當前位置:育文網(wǎng)>高中>高中數(shù)學> 高中數(shù)學知識點總結

高中數(shù)學知識點總結

時間:2024-05-15 15:46:19 高中數(shù)學 我要投稿

高中數(shù)學知識點總結通用(15篇)

  總結就是把一個時段的學習、工作或其完成情況進行一次全面系統(tǒng)的總結,它能幫我們理順知識結構,突出重點,突破難點,不妨讓我們認真地完成總結吧。總結怎么寫才不會千篇一律呢?下面是小編精心整理的高中數(shù)學知識點總結,希望能夠幫助到大家。

高中數(shù)學知識點總結通用(15篇)

高中數(shù)學知識點總結1

  1.有關平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復習中,首先應從解決平行與垂直的有關問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。

  2. 判定兩個平面平行的方法:

  (1)根據(jù)定義--證明兩平面沒有公共點;

  (2)判定定理--證明一個平面內(nèi)的兩條相交直線都平行于另一個平面;

  (3)證明兩平面同垂直于一條直線。

  3.兩個平面平行的主要性質(zhì):

  (1)由定義知:兩平行平面沒有公共點。

  (2)由定義推得:兩個平面平行,其中一個平面內(nèi)的直線必平行于另一個平面。

  (3)兩個平面平行的性質(zhì)定理:如果兩個平行平面同時和第三個平面相交,那么它們的交線平行。

  (4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面。

  (5)夾在兩個平行平面間的平行線段相等。

  (6)經(jīng)過平面外一點只有一個平面和已知平面平行。

  以上性質(zhì)(2)、(3)、(5)、(6)在課文中雖未直接列為性質(zhì)定理,但在解題過程中均可直接作為性質(zhì)定理引用。

  數(shù)學必修單元知識點

  第一,函數(shù)與導數(shù)。主要考查集合運算、函數(shù)的有關概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導數(shù)。

  第二,平面向量與三角函數(shù)、三角變換及其應用。這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題。

  第三,數(shù)列及其應用。這部分是高考的重點而且是難點,主要出一些綜合題。

  第四,不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點

  第五,概率和統(tǒng)計。這部分和我們的生活聯(lián)系比較大,屬應用題。

  第六,空間位置關系的定性與定量分析,主要是證明平行或垂直,求角和距離。

  第七,解析幾何。是高考的難點,運算量大,一般含參數(shù)。

  高中數(shù)學知識點梳理

  函數(shù)與導數(shù)

  第一、求函數(shù)定義域題忽視細節(jié)函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,考生想要在考場上準確求出定義域,就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的.定義域。

  在求一般函數(shù)定義域時,要注意以下幾點:分母不為0;偶次被開放式非負;真數(shù)大于0以及0的0次冪無意義。函數(shù)的定義域是非空的數(shù)集,在解答函數(shù)定義域類的題時千萬別忘了這一點。復合函數(shù)要注意外層函數(shù)的定義域由內(nèi)層函數(shù)的值域決定。

  第二、帶絕對值的函數(shù)單調(diào)性判斷錯誤帶絕對值的函數(shù)實質(zhì)上就是分段函數(shù),判斷分段函數(shù)的單調(diào)性有兩種方法:第一,在各個段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,然后對各個段上的單調(diào)區(qū)間進行整合;第二,畫出這個分段函數(shù)的圖象,結合函數(shù)圖象、性質(zhì)能夠進行直觀的判斷。函數(shù)題離不開函數(shù)圖象,而函數(shù)圖象反應了函數(shù)的所有性質(zhì),考生在解答函數(shù)題時,要第一時間在腦海中畫出函數(shù)圖象,從圖象上分析問題,解決問題。

  對于函數(shù)不同的單調(diào)遞增(減)區(qū)間,千萬記住,不要使用并集,指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。

  第三、求函數(shù)奇偶性的常見錯誤求函數(shù)奇偶性類的題最常見的錯誤有求錯函數(shù)定義域或忽視函數(shù)定義域,對函數(shù)具有奇偶性的前提條件不清,對分段函數(shù)奇偶性判斷方法不當?shù)鹊。判斷函?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域區(qū)間關于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關于原點對稱的前提下,再根據(jù)奇偶函數(shù)的定義進行判斷。

  在用定義進行判斷時,要注意自變量在定義域區(qū)間內(nèi)的任意性。

  第四、抽象函數(shù)推理不嚴謹很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同特征而設計的,在解答此類問題時,考生可以通過類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)。多用特殊賦值法,通過特殊賦可以找到函數(shù)的不變性質(zhì),這往往是問題的突破口。

  抽象函數(shù)性質(zhì)的證明屬于代數(shù)推理,和幾何推理證明一樣,考生在作答時要注意推理的嚴謹性。每一步都要有充分的條件,別漏掉條件,更不能臆造條件,推理過程層次分明,還要注意書寫規(guī)范。

  第五、函數(shù)零點定理使用不當若函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,且有f(a)f(b)0。那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,即存在c(a,b),使得f(c)=0。這個c也可以是方程f(c)=0的根,稱之為函數(shù)的零點定理,分為變號零點和不變號零點,而對于不變號零點,函數(shù)的零點定理是無能為力的,在解決函數(shù)的零點時,考生需格外注意這類問題。

  第六、混淆兩類切線曲線上一點處的切線是指以該點為切點的曲線的切線,這樣的切線只有一條;曲線的過一個點的切線是指過這個點的曲線的所有切線,這個點如果在曲線上當然包括曲線在該點處的切線,曲線的過一個點的切線可能不止一條。

  因此,考生在求解曲線的切線問題時,首先要區(qū)分是什么類型的切線。

  第七、混淆導數(shù)與單調(diào)性的關系一個函數(shù)在某個區(qū)間上是增函數(shù)的這類題型,如果考生認為函數(shù)的導函數(shù)在此區(qū)間上恒大于0,很容易就會出錯。

  解答函數(shù)的單調(diào)性與其導函數(shù)的關系時一定要注意,一個函數(shù)的導函數(shù)在某個區(qū)間上單調(diào)遞增(減)的充要條件是這個函數(shù)的導函數(shù)在此區(qū)間上恒大(小)于等于0,且導函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。

  第八、導數(shù)與極值關系不清考生在使用導數(shù)求函數(shù)極值類問題時,容易出現(xiàn)的錯誤就是求出使導函數(shù)等于0的點,卻沒有對這些點左右兩側導函數(shù)的符號進行判斷,誤以為使導函數(shù)等于0的點就是函數(shù)的極值點,往往就會出錯,出錯原因就是考生對導數(shù)與極值關系沒搞清楚。

高中數(shù)學知識點總結2

  1、你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。

  2、線面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯(lián)系和轉(zhuǎn)化在解決立幾問題中的應用是怎樣的?每種平行之間轉(zhuǎn)換的條件是什么?

  3、三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關鍵)一面四直線,立柱是關鍵,垂直三處見

  3、線面平行的判定定理和性質(zhì)定理在應用時都是三個條件,但這三個條件易混為一談;面面平行的判定定理易把條件錯誤地記為”一個平面內(nèi)的兩條相交直線與另一個平面內(nèi)的兩條相交直線分別平行”而導致證明過程跨步太大。

  4、求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。

  5、異面直線所成角利用“平移法”求解時,一定要注意平移后所得角等于所求角(或其補角),特別是題目告訴異面直線所成角,應用時一定要從題意出發(fā),是用銳角還是其補角,還是兩種情況都有可能。

  6、你知道公式:和中每一字母的意思嗎?能夠熟練地應用它們解題嗎?

  7、兩條異面直線所成的角的范圍:0°《α≤90°

  直線與平面所成的角的范圍:0o≤α≤90°

  二面角的平面角的`取值范圍:0°≤α≤180°

  8、你知道異面直線上兩點間的距離公式如何運用嗎?

  9、平面圖形的翻折,立體圖形的展開等一類問題,要注意翻折,展開前后有關幾何元素的“不變量”與“不變性”。

  10、立幾問題的求解分為“作”,“證”,“算”三個環(huán)節(jié),你是否只注重了“作”,“算”,而忽視了“證”這一重要環(huán)節(jié)?

  11、棱柱及其性質(zhì)、平行六面體與長方體及其性質(zhì)。這些知識你掌握了嗎?(注意運用向量的方法解題)

  12、球及其性質(zhì);經(jīng)緯度定義易混。經(jīng)度為二面角,緯度為線面角、球面距離的求法;球的表面積和體積公式。

高中數(shù)學知識點總結3

  一、圓及圓的相關量的定義

  1.平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。

  2.圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經(jīng)過圓心的弦叫

  做直徑。

  3.頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。

  4.過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

  5.直線與圓有3種位置關系:無公共點為相離;有2個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。

  6.兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。

  7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。

  二、有關圓的字母表示方法

  圓--⊙ 半徑—r 弧--⌒ 直徑—d

  扇形弧長/圓錐母線—l 周長—C 面積—S三、有關圓的基本性質(zhì)與定理(27個)

  1.點P與圓O的位置關系(設P是一點,則PO是點到圓心的距離):

  P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO

  2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。

  3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定

  理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。

  4.在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應的其余各組量都分別相等。

  5.一條弧所對的圓周角等于它所對的圓心角的一半。

  6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

  7.不在同一直線上的3個點確定一個圓。

  8.一個三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形3個頂點距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點,到三角形3邊距離相等。

  9.直線AB與圓O的位置關系(設OP⊥AB于P,則PO是AB到圓心的距

  離):

  AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO

  10.圓的切線垂直于過切點的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。

  11.圓與圓的位置關系(設兩圓的半徑分別為R和r,且R≥r,圓心距為P):

  外離P>R+r;外切P=R+r;相交R-r

  三、有關圓的計算公式

  1.圓的周長C=2πr=πd

  2.圓的面積S=s=πr?

  3.扇形弧長l=nπr/180

  4.扇形面積S=nπr? /360=rl/2

  5.圓錐側面積S=πrl

  四、圓的方程

  1.圓的標準方程

  在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標準方程是

 。▁-a)^2+(y-b)^2=r^2

  2.圓的一般方程

  把圓的標準方程展開,移項,合并同類項后,可得圓的一般方程是

  x^2+y^2+Dx+Ey+F=0

  和標準方程對比,其實D=-2a,E=-2b,F=a^2+b^2

  相關知識:圓的離心率e=0.在圓上任意一點的曲率半徑都是r.

  五、圓與直線的位置關系判斷

  平面內(nèi),直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是

  討論如下2種情況:

 。1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

  代入x^2+y^2+Dx+Ey+F=0,即成為一個關于x的一元二次方程f(x)=0.

  利用判別式b^2-4ac的符號可確定圓與直線的位置關系如下:

  如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交

  如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切

  如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離

  (2)如果B=0即直線為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)

  將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2

  令y=b,求出此時的兩個x值x1,x2,并且我們規(guī)定x1

  當x=-C/Ax2時,直線與圓相離

  當x1

  當x=-C/A=x1或x=-C/A=x2時,直線與圓相切

  圓的定理:

  1.不在同一直線上的'三點確定一個圓。

  2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1.①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

  ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

  ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2.圓的兩條平行弦所夾的弧相等

  3.圓是以圓心為對稱中心的中心對稱圖形

  4.圓是定點的距離等于定長的點的集合

  5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  6.圓的外部可以看作是圓心的距離大于半徑的點的集合

  7.同圓或等圓的半徑相等

  8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

  10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  11.定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它 的內(nèi)對角

  12.①直線L和⊙O相交 d

  ②直線L和⊙O相切 d=r

 、壑本L和⊙O相離 d>r

  13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑

  15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  16.推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角

  18.圓的外切四邊形的兩組對邊的和相等 外角等于內(nèi)對角

  19.如果兩個圓相切,那么切點一定在連心線上

  20.①兩圓外離 d>R+r ②兩圓外切 d=R+r

 、蹆蓤A相交 R-rr)

  ④兩圓內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)

  21.定理 相交兩圓的連心線垂直平分兩圓的公共弦

  22.定理 把圓分成n(n≥3):

 。1)依次連結各分點所得的多邊形是這個圓的內(nèi)接正n邊形

  (2)經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  23.定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  24.正n邊形的每個內(nèi)角都等于(n-2)×180°/n

  25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

  27.正三角形面積√3a/4 a表示邊長

  28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29.弧長計算公式:L=n兀R/180

  30.扇形面積公式:S扇形=n兀R^2/360=LR/2

  31.內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)

  32.定理 一條弧所對的圓周角等于它所對的圓心角的一半

  33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑

  35.弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

高中數(shù)學知識點總結4

  函數(shù)與導數(shù)。主要考查集合運算、函數(shù)的有關概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導數(shù)。

  平面向量與三角函數(shù)、三角變換及其應用。這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題。

  數(shù)列及其應用。這部分是高考的重點而且是難點,主要出一些綜合題。

  不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。

  概率和統(tǒng)計。這部分和我們的生活聯(lián)系比較大,屬應用題。

  空間位置關系的定性與定量分析。主要是證明平行或垂直,求角和距離。主要考察對定理的`熟悉程度、運用程度。

  解析幾何。高考的難點,運算量大,一般含參數(shù)。

  高考對數(shù)學基礎知識的考查,既全面又突出重點,扎實的數(shù)學基礎是成功解題的關鍵。

  掌握分類計數(shù)原理與分步計數(shù)原理,并能用它們分析和解決一些簡單的應用問題。

  理解排列的意義,掌握排列數(shù)計算公式,并能用它解決一些簡單的應用問題。

  理解組合的意義,掌握組合數(shù)計算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的應用問題。

  掌握二項式定理和二項展開式的性質(zhì),并能用它們計算和證明一些簡單的問題。

  了解隨機事件的發(fā)生存在著規(guī)律性和隨機事件概率的意義。

  了解等可能性事件的概率的意義,會用排列組合的基本公式計算一些等可能性事件的概率。

  了解互斥事件、相互獨立事件的意義,會用互斥事件的概率加法公式與相互獨立事件的概率乘法公式計算一些事件的概率。

  會計算事件在n次獨立重復試驗中恰好發(fā)生k次的概率。

高中數(shù)學知識點總結5

  軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

  一、求動點的軌跡方程的基本步驟。

  1、建立適當?shù)淖鴺讼,設出動點M的坐標;

  2、寫出點M的集合;

  3、列出方程=0;

  4、化簡方程為最簡形式;

  5、檢驗。

  二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數(shù)法和交軌法等。

  1、直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

  2、定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

  3、相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。

  4、參數(shù)法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數(shù)t的關系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

  5、交軌法:將兩動曲線方程中的'參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

  求動點軌跡方程的一般步驟:

  ①建系——建立適當?shù)淖鴺讼担?/p>

 、谠O點——設軌跡上的任一點P(x,y);

 、哿惺健谐鰟狱cp所滿足的關系式;

 、艽鷵Q——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關于X,Y的方程式,并化簡;

 、葑C明——證明所求方程即為符合條件的動點軌跡方程。

高中數(shù)學知識點總結6

 。1)不等關系

  感受在現(xiàn)實世界和日常生活中存在著大量的不等關系,了解不等式(組)的實際背景。

 。2)一元二次不等式

 、俳(jīng)歷從實際情境中抽象出一元二次不等式模型的過程。

 、谕ㄟ^函數(shù)圖象了解一元二次不等式與相應函數(shù)、方程的聯(lián)系。

  ③會解一元二次不等式,對給定的`一元二次不等式,嘗試設計求解的程序框圖。

 。3)二元一次不等式組與簡單線性規(guī)劃問題

 、購膶嶋H情境中抽象出二元一次不等式組。

  ②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組(參見例2)。

 、蹚膶嶋H情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決(參見例3)。

  (4)基本不等式

 、偬剿鞑⒘私饣静坏仁降淖C明過程。

 、跁没静坏仁浇鉀Q簡單的(。┲祮栴}。

高中數(shù)學知識點總結7

  平均值等于每個小長方形面積(即概率)乘每組橫坐標的中點,然后加和。

  平均數(shù),首先得直方圖應該歸一化,也就是說所有矩形的面積之和為1,然后每個矩形的面積代表其底邊中點橫坐標的數(shù)的頻率,那么面積乘以橫坐標就相當于頻率乘以橫坐標,得到的當然是平均數(shù)。

  頻率直方圖中是沒有樣本數(shù)據(jù)的在某一個分組里,分布在這個分組的樣本數(shù)據(jù)沒法找得出來,然后也分布不均勻,所以就用這個組的中點的橫坐標來表示這個分組的樣本數(shù)據(jù)的平均值。

  而每一個小長方形的面積是表示相應的頻率,(相當于相應數(shù)據(jù)的百分比)所以平均數(shù)等于每個小長方形的面積乘以相應的分組的底邊中點橫坐標的.之和。

  頻率分布直方圖的運用

  頻率分布直方圖能清楚顯示各組頻數(shù)分布情況又易于顯示各組之間頻數(shù)的差別。它主要是為了將我們獲取的數(shù)據(jù)直觀、形象地表示出來,讓我們能夠更好了解數(shù)據(jù)的分布情況,因此其中組距、組數(shù)起關鍵作用。

  分組過少,數(shù)據(jù)就非常集中;分組過多,數(shù)據(jù)就非常分散,這就掩蓋了分布的特征。當數(shù)據(jù)在100以內(nèi)時,一般分5~12組為宜。

  從頻率分布直方圖可以估計出的幾個數(shù)據(jù):

  眾數(shù):頻率分布直方圖中最高矩形的底邊中點的橫坐標 。

  算術平均數(shù):頻率分布直方圖每組數(shù)值的中間值乘以頻率后相加。

  加權平均數(shù):加權平均數(shù)就是所有的頻率乘以數(shù)值后的和相加。

  中位數(shù):把頻率分布直方圖分成兩個面積相等部分的平行于Y軸的直線橫坐標。

高中數(shù)學知識點總結8

  空間兩條直線只有三種位置關系:平行、相交、異面。

  按是否共面可分為兩類:

  (1)共面:平行、相交

  (2)異面:

  異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。

  異面直線判定定理:用平面內(nèi)一點與平面外一點的直線,與平面內(nèi)不經(jīng)過該點的直線是異面直線。

  兩異面直線所成的角:范圍為(0°,90°)esp?臻g向量法。

  兩異面直線間距離:公垂線段(有且只有一條)esp。空間向量法。

  若從有無公共點的角度看可分為兩類:

  (1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面。

  直線和平面的位置關系:

  直線和平面只有三種位置關系:在平面內(nèi)、與平面相交、與平面平行。

 、僦本在平面內(nèi)——有無數(shù)個公共點

 、谥本和平面相交——有且只有一個公共點

  直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。

  空間向量法(找平面的法向量)

  規(guī)定:a、直線與平面垂直時,所成的角為直角;b、直線與平面平行或在平面內(nèi),所成的角為0°角。

  由此得直線和平面所成角的取值范圍為[0°,90°]。

  最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角。

  三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直。

  直線和平面垂直

  直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直。直線a叫做平面的垂線,平面叫做直線a的垂面。

  直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。

  直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。直線和平面平行——沒有公共點

  直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。

  直線和平面平行的判定定理:如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。

  直線和平面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。

  數(shù)學常用解題技巧有哪些

  第一,應堅持由易到難的做題順序。近年來高考數(shù)學試題的設置是8道選擇題、6道填空題、6到大題,通常稱為866結構。在實體設置的結構中有三個小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設置也是這樣的。根據(jù)這樣的試題結構,應先做前面容易的,基礎好一點的考生就先做前7個選擇,前5個填空、前5個大題,稱為是755結構;A差的就是644,先把自己能做的、會做的拿到手。這是第一點。

  第二,審題是關鍵。把題給看清楚了再動筆答題,看清楚題以后問什么、已知什么、讓你做什么,把這些問題搞清楚了,自己制訂了一個完整的解題策略,在開始寫的時候,這個時候是很快就可以完成的。

  第三,屬于非智力因素導致想不起來。本來是很簡單的'題比如說是做到第三題、第四題的時候不是難題,但想不起來了,卡住了,這時候怎么辦?雖然是簡單題卻不會做怎么辦?應先跳過去,不是這道題不會做嗎?后面還有很多的簡單題呢,把后面的題做一做,不要在考場上愣神,先跳過去做其他的題,等穩(wěn)定下來以后再回過頭來看會頓悟,豁然開朗。

  第四,做選擇題的時候應運用最好的解題方法。因為選擇題和填空題都是看結果不看過程,因此在這個過程中都應不擇手段,只要是能把正確的結論找到就行。考生常用的方法是直接法,從已知的開始也不看它的四個選項,從頭到尾寫完了之后一看答案就寫上去了。另外就是特質(zhì)法(音),一些出現(xiàn)字母、特別是不等式,這時候給它賦一個值,代進去這時候速度會比較快,正確地找出結果來。再就是數(shù)形結合法。最后實在不行了,就將四個選項代入驗證,看看哪個符合就是哪個了。填空題用上述的直接法、特質(zhì)法、數(shù)形結合法三種方法都適合。做大題的時候要特別注意解題步驟,規(guī)范答題可以減少失分。簡單地說,規(guī)范答題就是從上一步的原因到下一步的結論,這是一個必然的過程,讓誰寫、誰看都是這樣的。因為什么所以什么是一個必然的過程,這是規(guī)范答題。

  學霸分享的數(shù)學復習技巧

  1、把答案蓋住看例題

  例題不能帶著答案去看,不然會認為自己就是這么,其實自己并沒有理解透徹。

  所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。

  經(jīng)過上面的訓練,自己的思維空間擴展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個批注,說明此題的“題眼”及巧妙之處,收獲會更大。

  2、研究每題都考什么

  數(shù)學能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術,而是要通過一題聯(lián)想到很多題。

  3、錯一次反思一次

  每次業(yè)及考試或多或少會發(fā)生些錯誤,這并不可怕,要緊的是避免類似的錯誤再次重現(xiàn)。因此平時注意把錯題記下來。

  學生若能將每次考試或練習中出現(xiàn)的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了.

  4、分析試卷總結經(jīng)驗

  每次考試結束試卷發(fā)下來,要認真分析得失,總結經(jīng)驗教訓。特別是將試卷中出現(xiàn)的錯誤進行分類。

  數(shù)學解題方法分別有哪些

  1、配方法

  所謂的公式是使用變換解析方程的同構方法,并將其中的一些分配給一個或多個多項式正整數(shù)冪的和形式。通過配方解決數(shù)學問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學中不斷變形的重要方法,其應用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達式。

  2、因式分解法

  因式分解是將多項式轉(zhuǎn)換為幾個積分產(chǎn)品的乘積。分解是恒定變形的基礎。除了引入中學教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。

  3、換元法

  替代方法是數(shù)學中一個非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變元。用新的參數(shù)替換原始公式的一部分或重新構建原始公式可以更簡單,更容易解決。

  4、判別式法與韋達定理

  一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來確定根的性質(zhì),還作為一個問題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應用。

  韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個數(shù)的和和乘積的簡單應用并尋找這兩個數(shù),也可以找到根的對稱函數(shù)并量化二次方程根的符號。求解對稱方程并解決一些與二次曲線有關的問題等,具有非常廣泛的應用。

  5、待定系數(shù)法

  在解決數(shù)學問題時,如果我們首先判斷我們所尋找的結果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關系。為了解決數(shù)學問題,這種問題解決方法被稱為待定系數(shù)法。它是中學數(shù)學中常用的方法之一。

  6、構造法

  在解決問題時,我們通常通過分析條件和結論來使用這些方法來構建輔助元素。它可以是一個圖表,一個方程(組),一個方程,一個函數(shù),一個等價的命題等,架起連接條件和結論的橋梁。為了解決這個問題,這種解決問題的數(shù)學方法,我們稱之為構造方法。運用結構方法解決問題可以使代數(shù),三角形,幾何等數(shù)學知識相互滲透,有助于解決問題。

  數(shù)學經(jīng)常遇到的問題解答

  1、要提高數(shù)學成績首先要做什么?

  這一點,是很多學生所關注的,要提高數(shù)學成績,首先就應該從基礎知識學起。不少同學覺得基礎知識過于簡單,看兩遍基本上就都會了。這種“自我感覺良好”其實是一種錯覺,而真正考試時又覺得無從下手,這還是基礎不牢的表現(xiàn),因此要提高數(shù)學成績先要把基礎夯實。

  2、基礎不好怎么學好數(shù)學?

  對于基礎差的同學來說,課本是就是學好數(shù)學的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學活用,把課本的知識學透有兩個好處,第一,強化基礎;第二,提高得分能力。

  3、是否要采用題海戰(zhàn)術?

  方法君曾不止一次提到了“題海戰(zhàn)術”,題海戰(zhàn)術究竟可不可取呢?“題海戰(zhàn)術”其實也是一種學習方法,但很多學生只知道做題,不懂得總結,體現(xiàn)不出任何的學習效果。因此在做題后要總結至關重要,只有認真總結才能不斷積累做題經(jīng)驗,這樣才能取得理想成績。

  4、做題總是粗心怎么辦?

  很多學生成績不好,會說自己是因為粗心導致的,其實“粗心”只是借口,真正的原因就是題做得少、基礎知識不牢、沒有清晰的解題思路、計算能力不強。因此在平時的學習中,一定要注重熟練度和精準度的練習。如果總是給自己找“粗心”的借口,也就變相否定了自己的學習弱點,所以,要告訴自己,高中數(shù)學沒有“粗心”只有“不用心”。

高中數(shù)學知識點總結9

  考點一、映射的概念

  1.了解對應大千世界的對應共分四類,分別是:一對一多對一一對多多對多

  2.映射:設A和B是兩個非空集合,如果按照某種對應關系f,對于集合A中的任意一個元素x,在集合B中都存在的一個元素y與之對應,那么,就稱對應f:A→B為集合A到集合B的一個映射(mapping).映射是特殊的對應,簡稱“對一”的對應.包括:一對一多對一

  考點二、函數(shù)的概念

  1.函數(shù):設A和B是兩個非空的數(shù)集,如果按照某種確定的對應關系f,對于集合A中的任意一個數(shù)x,在集合B中都存在確定的數(shù)y與之對應,那么,就稱對應f:A→B為集合A到集合B的一個函數(shù).記作y=f(x),xA.其中x叫自變量,x的取值范圍A叫函數(shù)的定義域;與x的值相對應的y的值函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域.函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射.

  2.函數(shù)的三要素:定義域、值域、對應關系.這是判斷兩個函數(shù)是否為同一函數(shù)的依據(jù).

  3.區(qū)間的概念:設a,bR,且a

 、伲╝,b)={xa

  ⑤(a,+∞)={>a}⑥[a,+∞)={≥a}⑦(—∞,b)={

  考點三、函數(shù)的表示方法

  1.函數(shù)的三種表示方法列表法圖象法解析法

  2.分段函數(shù):定義域的不同部分,有不同的.對應法則的函數(shù).注意兩點:①分段函數(shù)是一個函數(shù),不要誤認為是幾個函數(shù).②分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集.

  考點四、求定義域的幾種情況

 、偃鬴(x)是整式,則函數(shù)的定義域是實數(shù)集R;

 、谌鬴(x)是分式,則函數(shù)的定義域是使分母不等于0的實數(shù)集;

  ③若f(x)是二次根式,則函數(shù)的定義域是使根號內(nèi)的式子大于或等于0的實數(shù)集合;

  ④若f(x)是對數(shù)函數(shù),真數(shù)應大于零.

 、.因為零的零次冪沒有意義,所以底數(shù)和指數(shù)不能同時為零.

 、奕鬴(x)是由幾個部分的數(shù)學式子構成的,則函數(shù)的定義域是使各部分式子都有意義的實數(shù)集合;

 、呷鬴(x)是由實際問題抽象出來的函數(shù),則函數(shù)的定義域應符合實際問題

高中數(shù)學知識點總結10

  1、等比中項

  如果在a與b中間插入一個數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項。

  有關系:

  注:兩個非零同號的實數(shù)的等比中項有兩個,它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的'必要不充分條件。

  2、等比數(shù)列通項公式

  an=a1_q’(n-1)(其中首項是a1,公比是q)

  an=Sn-S(n-1)(n≥2)

  前n項和

  當q≠1時,等比數(shù)列的前n項和的公式為

  Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

  當q=1時,等比數(shù)列的前n項和的公式為

  Sn=na1

  3、等比數(shù)列前n項和與通項的關系

  an=a1=s1(n=1)

  an=sn-s(n-1)(n≥2)

  4、等比數(shù)列性質(zhì)

  (1)若m、n、p、q∈N_,且m+n=p+q,則am·an=ap·aq;

  (2)在等比數(shù)列中,依次每k項之和仍成等比數(shù)列。

  (3)從等比數(shù)列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

  (4)等比中項:q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項。

  記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  另外,一個各項均為正數(shù)的等比數(shù)列各項取同底指數(shù)冪后構成一個等差數(shù)列;反之,以任一個正數(shù)C為底,用一個等差數(shù)列的各項做指數(shù)構造冪Can,則是等比數(shù)列。在這個意義下,我們說:一個正項等比數(shù)列與等差數(shù)列是“同構”的。

  (5)等比數(shù)列前n項之和Sn=a1(1-q’n)/(1-q)

  (6)任意兩項am,an的關系為an=am·q’(n-m)

  (7)在等比數(shù)列中,首項a1與公比q都不為零。

  注意:上述公式中a’n表示a的n次方。

  等比數(shù)列求和公式

  q≠1時,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)

  q=1時,Sn=na1

  (a1為首項,an為第n項,d為公差,q為等比)

  這個常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(q≠0),等比數(shù)列a1≠ 0。注:q=1時,{an}為常數(shù)列。利用等比數(shù)列求和公式可以快速的計算出該數(shù)列的和。

  等比數(shù)列求和公式推導

  Sn=a1+a2+a3+、、、+an(公比為q)

  qSn=a1q + a2q + a3q +、、、+ anq = a2+ a3+ a4+、、、+ an+ a(n+1)

  Sn-qSn=(1-q)Sn=a1-a(n+1)

  a(n+1)=a1qn

  Sn=a1(1-qn)/(1-q)(q≠1)

高中數(shù)學知識點總結11

  一、集合、簡易邏輯

  1、集合;

  2、子集;

  3、補集;

  4、交集;

  5、并集;

  6、邏輯連結詞;

  7、四種命題;

  8、充要條件。

  二、函數(shù)

  1、映射;

  2、函數(shù);

  3、函數(shù)的單調(diào)性;

  4、反函數(shù);

  5、互為反函數(shù)的函數(shù)圖象間的關系;

  6、指數(shù)概念的擴充;

  7、有理指數(shù)冪的運算;

  8、指數(shù)函數(shù);

  9、對數(shù);

  10、對數(shù)的運算性質(zhì);

  11、對數(shù)函數(shù)。

  12、函數(shù)的應用舉例。

  三、數(shù)列(12課時,5個)

  1、數(shù)列;

  2、等差數(shù)列及其通項公式;

  3、等差數(shù)列前n項和公式;

  4、等比數(shù)列及其通頂公式;

  5、等比數(shù)列前n項和公式。

  四、三角函數(shù)

  1、角的概念的推廣;

  2、弧度制;

  3、任意角的三角函數(shù);

  4、單位圓中的三角函數(shù)線;

  5、同角三角函數(shù)的基本關系式;

  6、正弦、余弦的誘導公式;

  7、兩角和與差的正弦、余弦、正切;

  8、二倍角的正弦、余弦、正切;

  9、正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);

  10、周期函數(shù);

  11、函數(shù)的奇偶性;

  12、函數(shù)的圖象;

  13、正切函數(shù)的圖象和性質(zhì);

  14、已知三角函數(shù)值求角;

  15、正弦定理;

  16、余弦定理;

  17、斜三角形解法舉例。

  五、平面向量

  1、向量;

  2、向量的加法與減法;

  3、實數(shù)與向量的積;

  4、平面向量的坐標表示;

  5、線段的定比分點;

  6、平面向量的數(shù)量積;

  7、平面兩點間的距離;

  8、平移。

  六、不等式

  1、不等式;

  2、不等式的'基本性質(zhì);

  3、不等式的證明;

  4、不等式的解法;

  5、含絕對值的不等式。

  七、直線和圓的方程

  1、直線的傾斜角和斜率;

  2、直線方程的點斜式和兩點式;

  3、直線方程的一般式;

  4、兩條直線平行與垂直的條件;

  5、兩條直線的交角;

  6、點到直線的距離;

  7、用二元一次不等式表示平面區(qū)域;

  8、簡單線性規(guī)劃問題;

  9、曲線與方程的概念;

  10、由已知條件列出曲線方程;

  11、圓的標準方程和一般方程;

  12、圓的參數(shù)方程。

  八、圓錐曲線

  1、橢圓及其標準方程;

  2、橢圓的簡單幾何性質(zhì);

  3、橢圓的參數(shù)方程;

  4、雙曲線及其標準方程;

  5、雙曲線的簡單幾何性質(zhì);

  6、拋物線及其標準方程;

  7、拋物線的簡單幾何性質(zhì)。

  九、直線、平面、簡單何體

  1、平面及基本性質(zhì);

  2、平面圖形直觀圖的畫法;

  3、平面直線;

  4、直線和平面平行的判定與性質(zhì);

  5、直線和平面垂直的判定與性質(zhì);

  6、三垂線定理及其逆定理;

  7、兩個平面的位置關系;

  8、空間向量及其加法、減法與數(shù)乘;

  9、空間向量的坐標表示;

  10、空間向量的數(shù)量積;

  11、直線的方向向量;

  12、異面直線所成的角;

  13、異面直線的公垂線;

  14、異面直線的距離;

  15、直線和平面垂直的性質(zhì);

  16、平面的法向量;

  17、點到平面的距離;

  18、直線和平面所成的角;

  19、向量在平面內(nèi)的射影;

  20、平面與平面平行的性質(zhì);

  21、平行平面間的距離;

  22、二面角及其平面角;

  23、兩個平面垂直的判定和性質(zhì);

  24、多面體;

  25、棱柱;

  26、棱錐;

  27、正多面體;

  28、球。

  十、排列、組合、二項式定理

  1、分類計數(shù)原理與分步計數(shù)原理;

  2、排列;

  3、排列數(shù)公式;

  4、組合;

  5、組合數(shù)公式;

  6、組合數(shù)的兩個性質(zhì);

  7、二項式定理;

  8、二項展開式的性質(zhì)。

  十一、概率

  1、隨機事件的概率;

  2、等可能事件的概率;

  3、互斥事件有一個發(fā)生的概率;

  4、相互獨立事件同時發(fā)生的概率;

  5、獨立重復試驗。

  必修一函數(shù)重點知識整理

  1、函數(shù)的奇偶性

 。1)若f(x)是偶函數(shù),那么f(x)=f(—x);

  (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

  (3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(—x)=0或(f(x)≠0);

  (4)若所給函數(shù)的解析式較為復雜,應先化簡,再判斷其奇偶性;

 。5)奇函數(shù)在對稱的'單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

  2、復合函數(shù)的有關問題

 。1)復合函數(shù)定義域求法:若已知的定義域為[a,b],其復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

  (2)復合函數(shù)的單調(diào)性由“同增異減”判定;

  3、函數(shù)圖像(或方程曲線的對稱性)

  (1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;

 。2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

  (3)曲線C1:f(x,y)=0,關于y=x+a(y=—x+a)的對稱曲線C2的方程為f(y—a,x+a)=0(或f(—y+a,—x+a)=0);

  (4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a—x,2b—y)=0;

 。5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a—x)恒成立,則y=f(x)圖像關于直線x=a對稱;

 。6)函數(shù)y=f(x—a)與y=f(b—x)的圖像關于直線x=對稱;

  4、函數(shù)的周期性

 。1)y=f(x)對x∈R時,f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

 。2)若y=f(x)是偶函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);

  (3)若y=f(x)奇函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);

 。4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);

 。5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

 。6)y=f(x)對x∈R時,f(x+a)=—f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

  5、方程k=f(x)有解k∈D(D為f(x)的值域);

  6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  7、(1)(a>0,a≠1,b>0,n∈R+);

 。2)l og a N=(a>0,a≠1,b>0,b≠1);

 。3)l og a b的符號由口訣“同正異負”記憶;

 。4)a log a N= N(a>0,a≠1,N>0);

  8、判斷對應是否為映射時,抓住兩點:

  (1)A中元素必須都有象且唯一;

 。2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9、能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

  10、對于反函數(shù),應掌握以下一些結論:

  (1)定義域上的單調(diào)函數(shù)必有反函數(shù);

  (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

 。3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);

 。4)周期函數(shù)不存在反函數(shù);

 。5)互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性;

 。6)y=f(x)與y=f—1(x)互為反函數(shù),設f(x)的定義域為A,值域為B,則有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。

  11、處理二次函數(shù)的問題勿忘數(shù)形結合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關系;

  12、依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題

  13、恒成立問題的處理方法:

 。1)分離參數(shù)法;

  (2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解。

  拓展閱讀:高中數(shù)學復習方法

  1、把答案蓋住看例題

  例題不能帶著答案去看,不然會認為自己就是這么,其實自己并沒有理解透徹。

  所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。

  經(jīng)過上面的訓練,自己的思維空間擴展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個批注,說明此題的“題眼”及巧妙之處,收獲會更大。

  2、研究每題都考什么

  數(shù)學能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術,而是要通過一題聯(lián)想到很多題。

  3、錯一次反思一次

  每次業(yè)及考試或多或少會發(fā)生些錯誤,這并不可怕,要緊的是避免類似的錯誤再次重現(xiàn)。因此平時注意把錯題記下來。

  學生若能將每次考試或練習中出現(xiàn)的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了。

  4、分析試卷總結經(jīng)驗

  每次考試結束試卷發(fā)下來,要認真分析得失,總結經(jīng)驗教訓。特別是將試卷中出現(xiàn)的錯誤進行分類。

高中數(shù)學知識點總結12

  一、高中數(shù)列基本公式:

  1、一般數(shù)列的通項an與前n項和Sn的關系:an=

  2、等差數(shù)列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關于n的一次式;當d=0時,an是一個常數(shù)。

  3、等差數(shù)列的前n項和公式:Sn=

  Sn=

  Sn=

  當d≠0時,Sn是關于n的二次式且常數(shù)項為0;當d=0時(a1≠0),Sn=na1是關于n的正比例式。

  4、等比數(shù)列的通項公式: an= a1qn-1an= akqn-k

  (其中a1為首項、ak為已知的'第k項,an≠0)

  5、等比數(shù)列的前n項和公式:當q=1時,Sn=n a1 (是關于n的正比例式);

  當q≠1時,Sn=

  Sn=

  二、高中數(shù)學中有關等差、等比數(shù)列的結論

  1、等差數(shù)列{an}的任意連續(xù)m項的和構成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等差數(shù)列。

  2、等差數(shù)列{an}中,若m+n=p+q,則

  3、等比數(shù)列{an}中,若m+n=p+q,則

  4、等比數(shù)列{an}的任意連續(xù)m項的和構成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等比數(shù)列。

  5、兩個等差數(shù)列{an}與{bn}的和差的數(shù)列{an+bn}、{an-bn}仍為等差數(shù)列。

  6、兩個等比數(shù)列{an}與{bn}的積、商、倒數(shù)組成的數(shù)列仍為等比數(shù)列。

  7、等差數(shù)列{an}的任意等距離的項構成的數(shù)列仍為等差數(shù)列。

  8、等比數(shù)列{an}的任意等距離的項構成的數(shù)列仍為等比數(shù)列。

  9、三個數(shù)成等差數(shù)列的設法:a-d,a,a+d;四個數(shù)成等差的設法:a-3d,a-d,,a+d,a+3d

  10、三個數(shù)成等比數(shù)列的設法:a/q,a,aq;

  四個數(shù)成等比的錯誤設法:a/q3,a/q,aq,aq3 (為什么?)

高中數(shù)學知識點總結13

  簡單隨機抽樣

  (1)總體和樣本

 、僭诮y(tǒng)計學中 , 把研究對象的全體叫做總體。②把每個研究對象叫做個體。③把總體中個體的總數(shù)叫做總體容量。④為了研究總體 的有關性質(zhì),一般從總體中隨機抽取一部分: x1,x2 , …,xx 研究,我們稱它為樣本。其中個體的個數(shù)稱為樣本容量。

  (2)簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨

  機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的'基礎。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。

  (3)簡單隨機抽樣常用的方法:

 、俪楹灧;②隨機數(shù)表法;③計算機模擬法;③使用統(tǒng)計軟件直接抽取。

  在簡單隨機抽樣的樣本容量設計中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。

  (4)抽簽法:

 、俳o調(diào)查對象群體中的每一個對象編號;②準備抽簽的工具,實施抽簽;③對樣本中的每一個個體進行測量或調(diào)查

  (5)隨機數(shù)表法

高中數(shù)學知識點總結14

  高中數(shù)學幾何公理,定理 。全部13.平行四邊形的判定與性質(zhì):平行四邊形的定義:兩組對邊分別平行的四邊形是平行四邊形 。

  平行四邊形的性質(zhì):

 。1)平行四邊形的對邊相等;

 。2)平行四邊形的對角相等;

 。3)平行四邊形的對角線互相平分;

  (4)平行線之間的距離處處相等 。

  平行四邊形的判定:

 。1)一組對邊平行且相等的四邊形是平行四邊形;

 。2)對角線互相平分的四邊形是平行四邊形;

  (3)兩組對角分別相等的四邊形是平行四邊形;

 。4)兩組對邊分別相等的四邊形是平行四邊形

  高中幾何的所有定理立體幾何

  1.平面的基本性質(zhì):掌握三個公理及推論,會說明共點、共線、共面問題 。

  能夠用斜二測法作圖 。

  2.空間兩條直線的位置關系:平行、相交、異面的概念;

  會求異面直線所成的角和異面直線間的距離;證明兩條直線是異面直線一般用反證法 。

  3.直線與平面

  ①位置關系:平行、直線在平面內(nèi)、直線與平面相交 。

 、谥本與平面平行的判斷方法及性質(zhì),判定定理是證明平行問題的依據(jù) 。

 、壑本與平面垂直的證明方法有哪些?

 、苤本與平面所成的角:關鍵是找它在平面內(nèi)的射影,范圍是{00.900}

 、萑咕定理及其逆定理:每年高考試題都要考查這個定理. 三垂線定理及其逆定理主要用于證明垂直關系與空間圖形的度量.如:證明異面直線垂直,確定二面角的平面角,確定點到直線的垂線.

  4.平面與平面

  (1)位置關系:平行、相交,(垂直是相交的一種特殊情況)

  (2)掌握平面與平面平行的證明方法和性質(zhì) 。

  (3)掌握平面與平面垂直的證明方法和性質(zhì)定理 。尤其是已知兩平面垂直,一般是依據(jù)性質(zhì)定理,可以證明線面垂直 。

  (4)兩平面間的距離問題→點到面的距離問題→

  (5)二面角 。二面角的平面交的作法及求法:

 、俣x法,一般要利用圖形的對稱性;一般在計算時要解斜三角形;

 、诖咕、斜線、射影法,一般要求平面的垂線好找,一般在計算時要解一個直角三角形 。

  ③射影面積法,一般是二面交的'兩個面只有一個公共點,兩個面的交線不容易找到時用此法?

  平面向量

  1.基本概念:

  向量的定義、向量的模、零向量、單位向量、相反向量、共線向量、相等向量 。

  2. 加法與減法的代數(shù)運算:

  (1) .

  (2)若a=( ),b=( )則a b=( ).

  向量加法與減法的幾何表示:平行四邊形法則、三角形法則 。

  以向量 = 、 = 為鄰邊作平行四邊形ABCD,則兩條對角線的向量 = + , = - , = -

  且有| |-| |≤| |≤| |+| |.

  向量加法有如下規(guī)律: + = + (交換律); +( +c)=( + )+c (結合律);

  +0= +(- )=0.

  3.實數(shù)與向量的積:實數(shù) 與向量 的積是一個向量 。

  (1)| |=| |·| |;

  (2) 當 >0時, 與 的方向相同;當 <0時, 與 的方向相反;當 =0時, =0.

  (3)若 =( ),則 · =( ).

  兩個向量共線的充要條件:

  (1) 向量b與非零向量 共線的充要條件是有且僅有一個實數(shù) ,使得b= .

  (2) 若 =( ),b=( )則 ‖b .

  平面向量基本定理:

  若e1、e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量 ,有且只有一對實數(shù) , ,使得 = e1+ e2.

  4.P分有向線段 所成的比:

  設P1、P2是直線 上兩個點,點P是 上不同于P1、P2的任意一點,則存在一個實數(shù) 使 = , 叫做點P分有向線段 所成的比 。

  當點P在線段 上時, >0;當點P在線段 或 的延長線上時, <0;

高中數(shù)學知識點總結15

  數(shù)學立體幾何知識點

  1.平面的基本性質(zhì):掌握三個公理及推論,會說明共點、共線、共面問題。

  能夠用斜二測法作圖。

  2.空間兩條直線的位置關系:平行、相交、異面的概念;

  會求異面直線所成的角和異面直線間的距離;證明兩條直線是異面直線一般用反證法。

  3.直線與平面

 、傥恢藐P系:平行、直線在平面內(nèi)、直線與平面相交。

 、谥本與平面平行的判斷方法及性質(zhì),判定定理是證明平行問題的依據(jù)。

 、壑本與平面垂直的證明方法有哪些?

  ④直線與平面所成的角:關鍵是找它在平面內(nèi)的射影,范圍是

 、萑咕定理及其逆定理:每年高考試題都要考查這個定理. 三垂線定理及其逆定理主要用于證明垂直關系與空間圖形的度量.如:證明異面直線垂直,確定二面角的平面角,確定點到直線的垂線.

  4.平面與平面

  (1)位置關系:平行、相交,(垂直是相交的一種特殊情況)

  (2)掌握平面與平面平行的證明方法和性質(zhì)。

  (3)掌握平面與平面垂直的證明方法和性質(zhì)定理。尤其是已知兩平面垂直,一般是依據(jù)性質(zhì)定理,可以證明線面垂直。

  (4)兩平面間的距離問題→點到面的距離問題→

  (5)二面角。二面角的平面交的作法及求法:

  ①定義法,一般要利用圖形的對稱性;一般在計算時要解斜三角形;

  ②垂線、斜線、射影法,一般要求平面的垂線好找,一般在計算時要解一個直角三角形。

 、凵溆懊娣e法,一般是二面交的兩個面只有一個公共點,兩個面的.交線不容易找到時用此法。

  高中數(shù)學立體幾何知識點

  數(shù)學知識點1、柱、錐、臺、球的結構特征

  (1)棱柱:

  幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到

  截面距離與高的比的平方。

  (3)棱臺:

  幾何特征:①上下底面是相似的平行多邊形 ②側面是梯形 ③側棱交于原棱錐的頂點

  (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖

  是一個矩形。

  (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。

  (6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。

  (7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體 幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

  數(shù)學知識點2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、 俯視圖(從上向下)

  注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度。

  數(shù)學知識點3、空間幾何體的直觀圖——斜二測畫法

  斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

 、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半。

  快速提高數(shù)學成績的方法

  1、運算是學好數(shù)學的基本功.初中階段是培養(yǎng)數(shù)學運算能力的黃金時期,初中代數(shù)的主要內(nèi)容都和運算有關,如有初中數(shù)學理數(shù)的運算、整式的運算、因式分解、分式的運算、根式的運算和解方程.初中運算能力不過關,會直接影響以后數(shù)學的學習。

  2、做完一節(jié)的全部練習后,對照答案進行批改.千萬別做一道對一道的答案,因為這樣會造成思維中斷和對答案的依賴心理;

  先易后難,遇到不會的題一定要先跳過去,以平穩(wěn)的速度過一遍所有題目,先徹底解決會做的初中數(shù)學;不會的題過多時,千萬別急躁、泄氣,其實你認為困難的題,對其他人來講也是如此,只不過需要點時間和耐心;對于例題,有兩種處理方式:“先做后看”與“先看后測”。

  3、最重要就是興趣問題,學習興趣是一件非常重要的事情,如何培養(yǎng)我們的學習興趣呢?首先,我們自己要做的就是調(diào)整好我們的情緒,很多同學一提起數(shù)學這兩個字,負面情緒馬上出現(xiàn),這樣,不用其他人,你自己已經(jīng)把自己給放棄了!因此,想學好初中數(shù)學,最重要的是調(diào)整好自己的情緒,只有有了積極的情緒,才會有高效率的學習。

【高中數(shù)學知識點總結】相關文章:

高中數(shù)學知識點的總結03-07

高中數(shù)學復數(shù)知識點總結05-10

高中數(shù)學導數(shù)知識點總結04-10

高中數(shù)學統(tǒng)計知識點總結10-21

高中數(shù)學知識點總結05-15

高中數(shù)學必修2知識點總結11-22

高中數(shù)學重點知識點總結11-18

高中數(shù)學求切線知識點總結10-27

高中數(shù)學知識點總結(精選15篇)11-21

高中數(shù)學知識點總結20篇07-25