螞蟻從點(diǎn)A爬到點(diǎn)B處吃食,要爬行的最短路程(取3)是().

 。ˋ)20cm(B)10cm(C)14cm(D)無法確定

  3.如圖,一塊草坪的形狀為四邊形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m.求這塊草坪的面積.

  四.小結(jié)

  我們知道勾股定理揭示了直角三角形的三邊之間的數(shù)量關(guān)系,已知直角三角形中的任意兩邊就可以依據(jù)勾股定理求出第三邊.從應(yīng)用勾股定理解決實(shí)際問題中,我們進(jìn)一步認(rèn)識(shí)到把直角三角形中三邊關(guān)系“a2+b2=c2”看成一個(gè)方程,只要依據(jù)問題的條件把它轉(zhuǎn)化為我們會(huì)解的方程,就把解實(shí)際問題轉(zhuǎn)化為解方程.

《勾股定理應(yīng)用》教案4

  【學(xué)習(xí)目標(biāo)】

  能運(yùn)用勾股定理及直角三角形的判別條件解決簡單的實(shí)際問題.

  【學(xué)習(xí)重點(diǎn)】

  勾股定理及直角三角形的判別條件的運(yùn)用.

  【學(xué)習(xí)重點(diǎn)】

  直角三角形模型的建立.

  【學(xué)習(xí)過程】

  一.課前復(fù)習(xí)

  勾股定理及勾股定理逆定理的區(qū)別

  二.新課學(xué)習(xí)

  探究點(diǎn)一:螞蟻沿圓柱側(cè)面爬行的最短路徑問題

  1.3如圖,有一個(gè)圓柱,它的高等于12cm,底面圓的周長是18cm.在圓柱下底面的A點(diǎn)有一只螞蟻,它想吃到上底面上與A點(diǎn)相對(duì)的B點(diǎn)處的食物,沿圓柱側(cè)面爬行的最短路程是多少?

  思考:

  1.利用學(xué)具,嘗試從A點(diǎn)到B點(diǎn)沿圓柱側(cè)面畫出幾條線路,你認(rèn)為

  這樣的線路有幾條?可分為幾類?

  2.將右圖的圓柱側(cè)面剪開展開成一個(gè)長方形,B點(diǎn)在什么位置?從

  A點(diǎn)到B點(diǎn)的最短路線是什么?你是如何畫的?

  1.33.螞蟻從A點(diǎn)出發(fā),想吃到B點(diǎn)上的.食物,它沿圓柱側(cè)面爬行的最短路程是多少?你是如何解答這個(gè)問題的?畫出圖形,寫出解答過程。

  4.你是如何將這個(gè)實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的?

  小結(jié):

  你是如何解決圓柱體側(cè)面上兩點(diǎn)之間的最短距離問題的?

  探究點(diǎn)二:利用勾股定理逆定理如何判斷兩線垂直?

  1.31.31.3李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直底邊AB,

  但他隨身只帶了卷尺。(參看P13頁雕塑圖1-13)

  (1)你能替他想辦法完成任務(wù)嗎?

  1.31.3(2)李叔叔量得AD的長是30cm,AB的長是40cm,

  BD長是50cm.AD邊垂直于AB邊嗎?你是如何解決這個(gè)問題的?

  (3)小明隨身只有一個(gè)長度為20cm的刻度尺,他能有辦法檢驗(yàn)AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?

  小結(jié):通過本道例題的探索,判斷兩線垂直,你學(xué)會(huì)了什么方法?

  探究點(diǎn)三:利用勾股定理的方程思想在實(shí)際問題中的應(yīng)用

  例圖1-14是一個(gè)滑梯示意圖,若將滑道AC水平放置,則剛好與AB一樣長.已知滑梯的高度CE=3m,CD=1m,試求滑道AC的長.

  1.3

  思考:

  1.求滑道AC的長的問題可以轉(zhuǎn)化為什么數(shù)學(xué)問題?

  2.你是如何解決這個(gè)問題的?寫出解答過程。

  小結(jié):

  方程思想是勾股定理中的重要思想,勾股定理反應(yīng)的直角三角形三邊的關(guān)系正是構(gòu)建方程的基礎(chǔ).

  四.課堂小結(jié):本節(jié)課你學(xué)到了什么?

  三.新知應(yīng)用

  1.如圖,臺(tái)階A處的螞蟻要爬到B處搬運(yùn)食物,它怎么走最近?并求出最近距離.

  1.3

  2.如圖,在水池的正中央有一根蘆葦,池底長10尺,它高出水而1尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達(dá)池邊的水面則這根蘆葦?shù)拈L度是()

  1.3

  五.作業(yè)布置:習(xí)題1.41,3,4題

  【反思】

  一、教師我的體會(huì):

 、、我根據(jù)學(xué)生實(shí)際情況認(rèn)真?zhèn)湔n這節(jié)課,書本總共兩個(gè)例題,且兩個(gè)例題都很難,如果一節(jié)課就講這兩題難題,那一方面學(xué)生的學(xué)習(xí)效率會(huì)比較低,另一方面會(huì)使學(xué)生畏難情緒增加。所以,我簡化教材,使教材易于操作,讓學(xué)生易于學(xué)習(xí),有利于學(xué)生學(xué)習(xí)新知識(shí)、接受新知識(shí),降低學(xué)習(xí)難度。

  把教材讀薄,

 、、除了備教材外,還備學(xué)生。從教案及授課過程也可以看出,充分考慮到了學(xué)生的年齡特點(diǎn):對(duì)新事物有好奇心,但對(duì)新知識(shí)的鉆研熱情又不夠高,這樣,造成教學(xué)難度較大,為了改變這一狀況,在處理教材時(shí),把某些數(shù)學(xué)語言轉(zhuǎn)換成通俗文字來表達(dá),把難度大的運(yùn)用能力降低為難度稍細(xì)的理解能力,讓學(xué)生樂于面對(duì)奧妙而又有一定深度的數(shù)學(xué),樂于學(xué)習(xí)數(shù)學(xué)。

  ③、新課選用的例子、練習(xí),都是經(jīng)過精心挑選的,運(yùn)用性強(qiáng),貼近生活,與生活實(shí)際緊密聯(lián)系,既達(dá)到學(xué)習(xí)、鞏固新知識(shí)的目的,同時(shí),又充分展現(xiàn)出數(shù)學(xué)教學(xué)的重大特征:數(shù)學(xué)源于生活實(shí)際,又服務(wù)于生活實(shí)際。勾股定理源于生活,但同時(shí)它又能極大的為生活服務(wù)。

 、堋⑹褂枚嗝襟w進(jìn)行教學(xué),使知識(shí)顯得形象直觀,充分發(fā)揮現(xiàn)代技術(shù)作用。

  二、學(xué)生體會(huì):

  課前,我們也去查閱了一些資料,關(guān)于勾股定理的證明以及有關(guān)的一些應(yīng)用,通過這節(jié)課,真真發(fā)現(xiàn)勾股定理真真來源于生活,我們的幾何圖形和幾何計(jì)算對(duì)于勾股定理來說非常廣泛,而且以后更要用好它。對(duì)于勾股定理都應(yīng)用時(shí),我覺得關(guān)鍵是找到相關(guān)的三角形,并且分清直角邊或斜邊,靈活機(jī)智地進(jìn)行計(jì)算和一些推理。另外與同學(xué)間在數(shù)學(xué)課上有自主學(xué)習(xí)的機(jī)會(huì),有相互之間的討論、爭辯等協(xié)作的機(jī)會(huì),在合作學(xué)習(xí)的過程中共同提高我覺得都是難得的機(jī)會(huì)。鍛煉了能力,提高了思維品質(zhì),并且勾股定理的應(yīng)用中我覺得圖形很美,古代的數(shù)學(xué)家已經(jīng)有了很好的研究并作出了很大的貢獻(xiàn),現(xiàn)代的藝術(shù)家們也在各方面用到很多,同時(shí)在課堂中漸漸地培養(yǎng)了我們的數(shù)學(xué)興趣和一定的思維能力。

  不過課堂上老師在最后一題的畫圖中能放一放,讓我們有時(shí)間去思考怎么畫,那會(huì)更好些,自然思維也得到了發(fā)展。課上老師鼓勵(lì)我們嘗試不完善的甚至錯(cuò)誤的意見,大膽發(fā)表自己的見解,體現(xiàn)了我們是學(xué)習(xí)的主人。數(shù)學(xué)課堂里充滿了智慧。

【《勾股定理應(yīng)用》教案】相關(guān)文章:

勾股定理的應(yīng)用教案04-06

數(shù)學(xué)勾股定理教案03-17

數(shù)學(xué)勾股定理教案11-02

教案:《比的應(yīng)用》07-13

《比的應(yīng)用》教案09-04

勾股定理說課稿07-05

勾股定理說課稿02-11

《勾股定理》的說課稿06-08

《勾股定理》說課稿12-16