當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教學(xué)反思> 倍數(shù)特征教學(xué)反思

倍數(shù)特征教學(xué)反思

時(shí)間:2023-03-16 13:57:42 教學(xué)反思 我要投稿

倍數(shù)特征教學(xué)反思

  作為一位剛到崗的人民教師,課堂教學(xué)是我們的工作之一,借助教學(xué)反思我們可以快速提升自己的教學(xué)能力,來參考自己需要的教學(xué)反思吧!以下是小編整理的倍數(shù)特征教學(xué)反思,歡迎閱讀與收藏。

倍數(shù)特征教學(xué)反思

倍數(shù)特征教學(xué)反思1

  3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“個(gè)位上的數(shù)字之和”去研究。上課開始先讓學(xué)生通過練習(xí)回顧舊知:2的倍數(shù)與5的倍數(shù)的特征。然后讓學(xué)生猜想:3的倍數(shù)又有什么特征呢?這樣能較好調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。由于受2的倍數(shù)與5的倍數(shù)特征的影響,有些學(xué)生很自然猜測(cè)到“個(gè)位上是0,3,6,9的數(shù)是3的倍數(shù)”、“各位上的數(shù)字加起來是3,6,9的數(shù)是3的倍數(shù)”等等,學(xué)生能想到這幾點(diǎn)是非常不錯(cuò)的。

  學(xué)生進(jìn)行猜想后,我并沒有判斷學(xué)生的猜想是否正確,而是出現(xiàn)了百數(shù)表,讓學(xué)生在百數(shù)表中圈出所有的3的倍數(shù),讓學(xué)生從表中發(fā)現(xiàn)3 的倍數(shù)的特征,把自己發(fā)現(xiàn)的在小組間交流。此時(shí),我還是沒有判斷學(xué)生的發(fā)現(xiàn)是否正確,而是讓學(xué)生打開課本自學(xué),從課本中找3的倍數(shù)的特征,當(dāng)遇到問題解決不了時(shí),我們可以向課本求助。然后問學(xué)生“各位上的數(shù)字的和是3的倍數(shù)是什么意思?請(qǐng)結(jié)合舉例說說!苯酉聛韺(shù)擴(kuò)到百以上,通過各種方式舉正反例通過計(jì)算來驗(yàn)證從而得出3的倍數(shù)的特征。最后比較驗(yàn)證之前的猜想與發(fā)現(xiàn)。當(dāng)我們向課本找到結(jié)論時(shí),我們也要質(zhì)疑,通過舉例來驗(yàn)證。鼓勵(lì)學(xué)生對(duì)知識(shí)要敢于質(zhì)疑,敢于通過各種方式去驗(yàn)證,培養(yǎng)學(xué)生良好的`數(shù)學(xué)思維。

  在教學(xué)中,我能有效獲取課堂生成資源,同時(shí)也注重方法的指導(dǎo)。比如:同桌舉例驗(yàn)證時(shí),涉及到了“123456”是否是3的倍數(shù),先給予學(xué)生思考的時(shí)間,讓后問:還有更加簡(jiǎn)便的方法嗎?老師有效引導(dǎo),讓學(xué)生去發(fā)現(xiàn)“去3法”能給我們的判斷帶來很大的方便。還有在方框里填數(shù)等。有較好的教學(xué)機(jī)智與課堂駕馭能力,如:在百數(shù)表圈3的倍數(shù)時(shí),我的課件中有個(gè)數(shù)“99”忘記沒有圈好,學(xué)生發(fā)現(xiàn)了這問題。在這里,我是表?yè)P(yáng)了發(fā)現(xiàn)此問題的學(xué)生,老師故意說:我是特意沒有圈的,看我們的學(xué)生觀察是否仔細(xì),考慮問題是否全面……,把原本的錯(cuò)誤變成良好的教學(xué)資源。練習(xí)的設(shè)計(jì)業(yè)很有層次與梯度,聯(lián)系生活實(shí)際。

  本節(jié)課也有很多不足的地方:百數(shù)表中的數(shù)據(jù)太多,部分學(xué)生的發(fā)現(xiàn)是亂七八糟的;在舉例驗(yàn)證的過程中,學(xué)生的計(jì)算還不夠,學(xué)生親自從算中去體會(huì)更好;總結(jié)不太及時(shí),從及時(shí)總結(jié)中提煉、提升會(huì)更好。

倍數(shù)特征教學(xué)反思2

  《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2.5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?.5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過程中,概括歸納出了3的倍數(shù)特征。

  我從學(xué)生的'已有認(rèn)知出發(fā),引導(dǎo)學(xué)生先進(jìn)行合理的猜想,進(jìn)而引發(fā)學(xué)生從不同的角度驗(yàn)證自己的猜想,通過驗(yàn)證,學(xué)生自我否定了自己的猜想。此時(shí)學(xué)生處于“不憤不啟”的最佳的學(xué)習(xí)狀態(tài),他們迫切想知道3的倍數(shù)的特征究竟是什么?這樣來調(diào)動(dòng)學(xué)生學(xué)習(xí)的欲望,增強(qiáng)學(xué)生主動(dòng)探究意識(shí),有利于后面的探究學(xué)習(xí)。他們還認(rèn)為在我們實(shí)際生活中,當(dāng)你解決一個(gè)新問題時(shí),一般沒有人告訴你解決這個(gè)問題會(huì)碰到什么困難。你只有碰到問題后,在解決問題的過程中方才清楚還需要哪些知識(shí),然后,你要在原來的知識(shí)庫(kù)中去提取并靈活地應(yīng)用原有的知識(shí)。

  新課堂呼喚“自主、合作、探究”,而真探究必然伴隨大量差錯(cuò)的生成,學(xué)生總會(huì)出現(xiàn)各種各樣的錯(cuò)誤,我們的課堂教學(xué)不應(yīng)該有意識(shí)地去避免學(xué)生犯錯(cuò)誤。因?yàn)檎n堂是學(xué)生出錯(cuò)的地方,出錯(cuò)是學(xué)生的權(quán)利,學(xué)生的錯(cuò)誤是勞動(dòng)的成果,關(guān)鍵是要看我們教師如何看待學(xué)生的錯(cuò)誤,有個(gè)教育專家說得好:“課堂上的錯(cuò)誤是教學(xué)的巨大財(cái)富”。因此,我們教師在課堂中要有沉著冷靜的心理、海納百川的境界和從容應(yīng)變的機(jī)智,給學(xué)生一個(gè)出錯(cuò)的機(jī)會(huì)和權(quán)利。

倍數(shù)特征教學(xué)反思3

  1.以學(xué)生原有認(rèn)知為基礎(chǔ),激發(fā)學(xué)生的探究欲望。教師利用學(xué)生剛學(xué)完“2、5的倍數(shù)的特征”產(chǎn)生的負(fù)遷移,直接拋出問題,激活了學(xué)生的原有認(rèn)知,學(xué)生自然而然地會(huì)將“2、5的倍數(shù)的.特征”遷移到解決“3的倍數(shù)特征”的問題,產(chǎn)生認(rèn)知沖突,萌發(fā)疑問,激發(fā)強(qiáng)烈的探究欲望。本案例中,學(xué)生很快進(jìn)入問題情境,猜測(cè)、否定、反思、觀察、討論,大部分學(xué)生漸漸進(jìn)入了探究者的角色。

  2.以問題為中心組織學(xué)生展開探究活動(dòng)。在上面案例中,教師注意突出學(xué)生的主體地位,教師依據(jù)學(xué)生年齡特征和認(rèn)知水平設(shè)計(jì)具有探索性的問題,引導(dǎo)學(xué)生緊緊圍繞“3的倍數(shù)有什么特征”這個(gè)問題來開展學(xué)習(xí)活動(dòng),指導(dǎo)學(xué)生圍繞問題展開探究活動(dòng),并不斷組織師生之間、生生之間的交流和討論,逐步發(fā)現(xiàn)、歸納規(guī)律、得出結(jié)論,培養(yǎng)了學(xué)生的探索意識(shí)和分析、概括、驗(yàn)證、判斷等能力。

倍數(shù)特征教學(xué)反思4

  3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“各位上數(shù)的和”去研究。上課開始先讓學(xué)生回顧舊知:2的倍數(shù)和5的倍數(shù)有什么特征?學(xué)生們發(fā)現(xiàn)都只要看一個(gè)數(shù)個(gè)位上的數(shù)就行了,于是很順利地設(shè)下了陷阱:“同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?猜測(cè)是一種常用的數(shù)學(xué)思考方法,讓學(xué)生猜測(cè)3的倍數(shù)有什么特征,能較好地調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測(cè)到“個(gè)位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學(xué)生猜測(cè)“個(gè)位上的數(shù)字加起來是3,6,9一定是3的倍數(shù)”,能想到這點(diǎn)應(yīng)該說是了不起的。本課到這里都很順利,因?yàn)橥耆谖业念A(yù)設(shè)之中。

  下面進(jìn)入驗(yàn)證環(huán)節(jié),先讓學(xué)生判斷自己的學(xué)號(hào)是不是3的倍數(shù),再在這些學(xué)號(hào)中挑出個(gè)位上是0,3,6,9的數(shù),通過交流,學(xué)生發(fā)現(xiàn)這些數(shù)不一定是3的倍數(shù)。學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的`特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個(gè)位上,那3的倍數(shù)究竟與什么有關(guān)系呢?于是進(jìn)入到動(dòng)手操作環(huán)節(jié)。在此基礎(chǔ)上,抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的關(guān)鍵。

  “試一試”是數(shù)學(xué)的第三步,如果一個(gè)數(shù)不是3的倍數(shù),那么這個(gè)數(shù)各位數(shù)的和不是3的倍數(shù),利用反例進(jìn)一步證實(shí)3的倍數(shù)的特征,體現(xiàn)了數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性。隨后設(shè)計(jì)了一系列習(xí)題,使學(xué)生得到鞏固提高。

倍數(shù)特征教學(xué)反思5

  【初次實(shí)踐】

  課始,讓學(xué)生任意報(bào)數(shù),師生比賽誰(shuí)先判斷出這個(gè)數(shù)是不是3的倍數(shù),正當(dāng)我沉浸在游戲的情境之中,幾個(gè)“不識(shí)時(shí)務(wù)者”打亂了課前的預(yù)想!袄蠋煟抑榔渲械拿孛,只要把各個(gè)數(shù)位上的數(shù)加起來,看看是不是3的倍數(shù)就行了!”“對(duì)!在數(shù)學(xué)書上就有這句話!薄钟袔讉(gè)學(xué)生偷偷地打開了數(shù)學(xué)書。“怎么辦?”謎底都被學(xué)生揭開了。面對(duì)這一生成,我沒有死守教案,而是果斷地調(diào)整了預(yù)設(shè),變“探索”為“驗(yàn)證”,將結(jié)論板書在黑板上,讓學(xué)生理解這句話的意思,然后組織學(xué)生將百數(shù)表中3的倍數(shù)圈出來,驗(yàn)證是不是具有這樣的特征,最后進(jìn)行一系列鞏固練習(xí)……

  [反思]

  課堂上經(jīng)常會(huì)出現(xiàn)類似上述案例中的“超前行為”,即有些學(xué)生提前把要探究的新知識(shí)和盤托出。我們的習(xí)慣做法就是變“探索”為“驗(yàn)證”,當(dāng)然有些知識(shí)的教學(xué)采用這種方式是有效的,然而本課中“驗(yàn)證”的過程真能取代“探究發(fā)現(xiàn)”的過程嗎??jī)H僅舉幾個(gè)例子試一試,驗(yàn)證方法單一,思維含量低,學(xué)生充其量只能算是執(zhí)行操作命令的“計(jì)算器”,又能獲得哪些有益的發(fā)展?如果經(jīng)常進(jìn)行這樣的教學(xué),還容易使學(xué)生形成浮躁淺薄,不求甚解,甚至只要結(jié)論的不良學(xué)習(xí)風(fēng)氣。怎么辦,置之不理嗎?如果這樣,不僅沒有尊重學(xué)生已有的知識(shí)經(jīng)驗(yàn),而且在已經(jīng)揭開“謎底”的情況下,再試圖引導(dǎo)學(xué)生進(jìn)行猜想、實(shí)驗(yàn)、發(fā)現(xiàn),體驗(yàn)遭受挫折后取得成功的那種激動(dòng),也只能是一種奢望。那么又該如何激發(fā)學(xué)生探究的熱情,促使學(xué)生進(jìn)行深入探究呢?

  【再次實(shí)踐】

  (與第一次教學(xué)情況基本相同,有些學(xué)生能夠正確地判斷一個(gè)數(shù)是不是3的倍數(shù),這時(shí)一些學(xué)生卻依然感到困惑,我設(shè)法將這一困惑激發(fā)出來。)

  師:同學(xué)們真能干,這么快就知道了3的倍數(shù)的特征,上節(jié)課我們學(xué)習(xí)了2、5的倍數(shù)的特征只和什么有關(guān)?

  生:只和一個(gè)數(shù)的個(gè)位有關(guān)。

  師:與今天學(xué)習(xí)的`知識(shí)比較一下,你有什么疑問嗎?

  生1:為什么判斷一個(gè)數(shù)是不是3的倍數(shù)只看個(gè)位不行?

  生2:為什么判斷一個(gè)數(shù)是不是2、5的倍數(shù)只看個(gè)位,而判斷是不是3的倍數(shù)要看各位上數(shù)的和?

  ……

  師:同學(xué)們思考問題確實(shí)比較深入,提出了非常有研究?jī)r(jià)值的問題。那我們先來研究一下2、5的倍數(shù)為什么只和它的個(gè)位有關(guān)。

  (學(xué)生嘗試探索,教師適時(shí)引導(dǎo)學(xué)生從簡(jiǎn)單數(shù)開始研究,借助小棒或其他方法進(jìn)行解釋。)

  生1:我在擺小棒時(shí)發(fā)現(xiàn),十位上擺幾就是幾十,它肯定是2、5的倍數(shù),因此只要看個(gè)位擺幾就可以了。

  生2:其實(shí)不用擺小棒也可以,我們組發(fā)現(xiàn)每個(gè)數(shù)都可以拆成一個(gè)整十?dāng)?shù)加個(gè)位數(shù),整十?dāng)?shù)當(dāng)然都是2、5的倍數(shù),所以這個(gè)數(shù)的個(gè)位是幾就決定了它是否是2、5的倍數(shù)。

  師:同學(xué)們想到用“拆數(shù)”的方法來研究,是個(gè)好辦法。

  生3:是否是3的倍數(shù)只看個(gè)位就不行了。比如13,雖然個(gè)位上是3的倍數(shù),但10卻不是3的倍數(shù);12雖然個(gè)位不是3的倍數(shù),但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的數(shù)和個(gè)位上的數(shù)合起來是不是3的倍數(shù)就行了。

  生4:我也是這樣想的,我還發(fā)現(xiàn)十位上余下的數(shù)正好和十位上的數(shù)字一樣。

  生5:(面帶困惑)起初,我也是這樣想的,可是在試三十幾、四十幾時(shí)就不行了。余下的數(shù)和十位上的數(shù)不一樣了,比如40除以3只余1,余下的數(shù)就和十位數(shù)字不同。

  生(部分):對(duì)。

  生4:其實(shí)40不要拆成39和1,你拆成36和4,余下的數(shù)不就和十位數(shù)字相同了嗎?

  生6:也就是說整十?dāng)?shù)都可以拆成十位上的數(shù)字和一個(gè)3的倍數(shù)的數(shù)。這樣只要看十位上的數(shù)和個(gè)位上的和是不是3的倍數(shù)就可以了。

  師:同學(xué)們確實(shí)很厲害!那三位數(shù)、四位數(shù)是不是也有這樣的規(guī)律呢?

  學(xué)生用“拆數(shù)”的方法繼續(xù)研究三、四位數(shù),發(fā)現(xiàn)和兩位數(shù)一樣,只不過千位、百位上余下的數(shù)要依次加到下一位上進(jìn)行研究。3的倍數(shù)的特征在學(xué)生頭腦中越來越清晰。

  師:同學(xué)們通過自己的探索,你們不僅發(fā)現(xiàn)了3的倍數(shù)的特征,還弄清了為什么有這樣的特征,F(xiàn)在你還有哪些新的探索想法呢?

  生1:我想知道4的倍數(shù)有什么特征?

  生2:我知道,應(yīng)該只要看末兩位就行了,因?yàn)檎、整千?shù)一定都是4的倍數(shù)。

  師:你能把學(xué)到的方法及時(shí)應(yīng)用,非常棒!

  生3:7或9的倍數(shù)有什么特征呢?

  ……

  師:同學(xué)們又提出了一些新的、非常有價(jià)值的問題,課后可以繼續(xù)進(jìn)行探索。

  [反思]

  1. 找準(zhǔn)知識(shí)間的沖突,激發(fā)探究的愿望。學(xué)生剛剛學(xué)習(xí)了2、5的倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位,因此在學(xué)習(xí)3的倍數(shù)的特征時(shí),自然會(huì)把“看個(gè)位”這一方法遷移過來。而實(shí)際上,3的倍數(shù)的特征,卻要把各個(gè)位上的數(shù)加起來研究。于是新舊知識(shí)之間的矛盾沖突使學(xué)生產(chǎn)生了困惑,“為什么2或5的倍數(shù)只看個(gè)位?”“為什么3的倍數(shù)要把各個(gè)位上的數(shù)加起來研究?”……學(xué)生急于想了解這些為什么,便會(huì)自覺地進(jìn)入到自主探究的狀態(tài)之中。知識(shí)不是孤立的,新舊知識(shí)有時(shí)會(huì)存在矛盾沖突,教師如能找準(zhǔn)知識(shí)間的沖突并巧妙激發(fā)出來,就能激起學(xué)生探究的愿望。這樣不僅有利于學(xué)生對(duì)新知的掌握,有效地將新知納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識(shí)和能力。

  2. 激活學(xué)習(xí)中的困惑,讓探究走向深入。創(chuàng)造和發(fā)現(xiàn)往往是由驚訝和困惑開始。對(duì)比兩次教學(xué),第一次教學(xué)由于忽視了學(xué)習(xí)中的困惑,學(xué)生對(duì)于3的倍數(shù)的特征理解并不透徹,探索的體驗(yàn)也并不深刻。第二次教學(xué)留給學(xué)生質(zhì)疑的時(shí)空,巧設(shè)沖突,讓學(xué)生進(jìn)行新舊知識(shí)的對(duì)比,將困惑激發(fā)出來,通過學(xué)生間相互啟發(fā)、相互質(zhì)疑,對(duì)問題的思考漸漸完整而清晰。學(xué)生不但經(jīng)歷由困惑到明了的過程,而且思維不斷走向深入,獲得了更有價(jià)值的發(fā)現(xiàn),探究能力也得到切實(shí)提高。學(xué)生在學(xué)習(xí)中難免會(huì)產(chǎn)生困惑,這種困惑有時(shí)是學(xué)生希望理解更全面、更深刻的表現(xiàn)。面對(duì)這些有價(jià)值的思考,我們要有敏銳的洞察力,采取恰當(dāng)?shù)姆椒▽⑵浼せ,促使探究活?dòng)走向深入,讓學(xué)生獲得更大的發(fā)展。當(dāng)然,學(xué)生在學(xué)習(xí)中可能產(chǎn)生怎樣的困惑,面對(duì)這一困惑又該如何恰當(dāng)引導(dǎo),尚需要教師課前精心預(yù)設(shè)。

  3. 溝通知識(shí)間的聯(lián)系,讓學(xué)生不斷探究。顯然,2、5的倍數(shù)的特征與3的倍數(shù)的特征是相互聯(lián)系的,其研究方法是相通的(都可以通過“拆數(shù)”進(jìn)行觀察),特征的本質(zhì)也是相同的。這種研究方法和特征本質(zhì)的及時(shí)溝通,激發(fā)了學(xué)生繼續(xù)研究4、7、9……的倍數(shù)的特征的好奇心,促使學(xué)生不斷探究,將學(xué)習(xí)由課內(nèi)延伸到課外,并在探究過程中建構(gòu)起對(duì)數(shù)的倍數(shù)特征的整體認(rèn)識(shí),感悟數(shù)學(xué)其實(shí)就是以一馭萬,以簡(jiǎn)馭繁。課堂不是句號(hào),學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)絕不能僅僅局限于學(xué)生對(duì)于一堂課知識(shí)的掌握,而應(yīng)著眼于學(xué)生對(duì)于解決問題方法的感悟,獲得可持續(xù)發(fā)展的動(dòng)力。

倍數(shù)特征教學(xué)反思6

  課堂總會(huì)有生成,不管一節(jié)課的教學(xué)步驟設(shè)計(jì)的有多嚴(yán)密、多緊湊,課堂教學(xué)中總會(huì)有新的問題產(chǎn)生,反思本節(jié)課的教學(xué)有成功也有不足:

  1、導(dǎo)入部分

  不足之處:

  應(yīng)該說導(dǎo)入部分形式單一,顯得過于死板,如果通過一個(gè)小游戲,讓學(xué)生考考老師,用教師的準(zhǔn)確判斷激發(fā)學(xué)生學(xué)習(xí)本課內(nèi)容的興趣,由此引出課題,從而調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,把探索的問題拋給學(xué)生,激起學(xué)生探索的欲望,進(jìn)而引導(dǎo)學(xué)生說出更大的數(shù)字,此時(shí)教師仍然能準(zhǔn)確判斷,于是讓學(xué)生更為佩服老師,想進(jìn)行探究的欲望會(huì)更濃,接下來的探究過程便水到渠成,課堂氣氛也會(huì)因此而高漲。

  2、重點(diǎn)教學(xué)環(huán)節(jié)的設(shè)計(jì)

  成功之處:

  探索5的倍數(shù)的特征,先引導(dǎo)學(xué)生找出2的倍數(shù),并指導(dǎo)找的方法,然后發(fā)現(xiàn)、總結(jié)2的倍數(shù)的特征。這樣學(xué)生有了一個(gè)探索方法,引導(dǎo)學(xué)生總結(jié)探究方法后,我便放手讓學(xué)生自己去探索5的倍數(shù)的`特征了,在合作交流中學(xué)生體會(huì)到了學(xué)習(xí)數(shù)學(xué)的快樂,同時(shí)也給了學(xué)生一個(gè)自主探索的空間,一個(gè)交流互動(dòng)的平臺(tái),也使他們獲得了學(xué)習(xí)數(shù)學(xué)的成功體驗(yàn)。

  不足之處:

  課堂生成教師要及時(shí)準(zhǔn)確地把握,并注意語(yǔ)言的藝術(shù)性,教師必須進(jìn)入狀態(tài),與學(xué)生融為一體。

  3、教具學(xué)具的使用方面

  成功之處:

  我利用百數(shù)表,把1-100的數(shù)字中5的倍數(shù),2的倍數(shù)通過讓學(xué)生用不同的符號(hào)標(biāo)出,給學(xué)生的感觀一個(gè)有力的沖擊。2、5的倍數(shù)的特征變得更直觀,更明顯,學(xué)生的印象會(huì)更深刻。

  不足之處:

  點(diǎn)找的很準(zhǔn)確,應(yīng)用合理。但現(xiàn)在想想,如果把這個(gè)百數(shù)表制成課件,用多媒體演示出來,而且讓2和5的倍數(shù)用顏色標(biāo)出,并在變色閃爍的過程中有聲音的提示效果或許會(huì)更好些。

  教學(xué)后的思考:

  (1)是否需要驗(yàn)證發(fā)現(xiàn)的規(guī)律(2、5的倍數(shù)的特征),在哪個(gè)環(huán)節(jié)驗(yàn)證效果好。

  (2)如何強(qiáng)化學(xué)生的知識(shí),使重點(diǎn)更為突出,學(xué)生有眼前一亮的感覺。

  (3)備學(xué)生很重要

  在探究的過程中,課堂氣氛沒有預(yù)想的那么好,在練習(xí)中學(xué)生才開始活躍起來。也許在對(duì)數(shù)學(xué)活動(dòng)的探索中,學(xué)生不夠自信,只是試著說。教師需要做些什么,得以改變學(xué)生的狀態(tài)。

倍數(shù)特征教學(xué)反思7

  3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“各位上數(shù)的和”去研究,本課注重引導(dǎo)學(xué)生經(jīng)歷探索的過程。上課開始先讓學(xué)生回顧舊知,2的倍數(shù)和5的倍數(shù)有什么特征,學(xué)生們發(fā)現(xiàn)都只要看一個(gè)數(shù)個(gè)位上的數(shù)就行了,于是很順地設(shè)下了陷阱:同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?猜測(cè)是一種常用的數(shù)學(xué)思考方法,讓學(xué)生猜測(cè)3的倍數(shù)有什么特征,能較好地調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測(cè)到:“個(gè)位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學(xué)生猜測(cè):“各位上的數(shù)字加起來是3,6,9一定是3的倍數(shù)”,能想到這點(diǎn)應(yīng)該說是了不起的。本課到這里都很順利,因?yàn)橥耆谖业念A(yù)設(shè)之中。

  下面進(jìn)入驗(yàn)證環(huán)節(jié),先學(xué)生判斷自己的學(xué)號(hào)是不是3的倍數(shù),再在這些學(xué)號(hào)中挑出個(gè)位上是0,3,6,9的數(shù),通過交流這些數(shù)不一定都是3的倍數(shù)。學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個(gè)位上,那3的倍數(shù)究竟與什么有關(guān)系呢。于是進(jìn)入到動(dòng)手操作環(huán)節(jié),在此基礎(chǔ)上,利用計(jì)數(shù)器轉(zhuǎn)移探索的方向,讓學(xué)生用3顆算珠在計(jì)數(shù)器上任意擺數(shù),得出結(jié)果:擺出的數(shù)都是3的倍數(shù),到這里有幾個(gè)學(xué)生顯得很興奮。隨后用5顆算珠實(shí)驗(yàn),發(fā)現(xiàn)擺出的數(shù)都不是3的倍數(shù),到這里學(xué)生中已經(jīng)有一些議論,他們都有了發(fā)現(xiàn)。為了讓更多的學(xué)生看出其中的神奇,我將自主權(quán)交給了學(xué)生們,自己選擇算珠的顆數(shù)進(jìn)行了第三次實(shí)驗(yàn),然后板書出每組的實(shí)驗(yàn)結(jié)果,從結(jié)果的'數(shù)據(jù)中,學(xué)生們都很興奮地發(fā)現(xiàn)了所用算珠的顆數(shù)是3顆,6顆,9顆,撥出的數(shù)都是3的倍數(shù),每個(gè)數(shù)所用算珠的顆數(shù),也是每個(gè)數(shù)各位上數(shù)的和。把算珠顆數(shù)抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的關(guān)鍵。

  “試一試”是教學(xué)的第三步,如果一個(gè)數(shù)不是3的倍數(shù),那么這個(gè)數(shù)各位數(shù)的和不是3的倍數(shù)。利用反例進(jìn)一步證實(shí)3的倍數(shù)的特征,體現(xiàn)了數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性?上г谶@一點(diǎn)上,我很倉(cāng)促地指著黑板上算珠顆數(shù)是4顆,5顆,7顆,8顆時(shí),所擺出的數(shù)都不是3的倍數(shù),直接告訴了學(xué)生,而沒有讓學(xué)生自己舉出反例。隨后設(shè)計(jì)了一系列習(xí)題,使學(xué)生得到鞏固提高。

  整節(jié)課只能說順利地走了下來,對(duì)于教者我來說從中發(fā)現(xiàn)了自己教學(xué)上的不足之處,在今后的教學(xué)中,我將不斷學(xué)習(xí),及時(shí)總結(jié),虛心請(qǐng)教,以進(jìn)一步提高自己的教學(xué)業(yè)務(wù)水平。

倍數(shù)特征教學(xué)反思8

  《3的倍數(shù)的特征》的教學(xué)是五下數(shù)學(xué)第二單元“因數(shù)與倍數(shù)”中一個(gè)知識(shí)點(diǎn),是在學(xué)生已認(rèn)識(shí)倍數(shù)和因數(shù)、2和5倍數(shù)的特征的基礎(chǔ)上進(jìn)行教學(xué)的。由于2、5的倍數(shù)的特征從數(shù)的表面的特點(diǎn)就可以很容易看出——根據(jù)個(gè)位數(shù)的特點(diǎn)就可以判斷出來。但是3的倍數(shù)的特征卻不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。因而在《3的倍數(shù)的`特征》的開始階段我復(fù)習(xí)了2、5的倍數(shù)的特征之后就讓學(xué)生猜一猜什么樣的數(shù)是3的倍數(shù),學(xué)生自然而然地會(huì)將“2。5的倍數(shù)的特征”遷移到“3的倍數(shù)特征的問題中, 得出:個(gè)位上是3、6、9的數(shù)是3的倍數(shù),后被學(xué)生補(bǔ)充到“個(gè)位上是0—9的任何一個(gè)數(shù)字都有可能是3的倍數(shù),”其特征不明顯,也就是說3的倍數(shù)和一個(gè)數(shù)的個(gè)位數(shù)沒有關(guān)系,因此要從另外的角度來觀察和思考。

  在問題情境中讓學(xué)生產(chǎn)生認(rèn)知沖突,萌發(fā)疑問,激發(fā)強(qiáng)烈的探究欲望。接著提供給每位學(xué)生一張百數(shù)表,讓他們?nèi)Τ鏊?的倍數(shù),拋出問題:把 3 的倍數(shù)的各位上的數(shù)相加,看看你有什么發(fā)現(xiàn),引導(dǎo)學(xué)生換角度思考3的倍數(shù)特征 。學(xué)生在經(jīng)歷了猜測(cè)、分析、判斷、驗(yàn)證、概括、等一系列的數(shù)學(xué)活動(dòng)后感悟和理解了3的倍數(shù)的特征,引導(dǎo)學(xué)生真正發(fā)現(xiàn):3的倍數(shù)各位上數(shù)的和一定是3的倍數(shù);不是3的倍數(shù)各位上數(shù)的和一定不是3的倍數(shù)。從而,使學(xué)生明確3的倍數(shù)的特征,然后進(jìn)行練習(xí)與拓展。這樣的探究學(xué)習(xí)比我們老師直接教給他們答案要扎實(shí)許多,之后的知識(shí)應(yīng)用學(xué)生就相應(yīng)比較靈活和自如,效果較好。

  這節(jié)課結(jié)束后,我感覺最大的缺憾之處在最后的拓展練習(xí)上,由于自己事先練習(xí)下水沒有做足,所以誤導(dǎo)了學(xué)生。題目如下:“從3、0、4、5這四個(gè)數(shù)中,選出兩個(gè)數(shù)字組成一個(gè)兩位數(shù),分別滿足以下條件:1、是3的倍數(shù)。2、同時(shí)是2和3的倍數(shù)。3、同時(shí)是3和5的倍數(shù)。4、同時(shí)是2、3和5的倍數(shù)。”學(xué)生問要寫幾個(gè)時(shí),我回答如果數(shù)量很多至少寫3個(gè)。呵呵,其實(shí)此題不需要如此考慮,因?yàn)樗鼈兊臄?shù)量都有限。

  希望以后自己的教學(xué)會(huì)更扎實(shí)起來。

倍數(shù)特征教學(xué)反思9

  2、5、3的倍數(shù)特征是分為兩節(jié)課完成的,上完后,給我最大的感受,學(xué)生對(duì)2、5的倍數(shù)的特征不難理解,對(duì)偶數(shù)和奇數(shù)的概念也容易掌握,2、5的倍數(shù)的特征這節(jié)課,概念比較多,學(xué)生很容易混淆。怎樣才能把抽象的概念轉(zhuǎn)化為形象直觀的知識(shí)讓學(xué)生們接受呢?

  一、互動(dòng)、質(zhì)疑,激發(fā)學(xué)生的探究興趣。

  好的開始等于成功了一半。課伊始,我便說:“老師不用計(jì)算,就能很快判斷一個(gè)數(shù)是不是2或5的倍數(shù),你們相信嗎?”學(xué)生自然不相信,爭(zhēng)先恐后地來考老師,結(jié)果不得而知。幾輪過后,看到他們還是不服氣的樣子,我故作神秘說:“其實(shí),是老師知道一個(gè)秘訣。你們想知道是什么嗎?”由此引出課題。這樣大大的調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性,激發(fā)了其探究的欲望。

  二、鼓勵(lì)學(xué)生獨(dú)立思考,經(jīng)歷猜測(cè)驗(yàn)證的過程。

  數(shù)學(xué)學(xué)習(xí)過程中充滿了觀察、實(shí)驗(yàn)、推斷等探索性與挑戰(zhàn)性活動(dòng)。由于5的倍數(shù)的特征比較容易發(fā)現(xiàn),我便把它調(diào)到2的倍數(shù)的特征前面來進(jìn)行教學(xué)。首先讓學(xué)生獨(dú)立寫出100以內(nèi)5的倍數(shù),獨(dú)立觀察,看看你有什么發(fā)現(xiàn)?學(xué)生很容易發(fā)現(xiàn)“個(gè)位上是0或5的數(shù)是5的倍數(shù)!倍@只是猜測(cè),結(jié)論還需要進(jìn)一步的驗(yàn)證。我們不能滿足于學(xué)生能夠得到結(jié)論就夠了,而應(yīng)該抱著科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度,引導(dǎo)學(xué)生認(rèn)識(shí)到這個(gè)結(jié)論僅僅適用于1—100這個(gè)小范圍。是不是在所有不等于0的自然數(shù)中都適用呢?還需要研究。在老師的'引導(dǎo)下,學(xué)生開始認(rèn)識(shí)到還要繼續(xù)拓展范圍,研究大于100的自然數(shù)中所有5的倍數(shù)是不是也是個(gè)位上的數(shù)字是5或0。在這一過程中,學(xué)生感受到了科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度,知道了在進(jìn)行一項(xiàng)數(shù)目巨大的研究過程中,可以從小范圍入手,得到一定的猜想,然后逐漸擴(kuò)范圍大,最后得出科學(xué)的結(jié)論。這樣,當(dāng)下節(jié)課研究3的倍數(shù)的特征時(shí),學(xué)生就會(huì)大膽猜想,并有方法來驗(yàn)證自己的猜想了。

  三、小組合作,發(fā)揮團(tuán)體的作用

  動(dòng)手實(shí)踐、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。與5的倍數(shù)特征相比較,2的倍數(shù)特征稍顯困難,所以我組織學(xué)生利用小組合作的方式,根據(jù)探究5的倍數(shù)的特征的思路,小組合作探究2的倍數(shù)的特征。經(jīng)過這樣的合作討論,大多數(shù)小組能夠得到正確或接近正確的答案。突出了學(xué)生的主體地位,讓他們?cè)诔浞值奶剿骰顒?dòng)中充分發(fā)現(xiàn)規(guī)律、舉例驗(yàn)證、總結(jié)歸納。

  2、5、3的倍數(shù)的特征教學(xué)反思四:

  課上完了,整體來說感覺良好。學(xué)生的主體作用在這節(jié)課中得到了充分的發(fā)揮,積極的思維、熱烈的氣氛等均給人以很大的感染,仔細(xì)分析,我認(rèn)為這節(jié)課課的成功得益于以下幾方面:

  1.2.3.5倍數(shù)的特征,它們?cè)谥R(shí)體系中是一個(gè)整體,而在特征和判斷方法上有各自不同,這使得學(xué)生的學(xué)習(xí)過程始終處在“產(chǎn)生沖突解決沖突”的過程中,為學(xué)生的積極探索提供了較大的空間,也為每個(gè)學(xué)生在不同水平上參與學(xué)習(xí)提供了可能。例如,在探索能被3整除的數(shù)的特征時(shí),有的學(xué)生提出“個(gè)位上是3的倍數(shù)”有的學(xué)生提出“某一位上的數(shù)是3的倍數(shù)”;而水平較高的學(xué)生提出:“各個(gè)數(shù)位上的數(shù)字之和是3的倍數(shù)”。在這樣一個(gè)探索過程中學(xué)生的主動(dòng)性和創(chuàng)造性得到了發(fā)揮。這是我認(rèn)為比較成功的地方。

倍數(shù)特征教學(xué)反思10

  《2、5的倍數(shù)的特征》是學(xué)生在四年級(jí)拓展平臺(tái)上認(rèn)識(shí)了因數(shù)和倍數(shù)關(guān)系和概念后的基礎(chǔ)上進(jìn)一步研究倍數(shù)的一節(jié)課,由于時(shí)間已經(jīng)很長(zhǎng)了,學(xué)生肯定也有了遺忘,所以課的開始,我覺的通過創(chuàng)設(shè)密碼來進(jìn)行反復(fù)是很有必要的。

  在這節(jié)課中我想掌握5的倍數(shù)的特征不是本節(jié)課的唯一目標(biāo),所以在制定目標(biāo)的時(shí)候,應(yīng)從數(shù)學(xué)研究方法著手,在學(xué)生掌握知識(shí)的同時(shí),注重讓學(xué)生了解科學(xué)的數(shù)學(xué)研究的過程。引導(dǎo)學(xué)生通過“猜想——驗(yàn)證——結(jié)論”三個(gè)流程進(jìn)行研究,最后得到正確的數(shù)學(xué)結(jié)論,并進(jìn)行應(yīng)用。

  在整個(gè)教學(xué)過程中我努力從以下四個(gè)方面來感受數(shù)學(xué)的研究方法:

  1、感受范圍意識(shí)。

  當(dāng)時(shí)我是這樣引導(dǎo)的:2的倍數(shù)有哪些?學(xué)生說:有2、4、6、8、10都是雙數(shù),有無數(shù)個(gè)?我接著問:既然有無數(shù)個(gè),能不能全找出來?學(xué)生說:不能全部找出來,接著我又問:5的倍數(shù)能不能全找出來。學(xué)生說:也不能全找出來!凹热凰鼈兊谋稊(shù)都找不全哪怎么去研究?我把這個(gè)問題拋給學(xué)生去解決,接著就有學(xué)生說:可以選擇一個(gè)范圍來研究。

  這樣學(xué)生就有了“小范圍”的意識(shí),在數(shù)據(jù)比較多的時(shí)候,我們可以先確定一個(gè)范圍,在有限的時(shí)間里研究這個(gè)范圍中的數(shù)的特征,當(dāng)?shù)玫皆?-100這個(gè)范圍內(nèi)5的倍數(shù)的特征的時(shí)候。接著我又引導(dǎo)學(xué)生認(rèn)識(shí)到這個(gè)結(jié)論僅僅適用于1-100這個(gè)小范圍,是不是在所有自然數(shù)中都使用?還需要驗(yàn)證。在這樣引導(dǎo)下,學(xué)生開始認(rèn)識(shí)到還要繼續(xù)拓展范圍,研究大于100的自然數(shù)中所有5的倍數(shù)特征,通過共同的驗(yàn)證,最后得到正確的結(jié)論。

  在這一過程中,學(xué)生感受到了科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度,同時(shí)有了一定的“范圍”意識(shí),知道了在進(jìn)行一項(xiàng)數(shù)目巨大的研究過程中,可以從小范圍入手,得到一定的猜想,然后逐漸擴(kuò)大范圍,最后得出科學(xué)的結(jié)論。

  2、感受“猜想”與“結(jié)論”的不同。

  教學(xué)中,當(dāng)學(xué)生找到百數(shù)表內(nèi)5的倍數(shù)特征時(shí),我追問學(xué)生,“是不是在所有的自然數(shù)中,5的倍數(shù)都有這個(gè)特征呢?”學(xué)生異口同聲地都認(rèn)為是。這里就需要教師幫助學(xué)生養(yǎng)成嚴(yán)謹(jǐn)科學(xué)的學(xué)習(xí)態(tài)度。我告訴學(xué)生是不是有這個(gè)特征,我們沒有研究過,只是我們的猜想。還需要我們進(jìn)一步去驗(yàn)證。大部分學(xué)生還是比較認(rèn)可的。沒有經(jīng)過研究,怎么能知道是呢?有了這樣的猜想,最后通過舉例的方法驗(yàn)證后,學(xué)生沒有找到反例,這時(shí)我才告訴學(xué)生,一開始的猜想現(xiàn)在變成了結(jié)論。雖然同樣是一句話,不同的時(shí)候有不同的界定,沒有經(jīng)過驗(yàn)證前,只是猜想;只有驗(yàn)證后,猜想才可能變成結(jié)論。

  相信學(xué)生不斷經(jīng)歷這種過程后,他們才會(huì)具備科學(xué)的態(tài)度,才會(huì)學(xué)會(huì)對(duì)自己所說的話負(fù)責(zé),才不會(huì)貿(mào)然下結(jié)論。

  3、感受學(xué)習(xí)兩種“驗(yàn)證”方法。

  驗(yàn)證的方法有很多種,舉例法、不完全歸納法,推理法等等。根據(jù)孩子的特點(diǎn),我認(rèn)為最適合小學(xué)生的方法便是讓他們學(xué)會(huì)舉例的方法。這節(jié)課中,當(dāng)學(xué)生 發(fā)現(xiàn)百數(shù)表中,5的倍數(shù)特征后,我引導(dǎo)學(xué)生在所有的自然數(shù)中是不是5的倍數(shù)都有這個(gè)特征?怎樣去驗(yàn)證呢?在這里我預(yù)設(shè)的是學(xué)生可能會(huì)說出可以找一些個(gè)位上是5或0的`數(shù)用除法來驗(yàn)證。但學(xué)生并沒有出來,他們說的是用乘法來驗(yàn)證。于是我接著學(xué)生的想法,在這里引出了推理的方法,(但是在備課預(yù)設(shè)時(shí)我并沒有想要引出推理)所以講解的并不到位,這是我需要反思的。于是我又引導(dǎo)可以用舉例的方法用除法來驗(yàn)證,尋找有沒有不符合這一特征的例子,全班舉了很多例子,進(jìn)行了驗(yàn)證。最后得出結(jié)論。

  4、感受經(jīng)歷完整的研究過程。

  這節(jié)課中,當(dāng)學(xué)生研究出5的倍數(shù)的特征后,我引導(dǎo)學(xué)生來回憶。我們是怎樣來研究5的倍數(shù)的特征的?讓學(xué)生體驗(yàn)經(jīng)歷“先確定研究范圍——選擇研究方法——發(fā)現(xiàn)——驗(yàn)證——結(jié)論”這一研究過程。然后在讓學(xué)生獨(dú)立去研究2的倍數(shù)的特征。再次體驗(yàn)2的倍數(shù)的特征研究過程,我想學(xué)生就有了更完整的體驗(yàn)。

  課的最后部分:我設(shè)計(jì)了自我小結(jié)一個(gè)環(huán)節(jié),目的是讓學(xué)生通過對(duì)知識(shí)的梳理有一個(gè)系統(tǒng)的掌握。

倍數(shù)特征教學(xué)反思11

  在執(zhí)教《2、5、3的倍數(shù)的特征》后,我針對(duì)本節(jié)課的教學(xué)情況進(jìn)行反思。

  一、跨年級(jí)學(xué)習(xí)新數(shù)學(xué)知識(shí),知識(shí)銜接不上,不符合學(xué)生的認(rèn)知規(guī)律。

  雖然2、5、3的倍數(shù)的特征看起來很簡(jiǎn)單,探究的過程可能沒有什么困難之處,但要內(nèi)容讓學(xué)生學(xué)懂,首先存在知識(shí)銜接問題,整除、倍數(shù)、因數(shù)這些概念學(xué)生都從未接觸過,因此,我在課開始安排了整除、倍數(shù)、因數(shù)新概念的介紹,在我看來,這些概念比較抽象,學(xué)生一時(shí)難以掌握。

  二、為了體現(xiàn)“容量大”,教學(xué)延堂。

  備課時(shí)也參考了不少資料,大多數(shù)教學(xué)設(shè)計(jì)都是將這一內(nèi)容分成兩節(jié)課來學(xué)習(xí),一節(jié)學(xué)《2、5的倍數(shù)的特征》,一節(jié)學(xué)《3的倍數(shù)的特征》,我確定用一節(jié)課教學(xué)《2、5、3的倍數(shù)的特征》,其目的是為了體現(xiàn)容量大,我的設(shè)計(jì)內(nèi)容多,相應(yīng)的學(xué)生自學(xué)、展示、鞏固練習(xí)的時(shí)間和機(jī)會(huì)就壓縮的比較少了。而3的.倍數(shù)的特征與2、5的又完全不同,學(xué)生接受起來可能會(huì)有一定的難度,最好單獨(dú)作為一課時(shí)學(xué)習(xí)。最后的環(huán)節(jié)達(dá)標(biāo)測(cè)試拖堂了。

  三、學(xué)生合作學(xué)習(xí)的效果較好,但展示未體現(xiàn)立體式。

  高效課堂要充分發(fā)揮學(xué)生的主體作用,要體現(xiàn)學(xué)生會(huì)學(xué),學(xué)會(huì),在本節(jié)課上,學(xué)生合作學(xué)習(xí)的熱情高,通過展示,發(fā)現(xiàn)學(xué)生學(xué)懂了,總結(jié)出了2、5、3的倍數(shù)的特征,在展示環(huán)節(jié),學(xué)生講的、板書的相互干擾,于是,我臨時(shí)安排按先后順序進(jìn)行,沒體現(xiàn)出高效課堂的“立體式”這一特點(diǎn)。

倍數(shù)特征教學(xué)反思12

  《3的倍數(shù)的特征》是五年級(jí)下冊(cè)數(shù)學(xué)第二單元“因數(shù)與倍數(shù)”中的一個(gè)知識(shí)點(diǎn),是在學(xué)生已經(jīng)認(rèn)識(shí)倍數(shù)和因數(shù)、2和5倍數(shù)的特征的基礎(chǔ)上進(jìn)行教學(xué)的。由于2、5的倍數(shù)的特征從數(shù)的表面的特點(diǎn)就可以很容易看出——根據(jù)個(gè)位數(shù)的特點(diǎn)就可以判斷出來。但是3的倍數(shù)的特征卻不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。

  因而在《3的倍數(shù)的特征》的開始,我先復(fù)習(xí)了2、5的倍數(shù)的特征,然后學(xué)生猜一猜什么樣的數(shù)是3的倍數(shù),學(xué)生自然而然地會(huì)將“2.5的倍數(shù)的特征”遷移到“3的倍數(shù)特征的問題中,得出:個(gè)位上是3、6、9的數(shù)是3的倍數(shù),后被學(xué)生補(bǔ)充到“個(gè)位上是0—9的任何一個(gè)數(shù)字都有可能是3的倍數(shù),”其特征不明顯,也就是說3的倍數(shù)和一個(gè)數(shù)的個(gè)位數(shù)沒有關(guān)系,因此要從另外的角度來觀察和思考。在問題情境中讓學(xué)生產(chǎn)生認(rèn)知沖突產(chǎn)生疑問,激發(fā)強(qiáng)烈的探究欲望。接著提供給每位學(xué)生一張百數(shù)表,讓他們?nèi)Τ鏊?的倍數(shù),拋出問題:把3的倍數(shù)的各位上的數(shù)相加,看看你有什么發(fā)現(xiàn),引導(dǎo)學(xué)生換角度思考3的倍數(shù)特征。接下來,經(jīng)過進(jìn)一步提示,引導(dǎo)學(xué)生觀察各位上數(shù)的和,發(fā)現(xiàn)各位上的和是3的.倍數(shù)。于是,形成新的猜想:一個(gè)數(shù)如果是3的倍數(shù),那么它各位上數(shù)的和也是3的倍數(shù)。

  為了驗(yàn)證這一猜想,我補(bǔ)充了一些其他的數(shù),如49×3=147,166×3=498等,使學(xué)生進(jìn)一步確認(rèn)這一結(jié)論的正確性。還可以任意寫一個(gè)數(shù),利用這一結(jié)論來驗(yàn)證,如3697,3+6+9+7=25,25不是3的倍數(shù),而3697÷3也不能得到整數(shù)商,因此,它不是3的倍數(shù)。通過這樣的方式也使學(xué)生認(rèn)識(shí)到:找出某個(gè)規(guī)律后,還要找出一些正面的、反面的例子進(jìn)行檢驗(yàn),看是不是普遍適用。

  為了使學(xué)生更好地掌握3的倍數(shù)的特征,進(jìn)行課堂練習(xí)時(shí),我還把一些數(shù)各個(gè)數(shù)位上的數(shù)經(jīng)過不同的排列,再讓學(xué)生判斷,以加深對(duì)“各位上數(shù)的和是3的倍數(shù)”的理解。如完成“做一做”第1題時(shí),學(xué)生判斷完45是3的倍數(shù)后,教師可以再讓學(xué)生判斷一下54是不是3的倍數(shù)。

  利用2、5、3的倍數(shù)的特征來判斷一個(gè)數(shù)是不是2、5或3的倍數(shù),其方法是比較容易掌握的,但要形成較好的數(shù)感,達(dá)到熟練判斷的程度,也不是一、兩節(jié)課所能解決的,還需要進(jìn)行較多的練習(xí)進(jìn)行鞏固。

  這節(jié)課結(jié)束后,我感到自主學(xué)習(xí)和合作探究是這節(jié)課中最重要的兩種學(xué)習(xí)方式,學(xué)生通過自主選擇研究?jī)?nèi)容,舉例驗(yàn)證等獨(dú)立思考和小組討論,相互質(zhì)疑等合作探究活動(dòng),獲得了數(shù)學(xué)知識(shí)。學(xué)生的學(xué)習(xí)能動(dòng)性和潛在能力得到了激發(fā)。在自主探索的過程中,學(xué)生體驗(yàn)到了學(xué)習(xí)成功的愉悅,同時(shí)也促進(jìn)了自身的發(fā)展。但最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時(shí),應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習(xí)題方面,也應(yīng)形式面多樣化。

倍數(shù)特征教學(xué)反思13

  在學(xué)習(xí)這個(gè)內(nèi)容之前,學(xué)生已經(jīng)學(xué)習(xí)了2、5的倍數(shù)的特征。但是3的倍數(shù)的特征與錢不同,2、5的倍數(shù)的特征是看個(gè)數(shù)上的數(shù)字,而3的倍數(shù)的特征不再是看個(gè)位上的數(shù)字,而是看各位上的數(shù)字之和。在學(xué)習(xí)了2、5的倍數(shù)的特征的.前提下來學(xué)習(xí)3的倍數(shù)的特征很容易會(huì)跟2、5的一樣。根據(jù)這一初步的認(rèn)識(shí)沖突,在課堂上我采取了以下教學(xué)措施。

  課前預(yù)習(xí)

  與教學(xué)“2、5的倍數(shù)特征”類似,我要求學(xué)生課前做好充分的預(yù)習(xí)工作:在附頁(yè)的方格紙上寫出1-100的數(shù),找出3的倍數(shù)并涂上顏色,并觀察發(fā)現(xiàn)有什么特征,如下:

  復(fù)習(xí)引入,設(shè)置懸念

  出示:用3,5,6數(shù)字卡片擺成符合要求的三位數(shù)依次出示:

  擺成2的倍數(shù)(學(xué)生回答356536并說原因)

  擺成5的倍數(shù)(學(xué)生回答365635并說原因)

  【設(shè)計(jì)意圖:回顧2,5的倍數(shù)的特征】

  擺成3的倍數(shù)(學(xué)生回答563,653,356,536并說原因:個(gè)位上是3、6;有學(xué)生提出質(zhì)疑,產(chǎn)生沖突)

  問:個(gè)位上是3,6或9的數(shù)是不是3的倍數(shù)?

  學(xué)生驗(yàn)證,發(fā)現(xiàn)這四個(gè)數(shù)都不是3的倍數(shù)。

  問:3的倍數(shù)是不是看各位上的數(shù)呢它到底有什么特征?

  合作探究

  在100以內(nèi)的數(shù)中,任意選取幾個(gè)3的倍數(shù)的數(shù),小組合作完成表格:

  3的倍數(shù)有

  各數(shù)位上,數(shù)的和

  和是不是3的倍數(shù)

  12

  1 + 2 = 3

  是

  匯報(bào)交流:你發(fā)現(xiàn)了什么?

  得出結(jié)論:一個(gè)數(shù)各數(shù)位上數(shù)的和是3的倍數(shù),這個(gè)數(shù)就是3的倍數(shù)。例如:54,因?yàn)?+4=9,9是3的倍數(shù),所以54是3的倍數(shù)。

  鞏固練習(xí)

  1,基礎(chǔ)練習(xí):

 。1)判斷下列數(shù)是不是3的倍數(shù)(42 134 268 78)

  學(xué)生回答:例

  42是3的倍數(shù),134不是3的倍數(shù),

  因?yàn)? + 2 = 6,6是3的倍數(shù),因?yàn)? + 3 + 4 = 8,8-不是3的倍數(shù)

  所以42是3的倍數(shù)。所以134不是3的倍數(shù)。

  (2)師生互動(dòng)猜數(shù)游戲:老師說一個(gè)數(shù),學(xué)生判斷是否為3的倍數(shù);學(xué)生說一個(gè)數(shù),老師判斷;同桌判斷,男女生判斷。

 。3)在下面的方框里填上一個(gè)數(shù)字,使這個(gè)數(shù)是3的倍數(shù)。

  2,有關(guān)于2,5,3的倍數(shù)的特征的比較,綜合練習(xí)。

  反思

  本節(jié)課能從認(rèn)識(shí)沖突上找到突破點(diǎn),再小組合作通過填寫表格引導(dǎo)學(xué)生去發(fā)現(xiàn)3的倍數(shù)的特征,學(xué)生能夠清晰的區(qū)分和判別3的倍數(shù),并與2、5的倍數(shù)作比較,真正理解和辨別這幾個(gè)數(shù)的倍數(shù)的特征,學(xué)生的掌握情況還是不錯(cuò)的。

倍數(shù)特征教學(xué)反思14

  《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2.5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?.5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過程中,概括歸納出了3的倍數(shù)特征。

  一、猜想:讓學(xué)生回顧舊知,2的倍數(shù)和5的倍數(shù)有什么特征,學(xué)生們發(fā)現(xiàn)都只要看一個(gè)數(shù)個(gè)位上的數(shù)就行了,于是很順地設(shè)下了陷阱:同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測(cè)到:“個(gè)位上是0,3,6,9的數(shù)一定是3的倍數(shù)”。

  二、驗(yàn)證::先讓學(xué)生在百數(shù)圖中找找看,顯然像13、16、19等等的數(shù)不是3的倍數(shù),學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個(gè)位上,那3的倍數(shù)究竟與什么有關(guān)系呢。

  三、探究:在此基礎(chǔ)上,讓學(xué)生在百數(shù)圖中找出3的倍數(shù)的數(shù),如果把這些3的倍數(shù)的個(gè)位數(shù)字和十位數(shù)字進(jìn)行調(diào)換,它還是3的倍數(shù)嗎?(讓學(xué)生動(dòng)手驗(yàn)證)

  12→2115→5118→8124→4227→72

  我們發(fā)現(xiàn)調(diào)換位置后還是3的`倍數(shù),那3的倍數(shù)有什么奧妙呢?

  如果把3的倍數(shù)的各位上的數(shù)相加,它們的和是3的倍數(shù)。

  四、驗(yàn)證:下面各數(shù),哪些數(shù)是3的倍數(shù)呢?

  2105421612992319876

  小結(jié):從上面可知,一個(gè)數(shù)各位上的數(shù)字之和如果是3的倍數(shù),那么這個(gè)數(shù)就是3的倍數(shù)。這樣結(jié)論的得出水到渠成。

倍數(shù)特征教學(xué)反思15

  《3的倍數(shù)的特征》的教學(xué)是在第一次教學(xué)之后,學(xué)校組織縣級(jí)教學(xué)能手選撥賽時(shí)候第二次上,可以說是“一課兩上”。我在第二次備課時(shí)完全從另一個(gè)角度來處理教材,收獲頗豐。下面我就本節(jié)課前后兩次上課反思如下:

  第一次上課我是讓學(xué)生圈出100以內(nèi)3的倍數(shù),去觀察3的倍數(shù)的特征,由此總結(jié)出3的倍數(shù)的特征,然后實(shí)際應(yīng)用,鞏固練習(xí)。效果一般。而第二次上課時(shí)我是這樣做的:使學(xué)生在原有認(rèn)知的基礎(chǔ)上產(chǎn)生認(rèn)知沖突,在學(xué)習(xí)2、5倍數(shù)特征的基礎(chǔ)上,讓學(xué)生猜測(cè)是不是3的倍數(shù)的特征也要去看數(shù)的個(gè)位呢,進(jìn)而產(chǎn)生新的探索欲望,讓后在百數(shù)表中圈出3的倍數(shù)的特征,接著借助學(xué)生熟悉的計(jì)數(shù)器進(jìn)行兩個(gè)實(shí)驗(yàn),實(shí)驗(yàn)一:驗(yàn)證3的倍數(shù)的特診,實(shí)驗(yàn)二:驗(yàn)證不是3的倍數(shù)的的數(shù)的特征。最后實(shí)踐應(yīng)用,課堂檢測(cè)。

  整個(gè)教學(xué)過程突出了對(duì)學(xué)生“提出問題—探索問題—解決問題”的能力培養(yǎng),學(xué)生能在猜想、操作、驗(yàn)證、交流、反思、歸納的'數(shù)學(xué)活動(dòng)中,獲得較為豐富的數(shù)學(xué)經(jīng)驗(yàn),也有助于創(chuàng)造性的培養(yǎng)。這就要求我們教師首先要具有創(chuàng)造精神,注重設(shè)計(jì)寬松和諧民主的教學(xué)氛圍,尊重學(xué)生,抓住一切可以利用的機(jī)會(huì),激發(fā)學(xué)生的創(chuàng)新欲望,學(xué)生的創(chuàng)造意識(shí)才能得以培養(yǎng),個(gè)性才能充分發(fā)展。

  反思這節(jié)課的不足我覺得在每個(gè)環(huán)節(jié)的過渡上要做的更加自然、一氣呵成會(huì)更好。由于本節(jié)課按照賽教要求只有30分鐘,時(shí)間的把握做的還不夠恰到好處。總之,教無定法,學(xué)海無涯,需要我不斷的學(xué)習(xí)和實(shí)踐,不斷提高自身素質(zhì)和專業(yè)水平,大力提高教學(xué)質(zhì)量。

【倍數(shù)特征教學(xué)反思】相關(guān)文章:

3的倍數(shù)的特征的教學(xué)反思02-18

《3的倍數(shù)的特征》教學(xué)反思02-11

3的倍數(shù)特征教學(xué)反思03-19

《3的倍數(shù)特征》教學(xué)反思04-11

2,5倍數(shù)特征教學(xué)反思02-23

《2,5的倍數(shù)的特征》教學(xué)反思03-10

《3的倍數(shù)特征》教學(xué)反思15篇04-11

《3的倍數(shù)的特征》教學(xué)反思15篇04-11

教學(xué)倍數(shù)教學(xué)反思02-25