- 初中數學知識點資料 推薦度:
- 相關推薦
初中數學知識點資料
在現實學習生活中,說到知識點,大家是不是都習慣性的重視?知識點就是一些?嫉膬热荩蛘呖荚嚱洺3鲱}的地方。相信很多人都在為知識點發(fā)愁,以下是小編為大家整理的初中數學知識點資料,歡迎大家借鑒與參考,希望對大家有所幫助。
初中數學知識點資料1
定義:使一元一次方程左右兩邊相等的未知數的值叫做一元一次方程的解。
把方程的解代入原方程,等式左右兩邊相等。
解一元一次方程:
1、解一元一次方程的一般步驟
去分母、去括號、移項、合并同類項、系數化為1,這僅是解一元一次方程的一般步驟,針對方程的特點,靈活應用,各種步驟都是為使方程逐漸向x=a形式轉化。
2、解一元一次方程時先觀察方程的形式和特點,若有分母一般先去分母;若既有分母又有括號,且括號外的項在乘括號內各項后能消去分母,就先去括號。
3、在解類似于“ax+bx=c”的方程時,將方程左邊,按合并同類項的方法并為一項即(a+b)x=c。
使方程逐漸轉化為ax=b的最簡形式體現化歸思想。
將ax=b系數化為1時,要準確計算,一弄清求x時,方程兩邊除以的是a還是b,尤其a為分數時;二要準確判斷符號,a、b同號x為正,a、b異號x為負。
一元一次方程的應用
1、一元一次方程解應用題的類型
。1)探索規(guī)律型問題;
。2)數字問題;
。3)銷售問題(利潤=售價﹣進價,利潤率=利潤進價×100%);
。4)工程問題(①工作量=人均效率×人數×時間;②如果一件工作分幾個階段完成,那么各階段的工作量的和=工作總量);
。5)行程問題(路程=速度×時間);
。6)等值變換問題;
。7)和,差,倍,分問題;
(8)分配問題;
。9)比賽積分問題;
。10)水流航行問題(順水速度=靜水速度+水流速度;逆水速度=靜水速度﹣水流速度)。
2、利用方程解決實際問題的基本思路:
首先審題找出題中的未知量和所有的.已知量,直接設要求的未知量或間接設一關鍵的未知量為x,然后用含x的式子表示相關的量,找出之間的相等關系列方程、求解、作答,即設、列、解、答。
列一元一次方程解應用題的五個步驟
。1)審:仔細審題,確定已知量和未知量,找出它們之間的等量關系。
。2)設:設未知數(x),根據實際情況,可設直接未知數(問什么設什么),也可設間接未知數。
。3)列:根據等量關系列出方程。
。4)解:解方程,求得未知數的值。
。5)答:檢驗未知數的值是否正確,是否符合題意,完整地寫出答句。
初中數學知識點資料2
1、圓、圓心、半徑、直徑、圓弧、弦、半圓的定義
2、垂直于弦的直徑
圓是軸對稱圖形,任何一條直徑所在的直線都是它的對稱軸;
垂直于弦的直徑平分弦,并且平方弦所對的兩條弧;
平分弦的直徑垂直弦,并且平分弦所對的兩條弧。
3、弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。
4、圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。
5、點和圓的位置關系
點在圓外
點在圓上d=r
點在圓內d
定理:不在同一條直線上的三個點確定一個圓。
三角形的外接圓:經過三角形的三個頂點的圓,外接圓的圓心是三角形的三條邊的垂直平分線的交點,叫做三角形的'外心。
6、直線和圓的位置關系
相交d
相切d=r
相離d>r
切線的性質定理:圓的切線垂直于過切點的半徑;
切線的判定定理:經過圓的外端并且垂直于這條半徑的直線是圓的切線;
切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。
三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,圓心是三角形的三條角平分線的交點,為三角形的內心。
7、圓和圓的位置關系
外離d>R+r
外切d=R+r
相交R—r
內切d=R—r
內含d
8、正多邊形和圓
正多邊形的中心:外接圓的圓心
正多邊形的半徑:外接圓的半徑
正多邊形的中心角:沒邊所對的圓心角
正多邊形的邊心距:中心到一邊的距離
9、弧長和扇形面積
弧長
扇形面積:
10、圓錐的側面積和全面積
側面積:
全面積
11、(附加)相交弦定理、切割線定理
概率初步
1概率意義:在大量重復試驗中,事件A發(fā)生的頻率穩(wěn)定在某個常數p附近,則常數p叫做事件A的概率。
2用列舉法求概率
一般的,在一次試驗中,有n中可能的結果,并且它們發(fā)生的概率相等,事件A包含其中的m中結果,那么事件A發(fā)生的概率就是p(A)=
3用頻率去估計概率
初中數學知識點資料3
直線、射線、線段
。1)直線、射線、線段的表示方法
、僦本:用一個小寫字母表示,如:直線l,或用兩個大寫字母(直線上的)表示,如直線AB。
、谏渚:是直線的一部分,用一個小寫字母表示,如:射線l;用兩個大寫字母表示,端點在前,如:射線OA。注意:用兩個字母表示時,端點的字母放在前邊。
、劬段:線段是直線的一部分,用一個小寫字母表示,如線段a;用兩個表示端點的字母表示,如:線段AB(或線段BA)。
。2)點與直線的位置關系:
、冱c經過直線,說明點在直線上;
、邳c不經過直線,說明點在直線外。
兩點間的距離
。1)兩點間的距離:連接兩點間的線段的長度叫兩點間的距離。
。2)平面上任意兩點間都有一定距離,它指的是連接這兩點的線段的`長度,學習此概念時,注意強調最后的兩個字“長度”,也就是說,它是一個量,有大小,區(qū)別于線段,線段是圖形。線段的長度才是兩點的距離?梢哉f畫線段,但不能說畫距離。
正方體
。1)對于此類問題一般方法是用紙按圖的樣子折疊后可以解決,或是在對展開圖理解的基礎上直接想象。
。2)從實物出發(fā),結合具體的問題,辨析幾何體的展開圖,通過結合立體圖形與平面圖形的轉化,建立空間觀念,是解決此類問題的關鍵。
。3)正方體的展開圖有11種情況,分析平面展開圖的各種情況后再認真確定哪兩個面的對面。
初中數學知識點資料4
單項式與多項式
1、沒有加減運算的整式叫做單項式。(數字與字母的積———包括單獨的一個數或字母)
2、幾個單項式的和,叫做多項式。其中每個單項式叫做多項式的項,不含字母的項叫做常數項。
說明:①根據除式中有否字母,將整式和分式區(qū)別開;根據整式中有否加減運算,把單項式、多項式區(qū)分開。②進行代數式分類時,是以所給的代數式為對象,而非以變形后的`代數式為對象。劃分代數式類別時,是從外形來看。
單項式
1、都是數字與字母的乘積的代數式叫做單項式。
2、單項式的數字因數叫做單項式的系數。
3、單項式中所有字母的指數和叫做單項式的次數。
4、單獨一個數或一個字母也是單項式。
5、只含有字母因式的單項式的系數是1或―1。
6、單獨的一個數字是單項式,它的系數是它本身。
7、單獨的一個非零常數的次數是0。
8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。
9、單項式的系數包括它前面的符號。
10、單項式的系數是帶分數時,應化成假分數。
11、單項式的系數是1或―1時,通常省略數字“1”。
12、單項式的次數僅與字母有關,與單項式的系數無關。
多項式
1、幾個單項式的和叫做多項式。
2、多項式中的每一個單項式叫做多項式的項。
3、多項式中不含字母的項叫做常數項。
4、一個多項式有幾項,就叫做幾項式。
5、多項式的每一項都包括項前面的符號。
6、多項式沒有系數的概念,但有次數的概念。
7、多項式中次數的項的次數,叫做這個多項式的次數。
整式
1、單項式和多項式統(tǒng)稱為整式。
2、單項式或多項式都是整式。
3、整式不一定是單項式。
4、整式不一定是多項式。
5、分母中含有字母的代數式不是整式;而是今后將要學習的分式。
初中數學知識點資料5
不等式的判定知識點
1.常見的不等號有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;
2.在不等式“a>b”或“a
3.不等號的開口所對的數較大,不等號的尖頭所對的數較小;
4.在列不等式時,一定要注意不等式關系的關鍵字,如:正數、非負數、不大于、小于等。
初中數學不等式的性質知識點
不等式的性質
、偃绻鹸>y,那么yy;(對稱性)
、谌绻鹸>y,y>z;那么x>z;(傳遞性)
、廴绻鹸>y,而z為任意實數或整式,那么x+z>y+z;(加法原則)
、苋绻鹸>y,z>0,那么xz>yz;如果x>y,z<0,那么xz
、萑绻鹸>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z
、奕绻鹸>y,m>n,那么x+m>y+n;(充分不必要條件)
、呷绻鹸>y>0,m>n>0,那么xm>yn;
⑧如果x>y>0,那么x的n次冪>y的n次冪(n為正數)[1]
初中數學不等式知識點歸納
1、概念:
在一個式子中的數的關系,不全是等號,含不等符號的式子,那它就是一個不等式、例如2x+2y≥2xy,sinx≤1,ex>0,2x<3,5x≠5等>x是超越不等式。
2、分類:
不等式分為嚴格不等式與非嚴格不等式。
一般地,用純粹的'大于號、小于號“>”“<”連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)
“≥”(大于等于符號)“≤”(小于等于符號)連接的不等式稱為非嚴格不等式,或稱廣義不等式。
通常不等式中的數是實數,字母也代表實數,不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z)(其中不等號也可以為<,≥,>中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達一個命題,也可以表示一個問題。
我們大家在判定不等式時要記得,在一個式子中的數的關系,不全是等號,含不等符號的式子,那它就是一個不等式。
初三數學不等式證明知識點總結
1、比較法:包括比差和比商兩種方法。
2、綜合法
證明不等式時,從命題的已知條件出發(fā),利用公理、定理、法則等,逐步推導出要證明的命題的方法稱為綜合法,它是由因導果的方法。
3、分析法
證明不等式時,從待證命題出發(fā),分析使其成立的充分條件,利用已知的一些基本原理,逐步探索,最后將命題成立的條件歸結為一個已經證明過的定理、簡單事實或題設的條件,這種證明的方法稱為分析法,它是執(zhí)果索因的方法。
4、放縮法
證明不等式時,有時根據需要把需證明的'不等式的值適當放大或縮小,使其化繁為簡,化難為易,達到證明的目的,這種方法稱為放縮法。
5、數學歸納法
用數學歸納法證明不等式,要注意兩步一結論。
在證明第二步時,一般多用到比較法、放縮法和分析法。
6、反證法
證明不等式時,首先假設要證明的命題的反面成立,把它作為條件和其他條件結合在一起,利用已知定義、定理、公理等基本原理逐步推證出一個與命題的'條件或已證明的定理或公認的簡單事實相矛盾的結論,以此說明原假設的結論不成立,從而肯定原命題的結論成立的方法稱為反證法。
【初中數學知識點資料】相關文章:
初中數學知識點資料(通用9篇)05-16
初中數學旋轉的知識點11-16
初中數學的知識點大全06-06
初中數學概率知識點05-09
初中數學知識點11-30
初中數學垂直知識點12-07
初中數學方差知識點10-28
初中數學余切的知識點04-07
初中數學內錯角的知識點04-07