- 因式分解教案 推薦度:
- 因式分解教案 推薦度:
- 因式分解教案 推薦度:
- 相關(guān)推薦
關(guān)于因式分解教案錦集五篇
作為一無名無私奉獻的教育工作者,常常要根據(jù)教學(xué)需要編寫教案,通過教案準(zhǔn)備可以更好地根據(jù)具體情況對教學(xué)進程做適當(dāng)?shù)谋匾恼{(diào)整。那么優(yōu)秀的教案是什么樣的呢?下面是小編為大家收集的因式分解教案5篇,僅供參考,希望能夠幫助到大家。
因式分解教案 篇1
學(xué)習(xí)目標(biāo)
1、學(xué)會用平方差公式進行因式法分解
2、學(xué)會因式分解的而基本步驟.
學(xué)習(xí)重難點重點:
用平方差公式進行因式法分解.
難點:
因式分解化簡的過程
自學(xué)過程設(shè)計教學(xué)過程設(shè)計
看一看
平方差公式:
平方差公式的逆運用:
做一做:
1.填空題.
(1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________).
(3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______).
2.把下列各式分解因式結(jié)果為-(x-2y)(x+2y)的多項式是()
A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y2
3.多項式-1+0.04a2分解因式的結(jié)果是()
A.(-1+0.2a)2B.(1+0.2a)(1-0.2a)
C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1)
4.把下列各式分解因式:
(1)4x2-25y2;(2)0.81m2-n2;
(3)a3-9a;(4)8x3y3-2xy.
5.把下列各式分解因式:
(1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2.
6.用簡便方法計算:3492-2512.
想一想
你還有哪些地方不是很懂?請寫出來。
____________________________________________________________________________________
Xkb1.com預(yù)習(xí)展示一:
1、下列多項式能否用平方差公式分解因式?
說說你的理由。
4x2+y2
4x2-(-y)2
-4x2-y2-4x2+y2
a2-4a2+3
2.把下列各式分解因式:
(1)16-a2
(2)0.01s2-t2
(4)-1+9x2
(5)(a-b)2-(c-b)2
(6)-(x+y)2+(x-2y)2
應(yīng)用探究:
1、分解因式
4x3y-9xy3
變式:把下列各式分解因式
、賦4-81y4
②2a-8a
2、從前有一位張老漢向地主租了一塊“十字型”土地(尺寸如圖)。為便于種植,他想換一塊相同面積的長方形土地。同學(xué)們,你能幫助張老漢算出這塊長方形土地的長和寬嗎?w
3、在日常生活中如上網(wǎng)等都需要密碼.有一種因式分解法產(chǎn)生的密碼方便記憶又不易破譯.
例如用多項式x4-y4因式分解的結(jié)果來設(shè)置密碼,當(dāng)取x=9,y=9時,可得一個六位數(shù)的密碼“018162”.你想知道這是怎么來的嗎?
小明選用多項式4x3-xy2,取x=10,y=10時。用上述方法產(chǎn)生的密碼是什么?(寫出一個即可)
拓展提高:
若n為整數(shù),則(2n+1)2-(2n-1)2能被8整除嗎?請說明理由.
教后反思考察利用公式法因式分解的'題目不會很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進行變形,從而達到進行因式分解的目的。
因式分解教案 篇2
學(xué)習(xí)目標(biāo)
1、 學(xué)會用公式法因式法分解
2、綜合運用提取公式法、公式法分解因式
學(xué)習(xí)重難點 重點:
完全平方公式分解因式.
難點:綜合運用兩種公式法因式分解
自學(xué)過程設(shè)計
完全平方公式:
完全平方公式的逆運用:
做一做:
1.(1)16x2-8x+_______=(4x-1)2;
(2)_______+6x+9=(x+3)2;
(3)16x2+_______+9y2=(4x+3y)2;
(4)(a-b)2-2(a-b)+1=(______-1)2.
2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號)
3.下列因式分解正確的是( )
A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2
C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2
4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1
5.計算:20062-40102006+20052=___________________.
6.若x+y=1,則 x2+xy+ y2的`值是_________________.
想一想
你還有哪些地方不是很懂?請寫出來。
____________________________________________________________________________________ 預(yù)習(xí)展示一:
1.判別下列各式是不是完全平方式.
2、把下列各式因式分解:
(1)-x2+4xy-4y2
(2)3ax2+6axy+3ay2
(3)(2x+y)2-6(2x+y)+9
應(yīng)用探究:
1、用簡便方法計算
49.92+9.98 +0.12
拓展提高:
(1)( a2+b2)( a2+b2 10)+25=0 求a2+b2
(2)4x2+y2-4xy-12x+6y+9=0
求x、y關(guān)系
(3)分解因式:m4+4
教后反思 考察利用公式法因式分解的題目不會很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進行變形,從而達到進行因式分解的目的,但是這里有用到實際中去的例子,對學(xué)生來說會難一些。
因式分解教案 篇3
教學(xué)目標(biāo):
1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式綜合應(yīng)用;能利用平方差公式法解決實際問題。
2、經(jīng)歷探究分解因式方法的過程,體會整式乘法與分解因式之間的聯(lián)系。
3、通過對公式的探究,深刻理解公式的應(yīng)用,并會熟練應(yīng)用公式解決問題。
4、通過探究平方差公式特點,學(xué)生根據(jù)公式自己取值設(shè)計問題,并根據(jù)公式自己解決問題的過程,讓學(xué)生獲得成功的體驗,培養(yǎng)合作交流意識。
教學(xué)重點:
應(yīng)用平方差公式分解因式.
教學(xué)難點:
靈活應(yīng)用公式和提公因式法分解因式,并理解因式分解的要求.
教學(xué)過程:
一、復(fù)習(xí)準(zhǔn)備 導(dǎo)入新課
1、什么是因式分解?判斷下列變形過程,哪個是因式分解?
、(x+2)(x-2)= ②
、
2、我們已經(jīng)學(xué)過的因式分解的方法有什么?將下列多項式分解因式。
x2+2x
a2b-ab
3、根據(jù)乘法公式進行計算:
(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=
二、合作探究 學(xué)習(xí)新知
(一) 猜一猜:你能將下面的多項式分解因式嗎?
。1)= (2)= (3)=
(二)想一想,議一議: 觀察下面的公式:
。剑╝+b)(a—b)(
這個公式左邊的多項式有什么特征:_____________________________________
公式右邊是__________________________________________________________
這個公式你能用語言來描述嗎? _______________________________________
(三)練一練:
1、下列多項式能否用平方差公式來分解因式?為什么?
、 ② ③ ④
2、你能把下列的數(shù)或式寫成冪的'形式嗎?
(1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2
。ㄋ模┳鲆蛔觯
例3 分解因式:
(1) 4x2- 9 (2) (x+p)2- (x+q)2
。ㄎ澹┰囈辉嚕
例4 下面的式子你能用什么方法來分解因式呢?請你試一試。
(1) x4- y4 (2) a3b- ab
。┫胍幌耄
某學(xué)校有一個邊長為85米的正方形場地,現(xiàn)在場地的四個角分別建一個邊長為5米的正方形花壇,問場地還剩余多大面積供學(xué)生課間活動使用?
因式分解教案 篇4
教學(xué)目標(biāo)
教學(xué)知識點
使學(xué)生了解因式分解的好處,明白它與整式乘法在整式變形過程中的相反關(guān)系。
潛力訓(xùn)練要求。
透過觀察,發(fā)現(xiàn)分解因式與整式乘法的關(guān)系,培養(yǎng)學(xué)生觀察潛力和語言概括潛力。
情感與價值觀要求。
透過觀察,推導(dǎo)分解因式與整式乘法的關(guān)系,讓學(xué)生了解事物間的因果聯(lián)系。
教學(xué)重點
1、理解因式分解的好處。
2、識別分解因式與整式乘法的關(guān)系。
教學(xué)難點透過觀察,歸納分解因式與整式乘法的關(guān)系。
教學(xué)方法觀察討論法
教學(xué)過程
Ⅰ、創(chuàng)設(shè)問題情境,引入新課
導(dǎo)入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b)
Ⅱ、講授新課
1、討論993-99能被100整除嗎?你是怎樣想的?與同伴交流。
993-99=99×98×100
2、議一議
你能嘗試把a3-a化成n個整式的乘積的形式嗎?與同伴交流。
3、做一做
。1)計算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________;
③3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________
。2)根據(jù)上面的'算式填空:
①3x2-3x=()();②m2-16=()();③ma+mb+mc=()();
、躽2-6y+9=()2。⑤a3-a=()()。
定義:把一個多項式化成幾個整式的積的形式,叫做把這個多項式分解因式。
4。想一想
由a(a+1)(a-1)得到a3-a的變形是什么運算?由a3-a得到a(a+1)(a-1)的變形與這種運算有什么不同?你還能舉一些類似的例子加以說明嗎?
下面我們一齊來總結(jié)一下。
如:m(a+b+c)=ma+mb+mc(1)
ma+mb+mc=m(a+b+c)(2)
5、整式乘法與分解因式的聯(lián)系和區(qū)別
ma+mb+mcm(a+b+c)。因式分解與整式乘法是相反方向的變形。
6。例題下列各式從左到右的變形,哪些是因式分解?
。1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);
。3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。
Ⅲ、課堂練習(xí)
P40隨堂練習(xí)
Ⅳ、課時小結(jié)
本節(jié)課學(xué)習(xí)了因式分解的好處,即把一個多項式化成幾個整式的積的形式;還學(xué)習(xí)了整式乘法與分解因式的關(guān)系是相反方向的變形。
因式分解教案 篇5
15.1.1 整式
教學(xué)目標(biāo)
1.單項式、單項式的定義.
2.多項式、多項式的次數(shù).
3、理解整式概念.
教學(xué)重點
單項式及多項式的有關(guān)概念.
教學(xué)難點
單項式及多項式的有關(guān)概念.
教學(xué)過程
、瘢岢鰡栴},創(chuàng)設(shè)情境
在七年級,我們已經(jīng)學(xué)習(xí)了用字母可以表示數(shù),思考下列問題
1.要表示△ABC的周長需要什么條件?要表示它的面積呢?
2.小王用七小時行駛了Skm的路程,請問他的平均速度是多少?
結(jié)論:
1、要表示△ABC的周長,需要知道它的各邊邊長.要表示△ABC的面積需要知道一條邊長和這條邊上的高.如果設(shè)BC=a,AC=b,AB=c.AB邊上的高為h,那么△ABC的周長可以表示為a+b+c;△ABC的面積可以表示為 ?c?h.
2.小王的平均速度是 .
問題:這些式子有什么特征呢?
。1)有數(shù)字、有表示數(shù)字的字母.
。2)數(shù)字與字母、字母與字母之間還有運算符號連接.
歸納:用基本的運算符號(運算包括加、減、乘、除、乘方與開方)把數(shù)和表示數(shù)的字母連接起來的式子叫做代數(shù)式.
判斷上面得到的三個式子:a+b+c、 ch、 是不是代數(shù)式?(是)
代數(shù)式可以簡明地表示數(shù)量和數(shù)量的關(guān)系.今天我們就來學(xué)習(xí)和代數(shù)式有關(guān)的整式.
、颍鞔_和鞏固整式有關(guān)概念
。ǔ鍪就队埃
結(jié)論:(1)正方形的周長:4x.
。2)汽車走過的路程:vt.
(3)正方體有六個面,每個面都是正方形,這六個正方形全等,所以它的表面積為6a2;正方體的體積為長×寬×高,即a3.
。4)n的相反數(shù)是-n.
分析這四個數(shù)的特征.
它們符合代數(shù)式的定義.這五個式子都是數(shù)與字母或字母與字母的積,而a+b+c、 ch、 中還有和與商的運算符號.還可以發(fā)現(xiàn)這五個代數(shù)式中字母指數(shù)各不相同,字母的個數(shù)也不盡相同.
請同學(xué)們閱讀課本P160~P161單項式有關(guān)概念.
根據(jù)這些定義判斷4x、vt、6a2、a3、-n、a+b+c、 ch、 這些代數(shù)式中,哪些是單項式?是單項式的,寫出它的系數(shù)和次數(shù).
結(jié)論:4x、vt、6a2、a3、-n、 ch是單項式.它們的系數(shù)分別是4、1、6、1、-1、 .它們的`次數(shù)分別是1、2、2、3、1、2.所以4x、-n都是一次單項式;vt、6a2、 ch都是二次單項式;a3是三次單項式.
問題:vt中v和t的指數(shù)都是1,它不是一次單項式嗎?
結(jié)論:不是.根據(jù)定義,單項式vt中含有兩個字母,所以它的次數(shù)應(yīng)該是這兩個字母的指數(shù)的和,而不是單個字母的指數(shù),所以vt是二次單項式而不是一次單項式.
生活中不僅僅有單項式,像a+b+c,它不是單項式,和單項式有什么聯(lián)系呢?
寫出下列式子(出示投影)
結(jié)論:(1)t-5.(2)3x+5y+2z.
。3)三角尺的面積應(yīng)是直角三角形的面積減去圓的面積,即 ab-3.12r2.
。4)建筑面積等于四個矩形的面積之和.而右邊兩個已知矩形面積分別為3×2、4×3,所以它們的面積和是18.于是得這所住宅的建筑面積是x2+2x+18.
我們可以觀察下列代數(shù)式:
a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.發(fā)現(xiàn)它們都是由單項式的和組成的式子.是多個單項式的和,能不能叫多項式?
這樣推理合情合理.請看投影,熟悉下列概念.
根據(jù)定義,我們不難得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多項式.請分別指出它們的項和次數(shù).
a+b+c的項分別是a、b、c.
t-5的項分別是t、-5,其中-5是常數(shù)項.
3x+5y+2z的項分別是3x、5y、2z.
ab-3.12r2的項分別是 ab、-3.12r2.
x2+2x+18的項分別是x2、2x、18. 找多項式的次數(shù)應(yīng)抓住兩條,一是找準(zhǔn)每個項的次數(shù),二是取每個項次數(shù)的最大值.根據(jù)這兩條很容易得到這五個多項式中前三個是一次多項式,后兩個是二次多項式.
這節(jié)課,通過探究我們得到單項式和多項式的有關(guān)概念,它們可以反映變化的世界.同時,我們也到符號的魅力所在.我們把單項式與多項式統(tǒng)稱為整式.
、螅S堂練習(xí)
1.課本P162練習(xí)
Ⅳ.課時小結(jié)
通過探究,我們了解了整式的概念.理解并掌握單項式、多項式的有關(guān)概念是本節(jié)的重點,特別是它們的次數(shù).在現(xiàn)實情景中進一步理解了用字母表示數(shù)的意義,發(fā)展符號感.
Ⅴ.課后作業(yè)
1.課本P165~P166習(xí)題15.1─1、5、8、9題.
2.預(yù)習(xí)“整式的加減”.
課后作業(yè):《課堂感悟與探究》
15.1.2 整式的加減(1)
教學(xué)目的:
1、解字母表示數(shù)量關(guān)系的過程,發(fā)展符號感。
2、會進行整式加減的運算,并能說明其中的算理,發(fā)展有條理的思考及語言表達能力。
教學(xué)重點:
會進行整式加減的運算,并能說明其中的算理。
教學(xué)難點:
正確地去括號、合并同類項,及符號的正確處理。
教學(xué)過程:
一、課前練習(xí):
1、填空:整式包括 和
2、單項式 的系數(shù)是 、次數(shù)是
3、多項式 是 次 項式,其中二次項
系數(shù)是 一次項是 ,常數(shù)項是
4、下列各式,是同類項的一組是( )
。ˋ) 與 (B) 與 (C) 與
5、去括號后合并同類項:
二、探索練習(xí):
1、如果用a 、b分別表示一個兩位數(shù)的十位數(shù)字和個位數(shù)字,那么這個兩位數(shù)可以表示為 交換這個兩位數(shù)的十位數(shù)字和個位數(shù)字后得到的兩位數(shù)為
這兩個兩位數(shù)的和為
2、如果用a 、b、c分別表示一個三位數(shù)的百位數(shù)字、十位數(shù)字和個位數(shù)字,那么這個三位數(shù)可以表示為 交換這個三位數(shù)的百位數(shù)字和個位數(shù)字后得到的三位數(shù)為
這兩個三位數(shù)的差為
●議一議:在上面的兩個問題中,分別涉及到了整式的什么運算?
說說你是如何運算的?
▲整式的加減運算實質(zhì)就是
運算的結(jié)果是一個多項式或單項式。
三、鞏固練習(xí):
1、填空:(1) 與 的差是
(2)、單項式 、 、 、 的和為
(3)如圖所示,下面為由棋子所組成的三角形,
一個三角形需六個棋子,三個三角形需
。 )個棋子,n個三角形需 個棋子
2、計算:
。1)
(2)
。3)
3、(1)求 與 的和
(2)求 與 的差
4、先化簡,再求值: 其中
四、提高練習(xí):
1、若A是五次多項式,B是三次多項式,則A+B一定是
。ˋ)五次整式 (B)八次多項式
。–)三次多項式 (D)次數(shù)不能確定
2、足球比賽中,如果勝一場記3a分,平一場記a分,負(fù)一場
記0分,那么某隊在比賽勝5場,平3場,負(fù)2場,共積多
少分?
3、一個兩位數(shù)與把它的數(shù)字對調(diào)所成的數(shù)的和,一定能被14
整除,請證明這個結(jié)論。
4、如果關(guān)于字母x的二次多項式 的值與x的取值無關(guān),
試求m、n的值。
五、小結(jié):整式的加減運算實質(zhì)就是去括號和合并同類項。
六、作業(yè):第8頁習(xí)題1、2、3
15.1.2整式的加減(2)
教學(xué)目標(biāo):1.會進行整式加減的運算,并能說明其中的算理,發(fā)展有條理的思考及其語言表達能力。
2.通過探索規(guī)律的問題,進一步符號表示的意義,發(fā)展符號感,發(fā)展推理能力。
教學(xué)重點:整式加減的運算。
教學(xué)難點:探索規(guī)律的猜想。
教學(xué)方法:嘗試練習(xí)法,討論法,歸納法。
教學(xué)用具:投影儀
教學(xué)過程:
I探索練習(xí):
擺第1個“小屋子”需要5枚棋子,擺第2個需要 枚棋子,擺第3個需要 枚棋子。按照這樣的方式繼續(xù)擺下去。
(1)擺第10個這樣的“小屋子”需要 枚棋子
。2)擺第n個這樣的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解決這個問題嗎?小組討論。
二、例題講解:
三、鞏固練習(xí):
1、計算:
。1)(14x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)
。3)x-(1-2x+x2)+(-1-x2) (4)(8xy-3x2)-5xy-2(3xy-2x2)
2、已知:A=x3-x2-1,B=x2-2,計算:(1)B-A (2)A-3B
3、列方程解應(yīng)用題:三角形三個內(nèi)角的和等于180°,如果三角形中第一個角等于第二個角的3倍,而第三個角比第二個角大15°,那么
(1)第一個角是多少度?
。2)其他兩個角各是多少度?
四、提高練習(xí):
1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問C是什么樣的多項式?
2、設(shè)A=2x2-3xy+y2-x+2y,B=4x2-6xy+2y2-3x-y,若│x-2a│+
。▂+3)2=0,且B-2A=a,求A的值。
3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點)的對應(yīng)點如圖:
試化簡:│a│-│a+b│+│c-a│+│b+c│
小 結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對整式加減進行運算。
作 業(yè):課本P14習(xí)題1.3:1(2)、(3)、(6),2。
【因式分解教案】相關(guān)文章:
因式分解教案04-02
因式分解教案05-07
因式分解復(fù)習(xí)教案09-06
【精選】因式分解教案四篇02-03
【精選】因式分解教案三篇02-17
【精選】因式分解教案4篇02-09
精選因式分解教案三篇02-01
精選因式分解教案3篇02-07
因式分解教案15篇04-26
因式分解教案四篇01-20