當前位置:育文網(wǎng)>教學(xué)文檔>教學(xué)反思> 公因數(shù)和最大公因數(shù)教學(xué)反思

公因數(shù)和最大公因數(shù)教學(xué)反思

時間:2024-07-20 22:03:41 教學(xué)反思 我要投稿
  • 相關(guān)推薦

公因數(shù)和最大公因數(shù)教學(xué)反思

  作為一位優(yōu)秀的老師,我們需要很強的教學(xué)能力,寫教學(xué)反思能總結(jié)教學(xué)過程中的很多講課技巧,怎樣寫教學(xué)反思才更能起到其作用呢?下面是小編整理的公因數(shù)和最大公因數(shù)教學(xué)反思,歡迎閱讀,希望大家能夠喜歡。

公因數(shù)和最大公因數(shù)教學(xué)反思

公因數(shù)和最大公因數(shù)教學(xué)反思1

  公因數(shù)與最大公因數(shù)這一課教材設(shè)計了一個用邊長6厘米和4厘米正方形鋪長18厘米,寬12厘米長方形的問題,讓學(xué)生在解決實際問題中探索公因數(shù)的認識。因此,在教學(xué)中要重視通過嘗試解決問題讓學(xué)生聯(lián)系已有的知識來引入公因數(shù)的認識。使學(xué)生初步體會學(xué)習(xí)公因數(shù)在解決實際問題中有著重要作用。

  這節(jié)課的上課情況感覺較好,課堂比較流暢,重難點也都注意到了,但是通過學(xué)生作業(yè)反饋情況來看,部分學(xué)生在尋找公因數(shù)和最大公因數(shù)時,容易出現(xiàn)漏掉因數(shù)的情況,如9的因數(shù)容易漏掉因數(shù)3等。在寫公因數(shù)的示意圖時,部分學(xué)生出現(xiàn)中間寫了公因數(shù)后,兩邊還是將所有因數(shù)都寫了進去,這一情況在預(yù)設(shè)時我雖然想到了學(xué)生會錯,也在課堂上進行了說明,但是少數(shù)學(xué)生還是出現(xiàn)了錯誤。

  用例舉的策略找出所有公因數(shù)的教學(xué)中,教材上有種層次不同學(xué)生可以掌握的方法參考,在這里的教學(xué)中我只是參照教材注重了這兩種方法的講解,這里教材的'應(yīng)是要求學(xué)生有序地列舉就行了,不同水平的學(xué)生采用的方法可以不一樣,因此,在這部分內(nèi)容的教學(xué)時,有些學(xué)生運用了一些比較獨特的方法尋找公因數(shù),教師應(yīng)該給予肯定,說明只要有序地列舉出因數(shù)來尋找公因數(shù)就可以了。但是,對于學(xué)生出現(xiàn)的各種方法可以讓學(xué)生進行對比,體會哪種方法更好,更適合自己,進而對自己的算法進行優(yōu)化。

公因數(shù)和最大公因數(shù)教學(xué)反思2

  分析基礎(chǔ)知識:本單元是在學(xué)生已經(jīng)理解和掌握倍數(shù)、因數(shù)的含義,初步學(xué)會找一個數(shù)的倍數(shù)和因數(shù),知道一個數(shù)的倍數(shù)和因數(shù)的特點的基礎(chǔ)上進行教學(xué)的。這部分內(nèi)容既是“數(shù)與代數(shù)”領(lǐng)域基礎(chǔ)知識的重要組成部分,又是進一步學(xué)習(xí)約分和通分以及分數(shù)四則計算的基礎(chǔ)。教材分兩段安排教學(xué)內(nèi)容:第一段,認識公倍數(shù)、最小公倍數(shù),探索找兩個數(shù)的最小公倍數(shù)的方法;第二段,認識公因數(shù)、最大公因數(shù),探索找兩個數(shù)的最大公因數(shù)的方法。此外,在本單元的最后還安排了實踐與綜合應(yīng)用《數(shù)字與信息》。

  一、借助操作活動,經(jīng)歷概念的形成過程。

  以往教學(xué)公因數(shù)的概念,通常是直接找出兩個自然數(shù)的因數(shù),然后讓學(xué)生發(fā)現(xiàn)有的因數(shù)是兩個數(shù)公有的,從而揭示公因數(shù)和最大公因數(shù)的概念。本單元教材注意以直觀的操作活動,讓學(xué)生經(jīng)歷公因數(shù)和最大公因數(shù)概念的形成過程。這樣安排有兩點好處:一是學(xué)生通過操作活動,能體會公倍數(shù)和公因數(shù)的實際背景,加深對抽象概念的理解;二是有利于改善學(xué)習(xí)方式,便于學(xué)生通過操作和交流經(jīng)歷學(xué)習(xí)過程。在這節(jié)課上,讓學(xué)生按要求自主操作,發(fā)現(xiàn)用邊長6厘米的正方形正好鋪滿長18厘米,寬12厘米的長方形。在發(fā)現(xiàn)結(jié)果的同時,還引導(dǎo)學(xué)生聯(lián)系除法算式進行思考,對直觀操作活動的初步抽象。再把初步發(fā)現(xiàn)的結(jié)論進行類推,發(fā)現(xiàn)用邊長1厘米、2厘米、3厘米6厘米的正方形都正好鋪滿長18厘米,寬12厘米的長方形。在此基礎(chǔ)上,引導(dǎo)學(xué)生思考1、2、3、6這些數(shù)和18、12有什么關(guān)系。這時揭示公因數(shù)和最大公因數(shù)的概念,突出概念的內(nèi)涵是“既是……又是……”即“公有”。并在此基礎(chǔ)上,借助直觀的集合圖顯示公因數(shù)的意義。實實在在讓學(xué)生經(jīng)歷了概念的形成過程,效果較好。

  二、預(yù)設(shè)探究過程,增強學(xué)生主體意識。

  例3中,教師宣布游戲規(guī)則后,放手讓學(xué)生動手操作,直觀感知——思考原因——想象延伸——討論思辨——明確意義。例4更是學(xué)生探究廣闊的平臺,教師拋出問題后,讓學(xué)生獨立探究。為了解決問題,學(xué)生充分調(diào)動了已有知識經(jīng)驗、方法、技能,八仙過海各顯神通,找出了各種求“12和18的公因數(shù)和最大公因數(shù)”的方法。在這個過程中,由學(xué)生自己建構(gòu)了公因數(shù)和最大公因數(shù)的概念,是真正主動探索知識的建構(gòu)者,而不是模仿者,充分的發(fā)掘了學(xué)生的自主意識,也充分體現(xiàn)了教師駕馭教材,調(diào)控學(xué)生的能力。

  三、重視方法和策略的滲透,提高學(xué)生學(xué)習(xí)能力。

  課程標準只要求在1~100的自然數(shù)中,能找出10以內(nèi)兩個自然數(shù)的公倍數(shù)和最小公倍數(shù),二是只要求在1~100的自然數(shù)中,能找出兩個自然數(shù)的公因數(shù)和最大公因數(shù),而不是用分解質(zhì)因數(shù)的方法求出公倍數(shù)或公因數(shù)。不教學(xué)用分解質(zhì)因數(shù)的.方法求最小公倍數(shù)和最大公因數(shù)還有兩個原因:一是通過列舉出兩個數(shù)的倍數(shù)或因數(shù)的方法,找出公倍數(shù)或公因數(shù)。突出對公倍數(shù)和公因數(shù)意義的理解;二是學(xué)生對用短除的形式求最大公因數(shù)和最小公倍數(shù)的算理理解有困難,減輕學(xué)生的學(xué)習(xí)負擔。所以在教學(xué)找公倍數(shù)或公因數(shù)時,應(yīng)提倡思考方法多樣化。例4教學(xué)中,學(xué)生得出了三種方法來尋找12和18的公因數(shù)和最大公因數(shù)。(當然到底是三種還是兩種有待商榷,不過在這里,為了便于比較我們姑且稱之為三種吧)這就存在了一個方法優(yōu)化的過程,哪一種方法會更簡單?通過對比,大多數(shù)學(xué)生贊同方法二。通過討論,引導(dǎo)學(xué)生以后解決此類問題時可以多運用較好的方法二。在這中間教師注意到了引導(dǎo)、小結(jié)、鼓勵,師生共同得出結(jié)論。

  復(fù)習(xí)題中回顧了四年級知識基礎(chǔ)、列舉法和標記法,在例3中,學(xué)生思考“還有哪些邊長整厘米的正方形紙片也能正好鋪滿這個長方形?”時就有了基礎(chǔ)。例4中,學(xué)生也知道用列舉法和標記法來解決問題。

  特別是用集合圖來表示因數(shù)和公因數(shù)的教學(xué)值得一提。有趣的游戲,預(yù)料中的爭執(zhí),恰到好處的體現(xiàn)了圖的妙用,圖的填法比一步步教學(xué)生如何填更有效,也更不易遺忘。練習(xí)五,第一題在填完集合圖后對公有因數(shù)和獨有因數(shù)意義的的提升,為下面的學(xué)習(xí)作了伏筆。體會初步的集合思想。

  練一練,并沒有局限于畫畫△、○,找找公因數(shù)和最大公因數(shù),而是進一步指導(dǎo)學(xué)生觀察,發(fā)現(xiàn)公因數(shù)都比小的數(shù)小(18和30中,18是小的數(shù)),在18的因數(shù)中找公因數(shù)的確更快、更好些。

  所以請老師們在平時的教學(xué)中也去分析、思考,把握例題和練習(xí)中每個需要提升之處,在課堂中時時注意方法和策略的滲透,較好地用實這套教材。

公因數(shù)和最大公因數(shù)教學(xué)反思3

  “公因數(shù)和最大公因數(shù)”是第三單元第三課時的內(nèi)容,在此之前,已經(jīng)學(xué)過了公倍數(shù)和最小公倍數(shù),掌握了公倍數(shù)和最小公倍數(shù)的概念和求法,這節(jié)課的教學(xué)過程與公倍數(shù)的教學(xué)非常相似,吸取了公倍數(shù)教學(xué)時的教訓(xùn),本節(jié)課教學(xué)公因數(shù)概念的時候,我先讓學(xué)生讀題,說清題意,再進行操作,這樣以來學(xué)生是帶著問題去操作的,不像公倍數(shù)時部分學(xué)生題目都理解不了就開始動手操作,不能完全達到本題操作的目的。在教學(xué)求公因數(shù)方法的時候,我也讓學(xué)生與公倍數(shù)求法進行了比較,通過比較學(xué)生發(fā)現(xiàn)了公倍數(shù)是無限的,沒有給定范圍時要寫省略號,而公因數(shù)是有限個的,要寫好句號,表示書寫完成;還發(fā)現(xiàn)找公倍數(shù)時是找最小公倍數(shù),而找公因數(shù)是最大公因數(shù);還發(fā)現(xiàn)求公因數(shù)的方法中是先找小數(shù)的因數(shù)再從其中找大數(shù)的因數(shù),而求公倍數(shù)卻是利用大數(shù)翻倍法,找出來的.是大數(shù)的倍數(shù),再從其中找出小數(shù)的倍數(shù)。不僅兩個例題的教學(xué)過程相似,連練習(xí)的設(shè)計也是相似的,所以學(xué)生在完成練習(xí)的時候,已經(jīng)對練習(xí)的形式較為熟悉,練習(xí)完成的較好。正因為兩節(jié)課太相似,所以小部分學(xué)生已經(jīng)有些混淆了,分不清怎么求公倍數(shù),怎么求公因數(shù),這個是在以后教學(xué)中要避免的。

  這節(jié)課的作業(yè)也能反映一些本節(jié)課上的問題,在教學(xué)公倍數(shù)的時候,我沒有強調(diào)集合中元素的互異性,作業(yè)中不少學(xué)生在公倍數(shù)一欄填寫的數(shù)字,同時出現(xiàn)在左右部分的集合中,在這節(jié)課練習(xí)時,我特意強調(diào)了這一點,希望學(xué)生們能記住,在完成練習(xí)五的時候還發(fā)現(xiàn),部分學(xué)生對于2、3、的倍數(shù)的特征記得不清楚了,所以在判斷是不是它們的倍數(shù)的時候還有一些人用大數(shù)去除以2、3、5的方法來判斷,耽誤了很多的時間,這是我上課之前沒有想到的,要是在做這一題之前先讓學(xué)生回憶2、3、5的倍數(shù)的特征,想必他們會節(jié)省更多的時間。

公因數(shù)和最大公因數(shù)教學(xué)反思4

  《公因數(shù)和最大公因數(shù)》這部分內(nèi)容是在學(xué)生理解因數(shù)與倍數(shù)的相互關(guān)系,會找1~100的自然數(shù)的因數(shù),并且在學(xué)習(xí)面積概念時積累了“密鋪”的活動經(jīng)驗開展教學(xué)的。對于《公因數(shù)和最大公因數(shù)》這樣一節(jié)概念課的教學(xué),其教學(xué)重、難點我認為就是對“公”字意義的理解,也就是如何體驗這個數(shù)既是一個數(shù)的因數(shù),又是另一個數(shù)的因數(shù),才是兩個數(shù)“公有”的因數(shù)。為了突出本節(jié)課的教學(xué)重點、突破教學(xué)難點,結(jié)合我們本學(xué)期的教研主題“如何設(shè)計有效的教學(xué)活動,達成教學(xué)目標”,我主要從以下幾方面入手來嘗試教學(xué):

  一、重視活動體驗,讓學(xué)生經(jīng)歷數(shù)學(xué)概念的形成過程。

  第一次猜想:一個長方形,長4厘米,寬2厘米。如果用同樣大的邊長是整厘米數(shù)的正方形來擺,剛好擺滿沒有剩余,可以選邊長是幾厘米的正方形?讓學(xué)生帶著自己的思考去操作驗證,在操作中體會“同樣大小的正方形”、“擺滿沒有剩余”,初步感知正方形既要把長方形的長擺滿沒有剩余,又要把長方形的寬擺滿沒有剩余。

  第二次猜想:現(xiàn)在把長方形變大,長6厘米,寬4厘米,同樣的要求,這次正方形的邊長可以是幾厘米?學(xué)生可以熟練地操作驗證,在活動體驗和交流中進一步感知選擇正方形時既要保證長方形的長擺滿沒有剩余,又要保證長方形的寬擺滿沒有剩余。

  第三次猜想:繼續(xù)變大,長18厘米,寬12厘米長方形,還是同樣的要求,用同樣大的小正方形來擺,剛好擺滿沒有剩余,這次可以選邊長是幾厘米的正方形呢?學(xué)生繼續(xù)操作驗證。這時學(xué)生已經(jīng)有了前兩次的操作感知,積累了充分的活動經(jīng)驗,這些活動經(jīng)驗可以支撐他們?nèi)ネ评、想象,找到能“擺滿沒有剩余”的本質(zhì),從而從整體感知正方形邊長的規(guī)律。

  然后,發(fā)揮教師的主導(dǎo)作用:“我們前后共擺了三個長方形,得到了黑板上的這些數(shù)據(jù)。仔細想一想,這些正方形的邊長和什么有關(guān)?有怎樣的關(guān)系呢?”引導(dǎo)學(xué)生觀察數(shù)據(jù),發(fā)現(xiàn)規(guī)律,引出公因數(shù)和最大公因數(shù)的概念。

  通過創(chuàng)設(shè)以上教學(xué)活動,讓學(xué)生在活動中實實在在地經(jīng)歷了公因數(shù)產(chǎn)生的過程,積累豐富的活動經(jīng)驗,充分體驗公因數(shù)的意義。

  二、借助幾何直觀,增進學(xué)生對概念意義的理解。

  通過上面的操作體驗和思考認知,學(xué)生認識了公因數(shù)和最大公因數(shù),又經(jīng)歷了找公因數(shù)和最大公因數(shù)的過程,學(xué)生能感知“因數(shù)”、“公因數(shù)”、“最大公因數(shù)”這三個概念之間存在著一些聯(lián)系。為了幫助學(xué)生深入地理解概念,提出問題:“對比這三個概念,現(xiàn)在你能說說它們之間的聯(lián)系與區(qū)別嗎?可以選其中兩個說一說!币龑(dǎo)學(xué)生進一步地思考。這時學(xué)生交流:“‘因數(shù)’是一個數(shù)的,而‘公因數(shù)’是兩個或兩個以上的數(shù)公有的”、“‘最大公因數(shù)’首先它也是‘公因數(shù)’中的一個,而且是‘公因數(shù)’中最大的一個!备鶕(jù)學(xué)生的交流,我通過課件,借助韋恩圖形象直觀地演示了“因數(shù)”與“公因數(shù)”、“公因數(shù)”與“最大公因數(shù)”之間的關(guān)系,增進了學(xué)生對概念意義的理解。

  三、通過實際問題,溝通數(shù)學(xué)概念與現(xiàn)實世界的聯(lián)系。

  在學(xué)生充分理解區(qū)分了“因數(shù)”、“公因數(shù)”、“最大公因數(shù)”三個概念之后,提出問題:“一根彩帶長16分米,如果要截成小段來裝飾包裝盒,要求每段一樣長且剪完沒有剩余,每段可以是幾分米?(選整分米數(shù))”學(xué)生想到:這是個用因數(shù)的知識解決的問題,求每段可以是幾分米,也就是求16的因數(shù)。這時,引導(dǎo)學(xué)生改編成一個用公因數(shù)來解決的問題,學(xué)生首先想到了

  少需要兩個數(shù)據(jù),于是有的學(xué)生想到可以改編成:“兩條彩帶,一條16分米,一條12分米。把它們截成同樣長的小段且沒有剩余,每段可以是幾分米?(選整分米數(shù))”這樣的`問題。在學(xué)生思考的過程,既是在進一步理解概念的意義,又找到了“公因數(shù)”、“最大公因數(shù)”概念的現(xiàn)實意義,培養(yǎng)了學(xué)生的數(shù)學(xué)抽象能力。

  一節(jié)課下來,我發(fā)現(xiàn)學(xué)生是最棒的!在不斷地實踐探索中,他們的認識不斷提升,我仿佛聽得到他們思維拔節(jié)的聲音。

  當然,仔細琢磨,這節(jié)課還有很多可圈可點之處,如:

  1、在三次操作之后,找正方形邊長與長方形的長和寬有什么關(guān)系環(huán)節(jié),有的孩子不能用數(shù)學(xué)的眼光去觀察、去思考,還停留在操作上,這就說明作為老師,在這兩個環(huán)節(jié)之間沒有為孩子搭建起合適的橋梁,沒有幫孩子找到一個好的思維支點。

  2、因為操作感知時間較長,在本節(jié)課的第二個知識目標——找公因數(shù)和最大公因數(shù)的方法環(huán)節(jié)就沒有充分的時間將孩子的各種方法展開交流,也是個小小的遺憾。

  帶著原有的思考我們做了如上嘗試,然而一節(jié)課的時間是有限的,個人業(yè)務(wù)素養(yǎng)也有待提高,所以沒有做到面面俱到。好在一節(jié)課的結(jié)束并不意味著思考的終止,我又帶著實踐中的新問題上路了。期待著思考的路上,能得到更多領(lǐng)導(dǎo)、同行們的指點與批評!

公因數(shù)和最大公因數(shù)教學(xué)反思5

  《標準》指出“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者。”這一理念要求我們教師的角色必須轉(zhuǎn)變。我想教師的作用必須體現(xiàn)在以下幾個方面。一是要引導(dǎo)學(xué)生思考和尋找眼前的問題與自己已有的知識體驗之間的關(guān)聯(lián);二是要提供把學(xué)生置于問題情景之中的機會;三是要營造一個激勵探索和理解的氣氛,為學(xué)生提供有啟發(fā)性的討論模式;四是要鼓勵學(xué)生表達,并且在加深理解的基礎(chǔ)上,對不同的答案開展討論;五是要引導(dǎo)學(xué)生分享彼此的思想和結(jié)果,并重新審視自己的想法。

  對照《課標》的理念,我對《公因數(shù)與最大公因數(shù)》的教學(xué)作了一點嘗試。

  一、引導(dǎo)學(xué)生思考和尋找眼前的問題與自己已有的知識體驗之間的關(guān)聯(lián)。

  《公因數(shù)與最大公因數(shù)》是在《公倍數(shù)和最小公倍數(shù)》之后學(xué)習(xí)的一個內(nèi)容。如果我們對本課內(nèi)容作一分析的`話,會發(fā)現(xiàn)這兩部分內(nèi)容無論是在教材的呈現(xiàn)程序還是在思考方法上都有其相似之處。基于這一認識,在課的開始我作了如下的設(shè)計:

  “今天我們學(xué)習(xí)公因數(shù)與最大公因數(shù)。對于今天學(xué)習(xí)的內(nèi)容你有什么猜測?”

  學(xué)生已經(jīng)學(xué)過公倍數(shù)與最小公倍數(shù),這兩部分內(nèi)容有其相似之處,課始放手讓學(xué)生自由猜測,學(xué)生通過對已有認知的檢索,必定會催生出自己的一些想法,從課的實施情況來看,也取得了令人滿意的效果。什么是公因數(shù)和最大公因數(shù)?如何找公因數(shù)與最大公因數(shù)?為什么是最大公因數(shù)面不是最小公因數(shù)?這一些問題在學(xué)生的思考與思維的碰撞中得到了較好的生成。無疑這樣的設(shè)計貼近學(xué)生的最近發(fā)展區(qū),為課堂的有效性奠定了基礎(chǔ)。

  二、提供把學(xué)生置于問題情景之中的機會,營造一個激勵探索和理解的氣氛

  “對于今天學(xué)習(xí)的內(nèi)容你有什么猜測?”這一問題的包容性較大,不同的學(xué)生面對這一問題都能說出自己不同的猜測,學(xué)生的差異與個性得到了較好的尊重,真正體現(xiàn)了面向全體的思想。不同學(xué)生在思考這一問題時都有了自己的見解,在相互補充與想互啟發(fā)中生成了本課教學(xué)的內(nèi)容,使學(xué)生充分體會了合作的魅力,構(gòu)建了一個和諧的課堂生活。在這一過程中學(xué)生深深地體會到數(shù)學(xué)知識并不是那么高深莫測、可敬而不可親。數(shù)學(xué)并不可怕,它其實滋生于原有的知識,植根于生活經(jīng)驗之中。這樣的教學(xué)無疑有利于培養(yǎng)學(xué)生的自信心,而自信心的培養(yǎng)不就是教育最有意義而又最根本的內(nèi)容嗎?

  三、讓學(xué)生進行獨立思考和自主探索

  通過學(xué)生的猜測,我把學(xué)生的提出的問題進行了整理:

  (1)什么是公因數(shù)與最大公因數(shù)?

  (2)怎樣找公因數(shù)與最大公因數(shù)?

  (3)為什么是最大公因數(shù)而不是最小公因數(shù)?

  (4)這一部分知識到底有什么作用?

  我先讓學(xué)生獨立思考?然后組織交流,最后讓學(xué)生自學(xué)課本

  這樣的設(shè)計對學(xué)生來說具有一定的挑戰(zhàn)性,在問題解決的過程中充分發(fā)揮了學(xué)生的主體性。在這一過程中學(xué)生形成了自己的理解,在與他人合作與交流中逐漸完善了自己的想法。我想這大概就是《標準》中倡導(dǎo)給學(xué)生提供探索與交流的時間和空間的應(yīng)有之意吧。

公因數(shù)和最大公因數(shù)教學(xué)反思6

  《兩三位數(shù)除以一位數(shù)》商是兩位數(shù)是在學(xué)生學(xué)習(xí)了商是三位數(shù)和有余數(shù)除法的基礎(chǔ)上進行的,它是學(xué)習(xí)除數(shù)是多位數(shù)除法的基礎(chǔ)。因此要在引導(dǎo)學(xué)生解決具體問題的過程中,切實理解算理,掌握計算方法。

  1、聯(lián)系舊知,激發(fā)興趣

  本節(jié)課我有意識的在一開始設(shè)計了搶答環(huán)節(jié),讓學(xué)生判斷大屏幕上幾道題目的商的位數(shù),進而發(fā)現(xiàn)不同,激發(fā)興趣,引入本節(jié)課的學(xué)習(xí)。從效果上看,學(xué)生在判斷的.過程中比較感興趣,并能初步感受與舊知的聯(lián)系與不同,達到了預(yù)期的目的。

  2、放手學(xué)生,設(shè)置大問題

  本節(jié)課我在這方面做的不好。在擺小棒理解算理環(huán)節(jié),我領(lǐng)的比較多,學(xué)生和老師一問一答,比如:“先分什么?再分什么?每份是多少”等,雖然學(xué)生最后也弄明白了該如何分小棒,但學(xué)生的能力沒有得到提高。在于老師的建議下,在重建設(shè)計中,我會注意放手,設(shè)置大問題。比如:“請同學(xué)們看著大屏幕上的小棒,想一想應(yīng)該怎樣分呢?先自己想一想,然后同桌交流一下!弊寣W(xué)生帶著問題思考,在思考中考慮擺小棒的全過程,而不是想一開始那樣,思路被割裂開了。之后再全班交流,教師也可適當引領(lǐng)點撥,但這和我之前的設(shè)計感覺就不一樣了,后者更能體現(xiàn)學(xué)生主體地位。在這方面,我今后還應(yīng)提高意識,不斷實踐。

  3、設(shè)計新穎的練習(xí)題,增多練習(xí)內(nèi)容。

  計算教學(xué),單純的讓學(xué)生計算勢必會使學(xué)生產(chǎn)生厭倦。我聯(lián)系學(xué)生實際和生活實際,設(shè)計出多種多樣的練習(xí)題,比如:計算之后讓學(xué)生思考問題“想一想:三位數(shù)除以一位數(shù),什么時候商是三位數(shù),什么時候商是兩位數(shù)?”或讓學(xué)生“火眼金睛”辨別對錯,或讓學(xué)生在解決實際問題中說一說先算什么再算什么,感受解決實際問題的一般環(huán)節(jié),將思路滲透到日常教學(xué)中,或在最后讓學(xué)生根據(jù)所學(xué)再來一組比賽等,結(jié)合學(xué)生不同的計算階段提出不同的要求和練習(xí)形式,使單調(diào)枯燥的計算練習(xí)變得生動有趣,達到了較好的教學(xué)效果。

  我將以本次講課為契機,在今后的教學(xué)中應(yīng)用本次活動學(xué)到的知識,加以實踐,不斷提高自身的教學(xué)水平。

公因數(shù)和最大公因數(shù)教學(xué)反思7

  公因數(shù)和最大公因數(shù)這一課應(yīng)注重引導(dǎo)學(xué)生體驗“概念形成”的過程,讓學(xué)生“研究學(xué)習(xí)”、“自主探索”,學(xué)生不應(yīng)是被動接受知識的容器,而應(yīng)是在學(xué)習(xí)過程中主動積極的參與者,是認知過程的探索者,是學(xué)習(xí)活動的主體。

  我是這樣組織教學(xué)的:

  在教學(xué)過程中,我們不僅要求學(xué)生掌握抽象的數(shù)學(xué)結(jié)論,更應(yīng)注重學(xué)生概念形成的過程。應(yīng)引導(dǎo)學(xué)生參與探討知識的'形成過程,盡可能挖掘?qū)W生潛能,能讓學(xué)生通過努力,自己解決問題,形成概念。通過創(chuàng)設(shè)生活情境,幫助王叔叔鋪地裝,將學(xué)生自然地帶入求知的情境中去,在學(xué)生已有知識經(jīng)驗的基礎(chǔ)上放手讓學(xué)生去交流、探索。“哪一個正方形紙片能正好鋪滿長16厘米寬12厘米的長方形,為什么?”這樣更利于培養(yǎng)學(xué)生自主探索、提出問題和解決問題的能力。接著進一步引導(dǎo)學(xué)生思考“還有哪些正方形紙片也能正好鋪滿長16厘米寬12厘米的長方形?”“為什么邊長是1厘米、2厘米、4厘米的地磚可以正好鋪滿?而邊長是3厘米的正方形地磚不能正好鋪滿?”讓學(xué)生在反復(fù)地思考和交流中加深對公因數(shù)這一概念的理解。

  教師拋出問題后,讓學(xué)生獨立探究。為了解決問題,學(xué)生充分調(diào)動了已有知識經(jīng)驗、方法、技能,找出“16和12的公因數(shù)和最大公因數(shù)”。在這個過程中,由學(xué)生自己建構(gòu)了公因數(shù)和最大公因數(shù)的概念,是真正主動探索知識的建構(gòu)者,而不是模仿者,充分的發(fā)掘了學(xué)生的自主意識。

  思考:

  1.增強師生和生生之間的互動

  在教學(xué)過程中各個環(huán)節(jié)的銜接不夠緊湊,本課時的教學(xué)內(nèi)容比較枯燥,在課堂上如何調(diào)動學(xué)生的積極性,活躍課堂氣氛,使學(xué)生學(xué)的輕松、扎實。今后的教學(xué)中,在這一點上要都多下功夫。本課時的教學(xué)中,在組織學(xué)生交流找“16和12的公因數(shù)”的方法時,指名回答的形式過于單調(diào),有的同學(xué)沒有選著擺一擺的方法,而是直接用邊長去除以小正方形邊長來判斷,我沒有很好利用學(xué)生生成的資源,幫助學(xué)生理解,局限學(xué)生的思維發(fā)展。

  2.方法多樣化和方法優(yōu)化

  在組織學(xué)生進行交流時,應(yīng)該注重引導(dǎo)學(xué)生有層次地介紹各種不同的方法。同時還要引導(dǎo)學(xué)生進行方法的比較和優(yōu)化。

公因數(shù)和最大公因數(shù)教學(xué)反思8

  【多問幾個為什么】

  1、出差兩天,今日回來,與孩子們繼續(xù)暢游《公倍數(shù)和公因數(shù)》單元。

  思維一旦被激發(fā),就有點一發(fā)不可收拾。

  從第一課時開始,孩子們與我是完全浸潤在了公倍數(shù)與公因數(shù)的歡樂中。我的態(tài)度也從一開始對教材安排的質(zhì)疑,到現(xiàn)在極力擁護教材的安排。

  只有放手給孩子們一個構(gòu)建的機會,孩子們才能在構(gòu)建過程中頻頻發(fā)起智慧的邀請。

  在學(xué)習(xí)公倍數(shù)的時候,課上巧遇“思維定勢”,孩子們以為兩個數(shù)的公倍數(shù)就是它們的乘積;但是在解決書本上的6和9的公倍數(shù)是多少時,猛然發(fā)現(xiàn),這個方法不能次次實施。孩子們提出了一系列猜想。其中小彧發(fā)現(xiàn),如果將錯就錯,把6和9相乘,也可以,但是要除以它們的最大公因數(shù)。并且,小彧通過舉例,把這個發(fā)現(xiàn)從特殊上升到了一般。

  因為當時還未學(xué)習(xí)公因數(shù),我就躲避了問題的內(nèi)里。

  小何在備學(xué)中說,我最大的問題是,我知道小彧的說法是對的,但是為何6和9兩個數(shù)相乘,再除以最大公因數(shù),得到的就是最小公倍數(shù),其中的道理是什么?

  呵呵,好家伙,知道了是什么,自覺追問了為什么?

  明天我們要對本章節(jié)的內(nèi)容做個整體梳理,我準備結(jié)合短除法,讓孩子們意識到小何追問思想的可貴,以及這個方法可行之處究竟是什么。

  2、孩子們很愛思考,從第一課時的下課時間開始,就發(fā)現(xiàn)兩個數(shù)若有倍數(shù)關(guān)系,它們的最小公倍數(shù)很奇妙,就是較大的數(shù)。

  第二課時,我們通過教材上的習(xí)題,一起說了這個規(guī)律,即訴說了看到的表面現(xiàn)象。

  孩子們還不甘心,提出了問題,為什么兩個數(shù)是倍數(shù)關(guān)系,最小公倍數(shù)就是大的那個數(shù)呢?

  一時安靜后,好幾個孩子舉高手,并說清了原因:大數(shù)本身是小數(shù)的.倍數(shù),大數(shù)又是自己最小的倍數(shù),理所應(yīng)當是兩數(shù)的最小公倍數(shù)。

  3、公倍數(shù)的種種猜想,在學(xué)習(xí)公因數(shù)的時候,思想方法得到了遷移。

  第一課時,孩子們提出各種猜想,求最大公因數(shù),會不會也像公倍數(shù)中兩個數(shù)有特殊關(guān)系,就能輕松的求出結(jié)果?

  【孩子們+數(shù)學(xué)=好玩。】

  要做找公倍數(shù)的上本子作業(yè)了,我板書給孩子們看書寫格式,他們拉著臉。

  我說,我小時候,就是寫這么多字的。不過,我可以介紹你們寫一種簡單的,用“【】”包住兩個數(shù),中間用逗號隔開,這樣就能代替寫這么多字。孩子們一看,多方便呀!居然都“啪啪啪”鼓起掌來,哈!

  我滿懷愜意的說,你們的掌聲與微笑中包含著對數(shù)學(xué)簡潔美的追求。

  孩子們爽歪歪了。

  不過事后,一個資深老師告訴我,這個環(huán)節(jié),如果讓孩子們創(chuàng)造一下,如何追求簡潔。也許,這樣對于孩子們的思維發(fā)展更有效。一想,我也同意這般。

  一節(jié)課,只要知識目標達成,那么,過程方法與情意目標是不可分割的。學(xué)生在達成過程方法目標的旅程中,豈有不快樂,不感受到豐富體驗的?

公因數(shù)和最大公因數(shù)教學(xué)反思9

  教學(xué) 例3時先用邊長6厘米和4厘米的正方形紙片,分別鋪長18厘米、寬12厘米的長方形,教師選擇正方形紙片鋪長方形的活動教學(xué)公因數(shù),是因為這一活動能吸引學(xué)生發(fā)現(xiàn)和提出問題,能引導(dǎo)學(xué)生思考。學(xué)生用同兩張正方形紙片分別鋪一個不同的長方形,面對出現(xiàn)的兩種結(jié)果,會發(fā)現(xiàn)“為什么有時正好鋪滿、有時不能”,“什么時候正好鋪滿、什么時候不能”這些有研究價值的問題。他們沿著長方形的邊鋪正方形紙片,就會想到正好鋪滿與不能正好鋪滿的原因可能和邊長有關(guān),于是產(chǎn)生進一步研究長方形邊長和正方形邊長關(guān)系的愿望。分析長方形的長、寬和正方形邊長之間的關(guān)系,按學(xué)生的認知規(guī)律,設(shè)計成兩個層次: 第一個層次聯(lián)系鋪的過程與結(jié)果,從長方形的長、寬除以正方形的邊長沒有余數(shù)和有余數(shù)的層面上,體會正好鋪滿與不能正好鋪滿的原因。第二個層次根據(jù)邊長6厘米的正方形正好鋪滿長18厘米、寬12厘米的長方形、而邊長4厘米的正方形不能正好鋪滿長18厘米、寬12厘米的長方形的經(jīng)驗,聯(lián)想邊長幾厘米的正方形還能正好鋪滿長18厘米、寬12厘米的長方形。先找到這些正方形,把它們邊長從小到大排列,知道這樣的正方形的個數(shù)是有限的。再用“既是12的因數(shù),又是18的因數(shù)”概括地描述這些正方形邊長的特征。顯然,前一層次形象思維的成分較大,思考難度較小,對后一層次的'抽象認識有重要的支持作用。

  反思:突出概念的內(nèi)涵、外延,讓學(xué)生準確理解概念。

  我用“既是……又是……”的描述,讓學(xué)生理解“公有”的意思。例3先聯(lián)系用邊長1、2、3、6厘米的正方形正好能鋪滿長18厘米、寬12厘米的長方形紙片的現(xiàn)象,從長方形的長、寬分別除以正方形邊長都沒有余數(shù),得出正方形的邊長“既是12的因數(shù),又是18的因數(shù)”,一方面概括了這些正方形邊長的特點,另一方面讓學(xué)生體會“既是……又是……”的意思。然后進一步概括 “1、2、3、6既是12的因數(shù),又是18的因數(shù),它們是12和18的公因數(shù)”,形成公因數(shù)的概念。

  由于知識的遷移,學(xué)生很容易想到用集合圖直觀形象地顯示公因數(shù)的含義。第27頁把8的因數(shù)和12的因數(shù)分別寫到兩個集合圈里,這兩個集合圈有一部分重疊,在重疊部分里寫的數(shù)既是8的因數(shù),也是12的因數(shù),是8和12的公因數(shù)。先觀察這個集合圖,再填寫第28頁的集合圖,學(xué)生能進一步體會公因數(shù)的含義。概念的外延是指這個概念包括的一切對象。

  運用數(shù)學(xué)概念,讓學(xué)生探索找兩個數(shù)的最大公因數(shù)的方法。

  例4教學(xué)求兩個數(shù)的最大公因數(shù),出現(xiàn)了兩種解決問題的方法。學(xué)生有的先分別寫出8和12的因數(shù),再找出它們的公因數(shù)和最大公因數(shù)。有的在8的因數(shù)里找12的因數(shù),這樣操作比較方便,但容易遺漏。我有意引導(dǎo)學(xué)生選擇第一種。練習(xí)五的第3題就是這種方法的應(yīng)用。

  充分利用教育資源,自制課件,協(xié)助教學(xué)。

  限于操作的局部性,我認真制作了實用的課件,讓直觀、清晰的頁面直接輔助我教學(xué),學(xué)生表現(xiàn)積極,課堂氣氛比較活躍,提問、釋疑、解惑,練習(xí)的熱情很高。

  本課設(shè)計目的是使學(xué)生學(xué)習(xí)公因數(shù)、最大公因數(shù)的意義,并學(xué)會找兩個數(shù)的最大公因數(shù)的方法,從整節(jié)課學(xué)生表現(xiàn)情況和課后作業(yè)反饋來看,學(xué)生對本部分知識知識掌握較好,學(xué)習(xí)積極并具有熱情,就實效性講很令人滿意。

公因數(shù)和最大公因數(shù)教學(xué)反思10

  教學(xué)內(nèi)容:第26~28頁的例3、例4、“練一練”、“練習(xí)五”的第1~5題。

  目標預(yù)設(shè):

  1、理解公因數(shù)的含義,掌握求兩個公因數(shù)和最大公因數(shù)的方法。

  2、經(jīng)歷“猜測——驗證”的數(shù)學(xué)學(xué)習(xí)過程,感受科學(xué)探究的一般方法,培養(yǎng)抽象思維能力,積累數(shù)學(xué)活動經(jīng)驗。

  3、感受數(shù)學(xué)的奇妙,培養(yǎng)對數(shù)學(xué)的積極情感。

  教學(xué)重點和難點:理解公因數(shù)的含義,掌握求兩個數(shù)最大公因數(shù)的方法。

  課程實施:

  一、自主構(gòu)建公因數(shù)意義

  1、出示邊長6厘米、邊長4厘米的小正方形個若干以及一個長18厘米、寬12厘米的長方形。

  猜一猜:你覺得哪一種正方形可以將這個正方形鋪滿。

  2、組織學(xué)生同桌合作,擺放小正方形,

  教師要幫助學(xué)有困難的小組完成活動任務(wù)。

  3、交流:邊長6厘米的正方形紙可以正好鋪滿這個長方形。

  為什么邊長6厘米的正方形正好鋪滿這個長方形?

  結(jié)合剛才的操作活動體驗,學(xué)生明白:因為12÷6=2(豎排放2行),18÷6=3(橫排放3列),也就是6既是12的因數(shù),也是18的因數(shù),所以可以正好擺滿。

  4、討論:還有哪些邊長是整厘米的正方形紙片也能正好鋪滿這個長方形?簡單地解釋自己推測的理由。

  5、只要邊長的厘米數(shù)既是12的因數(shù),又是18的因數(shù),就能正好鋪滿這個長方形嗎?

  6、提問:4是12和18的公因數(shù)嗎?

  7、通過剛才的學(xué)習(xí),你有什么話想說嗎?

  二、獨立探索找公因數(shù)的方法。

  1、8和12的公因數(shù)有哪些?最大公因數(shù)是幾?

  放手讓學(xué)生自己探索解決問題的方法。

  2、交流:學(xué)生出現(xiàn)的方法:

 。1)、分別寫出8和12的因數(shù),再找一找他們的公因數(shù);

 。2)、先找8的因數(shù),再從8的因數(shù)中找12的因數(shù);

  ……

  交流時結(jié)合自己的方法說說這樣找的理由,

  3、“集合圈”

  我們同樣也可以用集合圈表示8和12的公因數(shù)。

  出示集合圈,先讓學(xué)生自己填寫,再說說每一部分表示的含義。

  4、觀察比較,感受公因數(shù)的有限性,

  公因數(shù)的集合圈與公倍數(shù)有什么不同的地方?為什么公因數(shù)集合圈中不需要省略號?引導(dǎo)學(xué)生從“因數(shù)的有限性”推想出“兩個數(shù)的公因數(shù)的個數(shù)是有限的”。

  5、練一練

  先讓學(xué)生根據(jù)要求完成。通過交流,進一步理解找兩個數(shù)公因數(shù)和最大公因數(shù)的方法,感受兩者的聯(lián)系與區(qū)別,

  三.促進知識向技能的轉(zhuǎn)化

  1、“練習(xí)五”第1題

  讓學(xué)生獨立完成,進一步理解集合圈的表示方法,深化對求兩個數(shù)最大公因數(shù)的方法的認識。

  2、“練習(xí)五”第4題

  ⑴先讓學(xué)生自主判斷第一組數(shù),然后交流各自的方法,比較得出“利用2.3.5倍數(shù)的特征”進行判斷,可以提高正確率。

 、瞥鍪酒渌麕捉M讓學(xué)生選擇合理的方法進行判斷,同時提醒兩個數(shù)的公因數(shù)可以有2.3.5中的多個,為后面學(xué)習(xí)月份積累策略。

  3、“練習(xí)五”第5題

  要啟發(fā)學(xué)生用不同的方法找出每組數(shù)的最大公因數(shù),提倡靈活運用各種策略快速解題,

  四、通過本節(jié)課的學(xué)習(xí),你有哪些收獲?

  五.作業(yè)布置

  “練習(xí)五”第2.3題

  課后反思:

  這部分內(nèi)容的結(jié)構(gòu)與“公倍數(shù)和最小公倍數(shù)”基本相同,結(jié)合具體的情境,引導(dǎo)學(xué)生通過觀察、操作、分析、比較、抽象和概括等活動,探索并理解公因數(shù)、最大公因數(shù)的含義,掌握求兩個數(shù)的最大公因數(shù)的方法。

  1、我讓學(xué)生依托動手操作,加強對比觀察,溝通新舊知識的聯(lián)系,優(yōu)化概念引進的過程。在教學(xué)例3時,我分四步組織學(xué)生

  的活動。第一步,讓學(xué)生“分別用邊長6厘米和4厘米的正方形紙片鋪長18厘米、寬12厘米的長方形”,鋪前先思考:邊長是多少的正方形可以鋪滿這個長方形?通過操作,學(xué)生都知道邊長6厘米的正方形可以鋪滿長18厘米、寬12厘米的長方形。引導(dǎo)學(xué)生具體感知公因數(shù)的含義。第二步,組織討論“還有哪些邊長是整厘米數(shù)的`正方形紙片也能正好鋪滿這個長方形”,通過思考,學(xué)生明白:“只要邊長的厘米數(shù)既是12的因數(shù),又是18的因數(shù),就能正好鋪滿”這個長方形。第三步,可以先讓學(xué)生說一說1、2、3和6的共同特征,再告訴學(xué)生1、2、3和6的共同特征,再告訴學(xué)生“1、2、3和6既是12的因數(shù),又是18的因數(shù),它們是12和18的公因數(shù)。第四步,讓學(xué)生說一說4為什么不是12和18的公因數(shù),使學(xué)生加深對公因數(shù)含義的理解,知道4是12的因數(shù),但不是18的因數(shù),所以4就不是12和18的公因數(shù)。通過正、反兩方面的比較,優(yōu)化概念的形成。

  2、著眼于問題的解決,鼓勵學(xué)生自主探索,逐步形成概念結(jié)構(gòu)。教學(xué)例4是,我讓學(xué)生先獨立思考,用自己的方法找出8和12的公因數(shù)和最大的公因數(shù)。再通過交流,使學(xué)生在相互啟發(fā)的過程中進一步打開思路,明確方法。由于學(xué)生已經(jīng)積累了較為豐富的求兩個數(shù)的最小公倍數(shù)的方法,因而這里的重點是讓學(xué)生在自主探索的基礎(chǔ)上合乎邏輯地表達自己的思考過程,并體會不同方法的內(nèi)在一致性。這時,我適時引導(dǎo)學(xué)生建立概念結(jié)構(gòu):因數(shù)——公因數(shù)——最大公因數(shù),并且辨析這些概念的聯(lián)系與區(qū)別。此外,考慮到學(xué)生也已經(jīng)初步認識了用集合圖表示兩個相交的集合圈,所以我讓學(xué)生根據(jù)對有關(guān)概念的理解,獨立把8和12的因數(shù)分別填在集合圖中的合適部分,然后再看圖說說各自的想法,說說每一個區(qū)域內(nèi)的數(shù)分別表示什么,把靜態(tài)的集合圖轉(zhuǎn)化成動態(tài)的探索對象,讓學(xué)生加深對集合圖的理解,也使集合思想的滲透落到實處。

  3、練習(xí)的重點是讓學(xué)生通過操作和填空,進一步理解求公因數(shù)和最大公因數(shù)的方法。讓學(xué)生在解決問題的過程中提煉解題策略,優(yōu)化概念應(yīng)用的過程。

【公因數(shù)和最大公因數(shù)教學(xué)反思】相關(guān)文章:

《公因數(shù)和最大公因數(shù)》說課稿11-13

最大公因數(shù)教學(xué)反思03-06

《最大公因數(shù)》教學(xué)反思07-24

《最大公因數(shù)》教學(xué)反思03-31

最大公因數(shù)的教學(xué)反思02-10

因數(shù)和最大公因數(shù)教案06-14

《公倍數(shù)和公因數(shù)》教學(xué)反思09-25

《最大公因數(shù)》說課稿12-19

《最大公因數(shù)》的說課稿12-19