當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 一元一次方程教案

一元一次方程教案

時(shí)間:2023-02-23 16:56:35 教案 我要投稿

一元一次方程教案(15篇)

  作為一名專為他人授業(yè)解惑的人民教師,很有必要精心設(shè)計(jì)一份教案,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。那么問(wèn)題來(lái)了,教案應(yīng)該怎么寫(xiě)?以下是小編幫大家整理的一元一次方程教案,歡迎閱讀與收藏。

一元一次方程教案(15篇)

一元一次方程教案1

  教學(xué)目標(biāo):

  1.使學(xué)生進(jìn)一步掌握解一元一次方程的移項(xiàng)規(guī)律。

  2.掌握帶有括號(hào)的一元一次方程的解法;

  3.培養(yǎng)學(xué)生觀察、分析、轉(zhuǎn)化的能力,同時(shí)提高他們的運(yùn)算能力.

  教學(xué)重點(diǎn):

  帶有括號(hào)的一元一次方程的.解法.

  教學(xué)難點(diǎn):

  解一元一次方程的移項(xiàng)規(guī)律.

  教學(xué)手段:

  引導(dǎo)——活動(dòng)——討論

  教學(xué)方法:

  啟發(fā)式教學(xué)

  教學(xué)過(guò)程

  (一)、情境創(chuàng)設(shè):

  知識(shí)復(fù)習(xí)

  (二)引導(dǎo)探究:帶括號(hào)的方程的解法。

  例1.2(x-2)-3(4x-1)=9(1-x).

  解:(怎樣才能將所給方程轉(zhuǎn)化為例1所示方程的形式呢?請(qǐng)學(xué)生回答)

  去括號(hào),得:

  移項(xiàng),得:

  合并同類項(xiàng),得:

  系數(shù)化1,得:

  遇有帶括號(hào)的一元一次方程的解法步驟:

  (三)練習(xí):(A)組

  1.下列方程的解法對(duì)不對(duì)?若不對(duì)怎樣改正?

  解方程2(x+3)-5(1-x)=3(x-1)

  解:2x+3-5-5x=3x-1,

  2x-5x-3x=3+5-3,

  -6x=-1,

  2.解方程:

  (1)10y+7=12-5-3y;(2)2.4x-9.8=1.4x-9.

  3.解方程:

  (1)3(y+4)12;(2)2-(1-z)=-2;

  (B)組

  (1)2(3y-4)+7(4-y)=4y;(2)4x-3(20-x)=6x-7(9-x);

  (3)3(2y+1)=2(1+y)+3(y+3)(4)8x+4=2(4x+3)-2(-3+x)

  (四)教學(xué)小結(jié)

  本節(jié)課都教學(xué)哪些內(nèi)容?

  哪些思想方法?

  應(yīng)注意什么?

一元一次方程教案2

  一、目標(biāo):

  知識(shí)目標(biāo):能熟練地求解數(shù)字系數(shù)的一元一次方程( 不含去括號(hào)、去分母)。

  過(guò)程方法目標(biāo):經(jīng)歷和體會(huì)解一元一次方程中“轉(zhuǎn)化”的思想方法。

  情感態(tài)度目標(biāo):在數(shù)學(xué)活動(dòng)中獲得成功的喜悅,增強(qiáng)自信心和意志力,激發(fā)學(xué)習(xí)興趣。

  二、重難點(diǎn):

  重點(diǎn):學(xué)會(huì)解一元一次方程

  難點(diǎn):移項(xiàng)

  三、學(xué)情分析:

  知識(shí)背景:學(xué)生已學(xué)過(guò)用等式的性質(zhì)來(lái)解一元一次方程。

  能力背景:能比較熟練地用等式的性質(zhì)來(lái)解一元一次方程。

  預(yù)測(cè)目標(biāo):能熟練地用移項(xiàng)的方法來(lái)解一元一次方 程。

  四、教學(xué)過(guò)程:

  (一)創(chuàng)設(shè)情景

  一頭半歲藍(lán)鯨的體 重是22t,90天后的體重是30.1t,藍(lán)鯨的體重平均每天增加多少?

  (二)實(shí)踐探索,揭示新知

  1.例2.解方程: 看誰(shuí)算得又快:

  解:方程的兩邊同時(shí)加上 得 解: 6x ? 2=10

  移項(xiàng)得 6x =10+2

  即 合并同類項(xiàng)得

  化系數(shù)為1得

  大家看一下有什么規(guī)律可尋?可以討論

  2 .移項(xiàng)的概念: 根據(jù)等式的基本性質(zhì)方程中的某些項(xiàng)改變符號(hào)后,可以從方程的一邊移到另一邊 ,這樣的 變形叫做移項(xiàng)。

  看誰(shuí)做得又快又準(zhǔn)確!千萬(wàn)不要忘記移項(xiàng)要變號(hào)。

  3.解方程:3x+3 =12,

  4.例3解方程: 例4解方程 :

  2x=5x-21 x- 3=4-

  5.觀察并思考:

 、僖祈(xiàng)有什么特點(diǎn)?

  ②移項(xiàng)后的`化簡(jiǎn)包括哪些

  (三)嘗試應(yīng)用 ,反饋矯正

  1.下列解方程對(duì)嗎?

 。1)3x+5=4 7=x-5

  解: 3x+ 5 =4 解:7=x-5

  移項(xiàng)得: 3x =4+5 移項(xiàng)得:-x= 5+7

  合并同類項(xiàng)得 3x =9 合并同類項(xiàng)得 -x= 12

  化系數(shù)為1得 x =3 化系數(shù)為1得 x = -12

  2解方程

 。1). 10x+1=9 (2) 2—3x =4-2x;

  (四)歸納小結(jié)

 。.今天學(xué)習(xí)了什么?有什么新的簡(jiǎn)便的寫(xiě)法?

  2.要注意什么?

  3. 解方程的 一般步驟是什么?

  4.. (1) 移項(xiàng)實(shí)際上 是對(duì)方程兩邊進(jìn)行 , 使用的是

 。2)系數(shù) 化為 1 實(shí)際上是對(duì)方程兩邊進(jìn)行 , 使用的是 。

 。3)移項(xiàng)的作用是什么?

  (五)作業(yè)

  1.課堂作業(yè):課本習(xí)題4.2第二題

  2.家作:評(píng)價(jià)手冊(cè)4.2第二課時(shí)

一元一次方程教案3

  教學(xué)目標(biāo)

  1.使學(xué)生初步掌握一元一次方程解簡(jiǎn)單應(yīng)用題的方法和步驟;并會(huì)列出一元一次方程解簡(jiǎn)單的應(yīng)用題;

  2.培養(yǎng)學(xué)生觀察潛力,提高他們分析問(wèn)題和解決問(wèn)題的潛力;

  3.使學(xué)生初步養(yǎng)成正確思考問(wèn)題的良好習(xí)慣.

  教學(xué)重點(diǎn)和難點(diǎn)

  一元一次方程解簡(jiǎn)單的應(yīng)用題的方法和步驟.

  課堂教學(xué)過(guò)程設(shè)計(jì)

  一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題

  在小學(xué)算術(shù)中,我們學(xué)習(xí)了用算術(shù)方法解決實(shí)際問(wèn)題的有關(guān)知識(shí),那么,一個(gè)實(shí)際問(wèn)題能否應(yīng)用一元一次方程來(lái)解決呢?若能解決,怎樣解?用一元一次方程解應(yīng)用題與用算術(shù)方法解應(yīng)用題相比較,它有什么優(yōu)越性呢?

  為了回答上述這幾個(gè)問(wèn)題,我們來(lái)看下面這個(gè)例題.

  例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù).

  (首先,用算術(shù)方法解,由學(xué)生回答,教師板書(shū))

  解法1:(4+2)÷(3-1)=3.

  答:某數(shù)為3.

  (其次,用代數(shù)方法來(lái)解,教師引導(dǎo),學(xué)生口述完成)

  解法2:設(shè)某數(shù)為x,則有3x-2=x+4.

  解之,得x=3.

  答:某數(shù)為3.

  縱觀例1的這兩種解法,很明顯,算術(shù)方法不易思考,而應(yīng)用設(shè)未知數(shù),列出方程并透過(guò)解方程求得應(yīng)用題的解的方法,有一種化難為易之感,這就是我們學(xué)習(xí)運(yùn)用一元一次方程解應(yīng)用題的目的之一.

  我們明白方程是一個(gè)內(nèi)含未知數(shù)的等式,而等式表示了一個(gè)相等關(guān)系.因此對(duì)于任何一個(gè)應(yīng)用題中帶給的條件,應(yīng)首先從中找出一個(gè)相等關(guān)系,然后再將這個(gè)相等關(guān)系表示成方程.

  本節(jié)課,我們就透過(guò)實(shí)例來(lái)說(shuō)明怎樣尋找一個(gè)相等的關(guān)系和把這個(gè)相等關(guān)系轉(zhuǎn)化為方程的方法和步驟.

  二、師生共同分析、研究一元一次方程解簡(jiǎn)單應(yīng)用題的方法和步驟

  例2某面粉倉(cāng)庫(kù)存放的`面粉運(yùn)出15%后,還剩余42500千克,這個(gè)倉(cāng)庫(kù)原先有多少面粉?

  師生共同分析:

  1.本題中給出的已知量和未知量各是什么?

  2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原先重量-運(yùn)出重量=剩余重量)

  3.若設(shè)原先面粉有x千克,則運(yùn)出面粉可表示為多少千克?利用上述相等關(guān)系,如何布列方程?

  上述分析過(guò)程可列表如下:

  解:設(shè)原先有x千克面粉,那么運(yùn)出了15%x千克,由題意,得

  x-15%x=42500,

  所以x=50000.

  答:原先有50000千克面粉.

  此時(shí),讓學(xué)生討論:本題的相等關(guān)系除了上述表達(dá)形式以外,是否還有其他表達(dá)形式?若有,是什么?

  (還有,原先重量=運(yùn)出重量+剩余重量;原先重量-剩余重量=運(yùn)出重量)

  教師應(yīng)指出:(1)這兩種相等關(guān)系的表達(dá)形式與“原先重量-運(yùn)出重量=剩余重量”,雖形式上不同,但實(shí)質(zhì)是一樣的,能夠任意選取其中的一個(gè)相等關(guān)系來(lái)列方程;

  (2)例2的解方程過(guò)程較為簡(jiǎn)捷,同學(xué)應(yīng)注意模仿.

  依據(jù)例2的分析與解答過(guò)程,首先請(qǐng)同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問(wèn)的方式,進(jìn)行反饋;最后,根據(jù)學(xué)生總結(jié)的狀況,教師總結(jié)如下:

  (1)仔細(xì)審題,透徹理解題意.即弄清已知量、未知量及其相互關(guān)系,并用字母(如x)表示題中的一個(gè)合理未知數(shù);

  (2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系.(這是關(guān)鍵一步);

  (3)根據(jù)相等關(guān)系,正確列出方程.即所列的方程應(yīng)滿足兩邊的量要相等;方程兩邊的代數(shù)式的單位要相同;題中條件應(yīng)充分利用,不能漏也不能將一個(gè)條件重復(fù)利用等;

  (4)求出所列方程的解;

  (5)檢驗(yàn)后明確地、完整地寫(xiě)出答案.那里要求的檢驗(yàn)應(yīng)是,檢驗(yàn)所求出的解既能使方程成立,又能使應(yīng)用題有好處.

  例3(投影)初一2班第一小組同學(xué)去蘋(píng)果園參加勞動(dòng),休息時(shí)工人師傅摘蘋(píng)果分給同學(xué),若每人3個(gè)還剩余9個(gè);若每人5個(gè)還有一個(gè)人分4個(gè),試問(wèn)第一小組有多少學(xué)生,共摘了多少個(gè)蘋(píng)果?

  (仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點(diǎn)撥.解答過(guò)程請(qǐng)一名學(xué)生板演,教師巡視,及時(shí)糾正學(xué)生在書(shū)寫(xiě)本題時(shí)可能出現(xiàn)的各種錯(cuò)誤.并嚴(yán)格規(guī)范書(shū)寫(xiě)格式)

  解:設(shè)第一小組有x個(gè)學(xué)生,依題意,得

  3x+9=5x-(5-4),

  解這個(gè)方程:2x=10,

  所以x=5.

  其蘋(píng)果數(shù)為3×5+9=24.

  答:第一小組有5名同學(xué),共摘蘋(píng)果24個(gè).

  學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程.

 。ㄔO(shè)第一小組共摘了x個(gè)蘋(píng)果,則依題意,得)

  三、課堂練習(xí)

  1.買4本練習(xí)本與3支鉛筆一共用了1.24元,已知鉛筆每支0.12元,問(wèn)練習(xí)本每本多少元?

  2.我國(guó)城鄉(xiāng)居民1988年末的儲(chǔ)蓄存款到達(dá)3802億元,比1978年末的儲(chǔ)蓄存款的18倍還多4億元.求1978年末的儲(chǔ)蓄存款。

  3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù).

  四、師生共同小結(jié)

  首先,讓學(xué)生回答如下問(wèn)題:

  1.本節(jié)課學(xué)習(xí)了哪些資料?

  2.列一元一次方程解應(yīng)用題的方法和步驟是什么?

  3.在運(yùn)用上述方法和步驟時(shí)應(yīng)注意什么?

  依據(jù)學(xué)生的回答狀況,教師總結(jié)如下:

  (1)代數(shù)方法的基本步驟是:全面掌握題意;恰當(dāng)選取變數(shù);找出相等關(guān)系;布列方程求解;檢驗(yàn)書(shū)寫(xiě)答案.其中第三步是關(guān)鍵;

  (2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶.

  五、作業(yè)

  1.買3千克蘋(píng)果,付出10元,找回3角4分.問(wèn)每千克蘋(píng)果多少錢(qián)?

  2.用76厘米長(zhǎng)的鐵絲做一個(gè)長(zhǎng)方形的教具,要使寬是16厘米,那么長(zhǎng)是多少厘米?

  3.某廠去年10月份生產(chǎn)電視機(jī)20xx臺(tái),這比前年10月產(chǎn)量的2倍還多150臺(tái).這家工廠前年10月生產(chǎn)電視機(jī)多少臺(tái)?

  4.大箱子裝有洗衣粉36千克,把大箱子里的洗衣粉分裝在4個(gè)同樣大小的小箱里,裝滿后還剩余2千克洗衣粉.求每個(gè)小箱子里裝有洗衣粉多少千克?

  5.把1400獎(jiǎng)金分給22名得獎(jiǎng)?wù),一等?jiǎng)每人200元,二等獎(jiǎng)每人50元.求得到一等獎(jiǎng)與二等獎(jiǎng)的人數(shù)。

一元一次方程教案4

  一、教材分析

 。ㄒ唬┙滩牡牡匚缓妥饔

  本節(jié)內(nèi)容是一元一次方程應(yīng)用的延伸與拓展,它進(jìn)一步讓學(xué)生親身經(jīng)歷將實(shí)際問(wèn)題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過(guò)程,同時(shí)又滲透了函數(shù)與不等式的思想,為以后內(nèi)容學(xué)習(xí)奠定了必要的數(shù)學(xué)基礎(chǔ),本節(jié)內(nèi)容具有承上啟下的作用。學(xué)生能深刻地認(rèn)識(shí)到方程是刻畫(huà)現(xiàn)實(shí)世界有效的數(shù)學(xué)模型,領(lǐng)悟到方程的數(shù)學(xué)思想方法。總之,本節(jié)內(nèi)容無(wú)論在知識(shí)上還是在數(shù)學(xué)思想方法上,都是十分很好的素材,能很好培養(yǎng)學(xué)生的探索精神、應(yīng)用意識(shí)以及創(chuàng)新能力。

  (二)教材的重難點(diǎn)

  本節(jié)的重點(diǎn)是探索并掌握列一元一次方程解決實(shí)際問(wèn)題的方法。而方程的建模思想學(xué)生還是初步接觸,尋找相等關(guān)系對(duì)學(xué)生來(lái)說(shuō)仍相當(dāng)困難,所以確定找出已知量與未知量之間的關(guān)系,尤其是相等關(guān)系為本節(jié)的難點(diǎn)之一,列方程解應(yīng)用題的最終目標(biāo)是運(yùn)用方程的解對(duì)客觀現(xiàn)實(shí)作出合理的解釋,這是本節(jié)的難點(diǎn)之二。

  二、教學(xué)目標(biāo)分析

  (一)知識(shí)技能目標(biāo)

  1。目標(biāo)內(nèi)容

 。1) 結(jié)合生活實(shí)際,會(huì)在獨(dú)立思考后與他人合作,結(jié)合估算和試探,列出一元一次方程解決本節(jié)的三個(gè)實(shí)際問(wèn)題,并能解釋結(jié)果的實(shí)際意義及其合理性。

  (2) 培養(yǎng)學(xué)生建立方程模型來(lái)分析、解決實(shí)際問(wèn)題的能力以及探索精神、合作意識(shí)。

  2。目標(biāo)分析

 。1) 本節(jié)的內(nèi)容就是通過(guò)列方程、解方程來(lái)解決實(shí)際問(wèn)題,這是必須掌握的知識(shí),估算與試探的思維方法也很重要,這是發(fā)現(xiàn)和解決問(wèn)題的有效途徑。

 。2) 七年級(jí)的學(xué)生對(duì)數(shù)學(xué)建模還比較陌生,建模能突出應(yīng)用數(shù)學(xué)的意識(shí),而探索精神和合作意識(shí)又是課標(biāo)所大力倡導(dǎo)的,因而必須加強(qiáng)培養(yǎng)學(xué)生這方面的能力。

 。ǘ┻^(guò)程目標(biāo)

  1。目標(biāo)內(nèi)容

  在活動(dòng)中感受方程思想在數(shù)學(xué)中的作用,進(jìn)一步增強(qiáng)應(yīng)用意識(shí)。

  2。目標(biāo)分析

  利用方程解決問(wèn)題是有用的數(shù)學(xué)方法,學(xué)生在前兩節(jié)的數(shù)學(xué)活動(dòng)中,有了一些初步的經(jīng)驗(yàn),但是更接近生活,更富有挑戰(zhàn)性的問(wèn)題則需要師生合作,探索解決。

 。ㄈ┣楦心繕(biāo)

  1。目標(biāo)內(nèi)容

 。1) 在探索中獲得成功的體驗(yàn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,享受與他人合作的樂(lè)趣,建立自信心。

  (2) 通過(guò)對(duì)實(shí)際問(wèn)題的解決,進(jìn)一步體會(huì)數(shù)學(xué)來(lái)源于生活,且服務(wù)于生活的辯證思想。

  2。目標(biāo)分析

  七年級(jí)學(xué)生的年齡特征決定了他們好奇心強(qiáng)、思想活躍、求知心切。利用教材培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣、方法和品質(zhì),這是落實(shí)新課標(biāo)倡導(dǎo)的教育理念的'關(guān)鍵。

  三、教材處理與教法分析

  本節(jié)內(nèi)容擬定兩課時(shí)完成,今天說(shuō)課的內(nèi)容是第一課時(shí)(探究Ⅰ、探究Ⅱ)。根據(jù)本節(jié)課的特點(diǎn)及七年級(jí)學(xué)生的心理特征和認(rèn)知特征,本節(jié)課采用探索發(fā)現(xiàn)法進(jìn)行教學(xué),在活動(dòng)中充分體現(xiàn)學(xué)生是學(xué)習(xí)的主人,教師是學(xué)習(xí)的組織者、引導(dǎo)者、合作者。本課借助多媒體輔助教學(xué),給學(xué)生以直觀形象的演示,增強(qiáng)感性認(rèn)識(shí),增強(qiáng)教學(xué)效果。課中以設(shè)疑提問(wèn)、分組活動(dòng)等方式,激發(fā)學(xué)生的興趣,引導(dǎo)學(xué)生自主探索與合作交流,主動(dòng)獲得知識(shí)。

  四、教學(xué)過(guò)程分析

 。ㄒ唬┙虒W(xué)過(guò)程流程圖

  探究Ⅰ

 。ǘ┙虒W(xué)過(guò)程Ⅰ

 。ㄒ蕴骄繛橹骶、形式多樣化)

  1。問(wèn)題情境

 。1) 多媒體展示有關(guān)盈虧的新聞報(bào)道,感受生活實(shí)際。

 。2) 據(jù)此生活實(shí)例,展示探究Ⅰ,引入新課。

  考慮到學(xué)生不完全明白盈利、虧損這樣的商業(yè)術(shù)語(yǔ),故針對(duì)性地播放相關(guān)新聞報(bào)道,然后引出要探索的問(wèn)題Ⅰ。

  2。討論交流

  (1) 學(xué)生結(jié)合自己的生活實(shí)際,交流對(duì)盈利、虧損含義的理解。

 。2) 學(xué)生交流后,老師提出問(wèn)題:某件商品的進(jìn)價(jià)是40元,賣出后盈利25%,那么利潤(rùn)是多少?如果賣出后虧損25%,利潤(rùn)又是多少?(利潤(rùn)是負(fù)數(shù),是什么意思?)

 。3) 要求學(xué)生對(duì)探究Ⅰ中商店的盈虧進(jìn)行估算,交流討論并說(shuō)明理由。在討論中學(xué)生對(duì)商店盈虧可能出現(xiàn)不同的觀點(diǎn),因此引導(dǎo)學(xué)生用數(shù)學(xué)方法解決問(wèn)題,統(tǒng)一認(rèn)識(shí)。

 。4) 師生互動(dòng),要知道究竟是盈是虧,必須先知道什么?從而引出要算出每件衣服的進(jìn)價(jià)。

  讓學(xué)生討論盈利和虧損的含義,理解其概念,建立感性認(rèn)識(shí);乍一看,大多數(shù)學(xué)生可能在大體估算后得到不虧不盈,直覺(jué)上也是如此,但要解決實(shí)際問(wèn)題,還要知其原價(jià)(未知量),從這一分析引入未知量,為后面建立模型,做了必要的鋪墊。

  3。建立模型

 。1) 學(xué)生自主探索,尋找已知量與未知量之間的關(guān)系,確定相等關(guān)系。

 。2) 學(xué)生分組,根據(jù)找出的相等關(guān)系列出方程,其中一組計(jì)算盈利25%的衣服的進(jìn)價(jià),另一組計(jì)算虧損25%的衣服的進(jìn)價(jià)。

 。3) 師生互動(dòng):①兩件衣服的進(jìn)價(jià)和為_(kāi)_______;②兩件衣服的售價(jià)和為_(kāi)_______;③由于進(jìn)價(jià)________售價(jià),由此可知兩件衣服的盈虧情況。

 。ń處熂皶r(shí)給出完整的解答過(guò)程)

  學(xué)生分組、計(jì)算盈虧;教師參與、適當(dāng)提示;師生互動(dòng)、得到?jīng)Q策。這樣設(shè)計(jì),讓學(xué)生體會(huì)到合作交流、互相評(píng)價(jià)、互相尊重的學(xué)習(xí)方式,有利于學(xué)生知識(shí)的形成與發(fā)展,也有利于學(xué)生健康人格的養(yǎng)成。這樣設(shè)計(jì)易于突出重點(diǎn),突破難點(diǎn),鞏固應(yīng)用一元一次方程作工具來(lái)解決實(shí)際問(wèn)題的方法,也很好地讓學(xué)生從已有的經(jīng)驗(yàn)中、活動(dòng)中,有意義地構(gòu)建自己的知識(shí)結(jié)構(gòu),獲得

  實(shí)際問(wèn)題與一元一次方程探索富有成效的學(xué)習(xí)體驗(yàn)。

  4。小結(jié)

  一個(gè)感悟:估算與主觀判斷往往與實(shí)際情況大相徑庭,需要我們通過(guò)準(zhǔn)確的計(jì)算來(lái)檢驗(yàn)自己的判斷。

  培養(yǎng)學(xué)生科學(xué)的學(xué)習(xí)態(tài)度與嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)作風(fēng)。

  探究Ⅱ

  (三)教學(xué)過(guò)程Ⅱ

  1。在燈具店選購(gòu)燈具時(shí),由于兩種燈具價(jià)格、能耗的不同,引起矛盾沖突。

  恰當(dāng)?shù)膯?wèn)題情境激發(fā)學(xué)生探索的欲望,同時(shí)讓學(xué)生體會(huì)到數(shù)學(xué)來(lái)源于生活,又服務(wù)于生活的實(shí)用性。

  啟發(fā):選擇的目的是節(jié)省費(fèi)用,費(fèi)用又是由哪些因素決定的?學(xué)生討論得出結(jié)論:

  2。列代數(shù)式

  費(fèi)用=燈的售價(jià)+電費(fèi)

  電費(fèi)=0。5燈的功率(千瓦)照明時(shí)間(時(shí))

  在此基礎(chǔ)上,用t表示照明時(shí)間(小時(shí))。要求學(xué)生列出代數(shù)式表示這兩種燈的費(fèi)用。

  節(jié)能燈的費(fèi)用(元):60+0。50。011t。

  白熾燈的費(fèi)用(元):3+0。50。06t。

  分析各個(gè)量之間的關(guān)系,列出代數(shù)式,為后面列方程,并進(jìn)一步探索提供了基礎(chǔ)。

  3。特值試探 具體感知

  學(xué)生分組計(jì)算:

  t=1000、20xx、2500、3000時(shí),這兩種燈具的使用費(fèi)用,填入下表:

  時(shí)間(小時(shí))

  1000

  20xx

  2500

  3000

  節(jié)能燈的費(fèi)用(元)

  白熾燈的費(fèi)用(元)

  學(xué)生填完表格后,展示由表格數(shù)據(jù)制成的條形統(tǒng)計(jì)圖。

  引導(dǎo)學(xué)生討論:從統(tǒng)計(jì)圖表,你發(fā)現(xiàn)了什么?

  問(wèn)題的答案是多樣的,師生共同得出:照明時(shí)間不同,作出的選擇不同。

  由于在前面的第二節(jié),學(xué)生已經(jīng)學(xué)過(guò)兩種移動(dòng)電話計(jì)費(fèi)方式的一道例題,因此學(xué)生應(yīng)該能較熟練地完成表格中的特值試探。又因?yàn)槠吣昙?jí)學(xué)生的認(rèn)知以直觀形象為主,再給出統(tǒng)計(jì)圖,完成特殊到一般,感性到理性的深化。

  4。方程建模

  觀察統(tǒng)計(jì)圖,你能看出使用時(shí)間為多少(小時(shí))時(shí),這兩種燈的費(fèi)用相等嗎?

  列出方程:

  60+0。50。011t=3+0。50。06t

  5。合作交流 解釋拓展

 。1) 照明時(shí)間小于2327小時(shí),用哪種燈省錢(qián)?照明時(shí)間超過(guò)2327小時(shí)。但不超過(guò)3000小時(shí),用哪種燈省錢(qián)?

  學(xué)生分組討論,交流各自的看法。

 。2) 如果計(jì)劃照明3500小時(shí),則需購(gòu)買兩個(gè)燈,設(shè)計(jì)你認(rèn)為合理的選燈方案。

  學(xué)生分組、討論購(gòu)燈方案只有三種:①兩盞節(jié)能燈;②兩盞白熾燈;③一盞節(jié)能燈、一盞白熾燈。

  學(xué)生計(jì)算各種方案所需費(fèi)用。

  關(guān)于選燈方案③,學(xué)生可能會(huì)有不同的結(jié)果,先讓學(xué)生充分展示他們的計(jì)算理由,然后對(duì)學(xué)生得出使用節(jié)能燈3000小時(shí),白熾燈500小時(shí)的結(jié)論,給予充分肯定,并引導(dǎo)學(xué)生尋找理論依據(jù),列式驗(yàn)證:

  設(shè)節(jié)能燈的照明時(shí)間為t(小時(shí)),那么總費(fèi)用為:

  60+3+0。50。011t+0。50。06(3500—t)=168—0。0245t(03000)

  觀察上式可看出,只有當(dāng)t=3000時(shí),總費(fèi)用最低。

  培養(yǎng)學(xué)生合作交流,傾聽(tīng)他人意見(jiàn),并從交流中獲益的學(xué)習(xí)習(xí)慣,綜合各方面信息的能力。討論2需要考慮的情形不只一種,通過(guò)這一問(wèn)題,培養(yǎng)分類討論的思想,養(yǎng)成縝密的思維品質(zhì)。此處滲透著函數(shù)、不等式和分類討論的思想,為后面學(xué)習(xí)實(shí)際問(wèn)題提供了實(shí)踐經(jīng)驗(yàn)。

  6。反饋練習(xí)

  一家游泳館每年6~8月出售夏季會(huì)員證,每張會(huì)員證80元,只限本人使用,憑證購(gòu)入場(chǎng)券每張1元,不憑證購(gòu)入場(chǎng)券每張3元,討論并回答:

 。1) 什么情況下,購(gòu)會(huì)員證與不購(gòu)證付相同的錢(qián)?

  (2) 什么情況下,購(gòu)會(huì)員證比不購(gòu)證更合算?

  (3) 什么情況下,不購(gòu)會(huì)員證比購(gòu)證更合算?

  適時(shí)的反饋練習(xí),以加深學(xué)生對(duì)這一知識(shí)的理解,逐步完善自己的知識(shí)結(jié)構(gòu)。

 。ㄋ模┙虒W(xué)小結(jié)

  學(xué)生分組小結(jié)本課學(xué)到了什么,各組發(fā)言交流體驗(yàn)、教師總結(jié):

  五、設(shè)計(jì)說(shuō)明

  七年級(jí)學(xué)生的年齡特征決定了他們好奇心強(qiáng),思想活躍、求知心切。因此我從以人為本的理念出發(fā),依據(jù)數(shù)學(xué)的工具性和人文性等特點(diǎn),在整個(gè)教學(xué)活動(dòng)中始終關(guān)注學(xué)生的發(fā)展,培養(yǎng)學(xué)生的創(chuàng)新精神與創(chuàng)新能力。

 。ㄒ唬┏浞肿鹬貙W(xué)生的主體地位

  發(fā)揮學(xué)生的主體作用,堅(jiān)持讓學(xué)生自主探索、合作交流,展示學(xué)生的思維過(guò)程。

  (二)樹(shù)立方程建模思想

  突出解釋與應(yīng)用,滲透函數(shù)、不等式、分類討論等數(shù)學(xué)思想和方法,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)。

 。ㄈ┳⒅貙(duì)學(xué)習(xí)過(guò)程與方法的評(píng)價(jià)

  關(guān)注學(xué)生參與數(shù)學(xué)活動(dòng)的熱情,與他人合作的態(tài)度,以及獨(dú)立地分析問(wèn)題、解決問(wèn)題的能力,力爭(zhēng)讓不同的人在數(shù)學(xué)上得到不同的發(fā)展。

 。1) 某種商品因換季打折出售,如果按定價(jià)的七五折出售將賠25元;而按定價(jià)的九折出售將賺20元。問(wèn)這種商品的定價(jià)為

  實(shí)際問(wèn)題與一元一次方程探索多少元?

 。2) 某商店為了促銷A牌高級(jí)洗衣機(jī),規(guī)定在元旦那天購(gòu)買該機(jī)可以分兩期付款,在購(gòu)買時(shí)先付一筆款,余下部分及它的利息(年利率為5。6%)在明年的元旦付清,該洗衣機(jī)售價(jià)是每臺(tái)8 224元,若兩次付款相同,問(wèn)每次應(yīng)付款多少元?

  (3) 工廠甲、乙兩車間去年計(jì)劃共完成稅利720萬(wàn)元,結(jié)果甲車間完成了計(jì)劃的115%,乙車間完成了計(jì)劃的110%,兩車間共完成稅利812萬(wàn)元,求去年兩個(gè)車間各超額完成稅利多少萬(wàn)元?

 。4) 一輛汽車用40千米/時(shí)的速度由甲地駛向乙地,車行3小時(shí)后,因遇雨平均速度被迫每小時(shí)減少10千米,結(jié)果到達(dá)乙地時(shí)比預(yù)計(jì)的時(shí)間晚了45分鐘,求甲、乙兩地間的距離。

 。5) 甲、乙兩人合辦一小型服裝廠,并協(xié)議按照投資額的比例多少分配所得利潤(rùn),已知甲與乙投資比例為3∶4,第一年共獲利30 800元,問(wèn)甲、乙兩人可獲利潤(rùn)多少元?

 。6) 有人問(wèn)老師班級(jí)有多少名學(xué)生時(shí),老師說(shuō):一半學(xué)生在學(xué)數(shù)學(xué),四分之一學(xué)生在學(xué)音樂(lè),七分之一的學(xué)生在讀外語(yǔ),還剩六名學(xué)生在操場(chǎng)踢球。你知道這個(gè)班有多少名學(xué)生嗎?

 。7) 某人10時(shí)10分離家去趕11時(shí)整的火車,已知他家離車站10千米,他離家后先以3千米/時(shí)的速度走了5分鐘,然后乘公共汽車去車站,問(wèn)公共汽車每小時(shí)至少走多少千米才能不誤火車?

  綜合運(yùn)用

  4。某市居民生活用電基本價(jià)格是每度0。40元,若每月用電量超過(guò)a度,超出部分按基本電價(jià)的70%收費(fèi)。

 。1) 某戶五月份用電84度,共交電費(fèi)30。72元,求a;

 。2) 若該戶六月份的電費(fèi)平均為每度0。36元,求六月份共用電多少度?應(yīng)交電費(fèi)多少元?

  5。為了鼓勵(lì)節(jié)約用水,市政府對(duì)自來(lái)水的收費(fèi)標(biāo)準(zhǔn)作如下規(guī)定:每月每戶不超過(guò)10噸部分,按0。45元/噸收費(fèi);超過(guò)10噸而不超過(guò)20噸部分,按0。80元/噸收費(fèi);超過(guò)20噸部分,按1。5元/噸收費(fèi),F(xiàn)已知李老師家六月份繳水費(fèi)14元,問(wèn)李老師家六月份用水多少噸?

  6。一支自行車隊(duì)進(jìn)行訓(xùn)練,訓(xùn)練時(shí)所有隊(duì)員都以35千米/時(shí)的速度前進(jìn)。突然,有一名隊(duì)員以45千米/時(shí)的速度獨(dú)自行進(jìn),行進(jìn)10千米后調(diào)轉(zhuǎn)車頭,仍以45千米/時(shí)的速度往回騎,直到與其他隊(duì)員會(huì)合。你知道這名隊(duì)員從離隊(duì)到與隊(duì)員重新會(huì)合,經(jīng)過(guò)了多長(zhǎng)時(shí)間嗎?

  7。有8名同學(xué)分別乘兩輛轎車趕往火車站,其中一輛轎車在距離火車站15千米時(shí)出現(xiàn)故障,此時(shí)離火車停止檢票時(shí)間還有42分,這時(shí)惟一可以利用的交通工具只有一輛轎車,連司機(jī)在內(nèi)限乘5人,這輛小轎車的平均速度為60千米/時(shí)。這8名同學(xué)都能趕上火車嗎?

  拓廣探索

  8。一家庭(父親、母親和孩子們)去某地旅游。甲旅行社說(shuō):如父親買全票一張,其余人可享受半價(jià)優(yōu)惠。乙旅行社說(shuō):家庭旅行算集體票,按原價(jià)的優(yōu)惠。這兩家旅行社的原價(jià)相同。你知道哪家旅行社更優(yōu)惠嗎?

一元一次方程教案5

  1、 使學(xué)生會(huì)列一元一次方程解有關(guān)應(yīng)用題。

  2、 培養(yǎng)學(xué)生分析解決實(shí)際問(wèn)題的能力。

  1、在小學(xué)里我們學(xué)過(guò)有關(guān)工程問(wèn)題的應(yīng)用題,這類應(yīng)用題中一般有工作總量、工作時(shí)間、工作效率這三個(gè)量。這三個(gè)量的關(guān)系是:

  2、由以上公式可知:一件工作,甲用a小時(shí)完成,則甲的工作量可看成________,工作時(shí)間是________,工作效率是_______。若這件工作甲用6小時(shí)完成,則甲的工作效率是_______。

  一件工作,甲單獨(dú)做20小時(shí)完成,乙單獨(dú)做12小時(shí)完成。

  問(wèn):甲乙合做,需幾小時(shí)完成這件工作?

 、:這道題目的已知條件是什么?

 、颍哼@道題目要求什么問(wèn)題?

 、螅哼@道題目的相等關(guān)系是什么?

  有一個(gè)蓄水池,裝有甲、乙、丙三個(gè)進(jìn)水管,單獨(dú)開(kāi)甲管,6分鐘可注滿空水池;單獨(dú)開(kāi)乙管,12分鐘可注滿空水池;單獨(dú)開(kāi)丙管,18分鐘可注滿空水池,如果甲、乙、丙三管齊開(kāi),需幾分鐘可注滿空水池?

  此題的處理方法:

  Ⅰ:先由一名學(xué)生閱讀題目;

 、颍喝缓笥蓛擅麑W(xué)生板演;

  丙管改為排水管,且單獨(dú)開(kāi)丙管18分鐘可把滿池的'水放完,問(wèn)三管齊開(kāi),幾分鐘可注滿空水池?要求學(xué)生口頭列出方程。

  一件工作,甲單獨(dú)做20小時(shí)完成,乙單獨(dú)做12小時(shí)完成。

  若甲先單獨(dú)做4小時(shí),剩下的部分由甲、乙合做,問(wèn):還需幾小時(shí)完成?

 。1) 先由學(xué)生閱讀題目

 。2) 引導(dǎo):

  Ⅰ:這道題目的已知條件是什么?

 、颍哼@道題目要求什么問(wèn)題?

 、螅哼@道題目的相等關(guān)系是什么?

  (3) 由一學(xué)生口頭設(shè)出求知數(shù),并列出方程,師生共同解答;同時(shí)教師在黑板上寫(xiě)出解題過(guò)程,形成板書(shū)。

  若乙先做2小時(shí),然后由甲、乙合做,問(wèn)還需幾小時(shí)完成?

  以上兩題的處理方法:

 。1) 根據(jù)方程:3/12+x/12+x/6=1,編應(yīng)用題。

 。2) 事由:打一份稿件。

  條件:現(xiàn)在甲、乙兩名打字員,若甲單獨(dú)打這份稿件需6小時(shí)打完,若乙單獨(dú)打這份稿件需12小時(shí)打完。

  要求:甲、乙兩名打字員都要參與打字,并且要打完這份稿件。

  課堂總結(jié):

  工程問(wèn)題中的三個(gè)量的關(guān)系。

  課堂作業(yè):

  見(jiàn)作業(yè)本

  一件工作,甲單獨(dú)做6小時(shí)完成,乙單獨(dú)做12小時(shí)完成,丙單獨(dú)做18小時(shí)完成,若先由甲、乙合做3小時(shí),然后由乙丙合做,問(wèn)共需幾小時(shí)完成?

一元一次方程教案6

  教學(xué)目標(biāo)

  1、學(xué)生通過(guò)旅游、選燈、用電、水費(fèi)、用氣、電信等問(wèn)題的方案設(shè)計(jì),弄清各類問(wèn)題中的等量關(guān)系,掌握用方程來(lái)解決一些生活中的實(shí)際問(wèn)題的技巧.

  2、通過(guò)一個(gè)開(kāi)放式的空間,放手讓學(xué)生去探索,去發(fā)現(xiàn),培養(yǎng)學(xué)生分析問(wèn)題和用方程去解決實(shí)際問(wèn)題的能力.

  3、讓學(xué)生在生動(dòng)活潑的問(wèn)題情境中感受數(shù)學(xué)的應(yīng)用價(jià)值,產(chǎn)生對(duì)數(shù)學(xué)的興趣,養(yǎng)成認(rèn)真傾聽(tīng)他人發(fā)言的習(xí)慣,感受與同伴交流的樂(lè)趣。

  教學(xué)難點(diǎn)

  把生活中的實(shí)際問(wèn)題抽象出數(shù)學(xué)問(wèn)題。

  知識(shí)重點(diǎn)

  引導(dǎo)學(xué)生弄清題意,設(shè)計(jì)出各類問(wèn)題的最佳方案

  教學(xué)過(guò)程

  (師生活動(dòng))設(shè)計(jì)理念

  提出問(wèn)題問(wèn)題:小江一家三口準(zhǔn)備國(guó)慶節(jié)外出旅游.現(xiàn)有兩家

  旅行社,它們的收費(fèi)標(biāo)準(zhǔn)分別為:甲旅行社:大人全價(jià),小孩半價(jià);乙旅行社:不管大人小孩,一律八折.這兩家旅行社的基本價(jià)一樣.你認(rèn)為應(yīng)該選擇哪家旅行社較為合算?

  由學(xué)生完成選擇旅行社的方案。從學(xué)生比較感興趣的實(shí)際生活問(wèn)題,引入新課,并由學(xué)生自己設(shè)計(jì)出選擇旅行社的方案,為新授哪種燈省錢(qián)埋下伏筆。

  分析問(wèn)題出示教科書(shū)94頁(yè)探究2:用哪種燈省錢(qián)?

  師生共同探討完成下列問(wèn)題:

  1、上述問(wèn)題中基本等量關(guān)系有哪些?

  (費(fèi)用=燈的售價(jià)+電費(fèi),電費(fèi)=0.5×燈的功率(千

  瓦)×照明時(shí)間(時(shí))

  2、列式表示兩種燈的費(fèi)用各為多少?

  (節(jié)能燈用t小時(shí)的費(fèi)用(元)為:60+0.5×0-O.11t

  白熾燈用t小時(shí)的費(fèi)用(元)為:3十0.06×0.5t)

  3、當(dāng)照明時(shí)間t取何值時(shí),(1)白熾燈比節(jié)能燈省錢(qián),

  (2)節(jié)能燈比白熾燈省錢(qián)?(3)白熾燈與節(jié)能燈費(fèi)用一樣?(精確到1小時(shí))

  4、如果計(jì)劃照明3500小時(shí),則需要購(gòu)買兩個(gè)燈,試設(shè)計(jì)你認(rèn)為能省錢(qián)的選燈方案。

  以課本例題中實(shí)際生活問(wèn)題為素材,使學(xué)生感受數(shù)學(xué)來(lái)源于生活,激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,師生共同參與合作完成問(wèn)題中的探討的幾個(gè)問(wèn)題,體現(xiàn)了以學(xué)生為主體,教師作為問(wèn)題解決的組織者,引導(dǎo)者,合作者的新課程教育理念。

  合作交流

  探索創(chuàng)新下面問(wèn)題是學(xué)生課前調(diào)查到的與人們生活密切相關(guān)的實(shí)際問(wèn)題,每一大組完成一個(gè),分四個(gè)小組討論后設(shè)計(jì)出最佳方案。

  10分鐘后,大組派代表交流發(fā)言.

  1、電價(jià)問(wèn)題

  據(jù)我們調(diào)查,我市居民生活用電價(jià)格為每天早晨7時(shí)到晚上23時(shí)每度0.47元,每天23時(shí)到第二天7時(shí)每度0.25元.請(qǐng)根據(jù)你家每月用電情況,設(shè)計(jì)出用電的最佳方案.

  2、水費(fèi)問(wèn)題

  我市為鼓勵(lì)節(jié)約用水,對(duì)自來(lái)水的收費(fèi)標(biāo)準(zhǔn)作如下規(guī)定:每月每戶用水不超過(guò)10噸部分按0.45元/噸收費(fèi),超過(guò)10噸而不超過(guò)20噸部分按0.8元/噸收費(fèi),超過(guò)20噸部分按0.50元/噸收費(fèi),某月甲戶比乙戶多交水費(fèi)3.75元,已知乙戶交水費(fèi)3.15元.

  問(wèn):(1)甲、乙兩戶該月各用水多少噸?(自來(lái)水按整噸收費(fèi))

  (2)根據(jù)你家用水情況,設(shè)計(jì)出最佳用水方案.

  3、用氣問(wèn)題

  某市按下列規(guī)定收取每月的煤氣費(fèi):用煤氣如果不超過(guò)60立方米,按每立方米o(hù).8元收費(fèi);如果超過(guò)60立方米,超過(guò)部分按每立方米1.2元收費(fèi).怎樣用氣最節(jié)約?請(qǐng)?jiān)O(shè)計(jì)出方案來(lái).

  4、電信支費(fèi)

  隨著電信事業(yè)的發(fā)展,各式各樣的電信業(yè)務(wù)不斷推出,請(qǐng)你通過(guò)市場(chǎng)調(diào)查,為你家設(shè)計(jì)出一種通訊方案.

  (1)兩地間打長(zhǎng)途電話所付電費(fèi)有如下規(guī)定:若通話在3分鐘以內(nèi)都付2.4元.超過(guò)3分鐘以后,每分鐘付1元.

  (2)某移動(dòng)通訊公司升級(jí)了兩種通訊業(yè)務(wù),“全球通”使用者先繳50元月租費(fèi),然后每通話1分鐘,再付話費(fèi)0.4元,“快捷通”不繳月租費(fèi),每通話1分鐘,付話費(fèi)0.6元.,

  根據(jù)上述資料,(1)你認(rèn)為一個(gè)月通話多少分鐘,兩種移動(dòng)通訊費(fèi)用相同?(2)某人估計(jì)一個(gè)月內(nèi)通話300分鐘,應(yīng)選擇哪種移動(dòng)通訊或用長(zhǎng)途電話合算些?提供給學(xué)生一個(gè)開(kāi)放的空間,放手讓學(xué)生去探索、去發(fā)揮,通過(guò)學(xué)生合作交流來(lái)設(shè)計(jì)最佳方案,培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí)和創(chuàng)新意識(shí)。

  小結(jié)與作業(yè)

  課堂小結(jié)可用教師對(duì)各小組交流的方案進(jìn)行簡(jiǎn)單的評(píng)價(jià)作為小結(jié)。

  布置作業(yè)1、必做題:課本第98頁(yè)習(xí)題2.4第5、7題

  2、選做題:

  (1)我國(guó)很多城市水資源缺乏,為了加強(qiáng)居民的節(jié)水意識(shí),合理利用水資源,很多城市制定了用水收費(fèi)標(biāo)準(zhǔn),A市規(guī)定每戶每月的標(biāo)準(zhǔn)用水量不超過(guò)標(biāo)準(zhǔn)用水量的'部分按每立方米1.2元收費(fèi),超過(guò)標(biāo)準(zhǔn)用水量的部分按每立方米3元收費(fèi).該市張大爺家5月份用水9立方米,需交費(fèi)16.2元.A市規(guī)定的每戶每月標(biāo)準(zhǔn)用水量是多少立方米?

  (2)20xx年世界杯足球賽韓國(guó)組委會(huì)公布的四分之一決賽門(mén)票價(jià)格是:一等席300美元,二等席200美元,三等席125元美元,某服裝公司在促銷活動(dòng)中,組織獲得特等獎(jiǎng)、一等獎(jiǎng)的名顧客到韓國(guó)現(xiàn)看20xx年世界杯足球賽四分之一決賽,除去其他費(fèi)用后,計(jì)劃買兩種門(mén)票,用完5025美元,你能設(shè)計(jì)出幾種購(gòu)票方案供該服裝公司選擇嗎?說(shuō)明理由

  分層次布置作業(yè)。

  本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)

  本課以生活中的實(shí)際問(wèn)題引入,以學(xué)生為主體,師生共同合作參與完成例中設(shè)計(jì)的

  幾個(gè)問(wèn)題,教師在學(xué)生接受新知識(shí)的過(guò)程中,起到了一個(gè)組織者、合作者、引導(dǎo)者的角色.學(xué)生的學(xué)習(xí)始終是主動(dòng)的.通過(guò)學(xué)生課前的社會(huì)調(diào)查,對(duì)生活中的一些方案以開(kāi)放形式設(shè)計(jì)問(wèn)題,學(xué)生通過(guò)小組合作交流,設(shè)計(jì)出不同的方案,讓學(xué)生在生動(dòng)活潑的交流情境中感受到數(shù)學(xué)的應(yīng)用價(jià)值,產(chǎn)生對(duì)數(shù)學(xué)的興趣.同時(shí)養(yǎng)成認(rèn)真傾聽(tīng)他人發(fā)言的習(xí)慣,感受與同伴交流想法的樂(lè)趣.通過(guò)用電、用水最佳方案的設(shè)計(jì),培養(yǎng)學(xué)生節(jié)約用電、用水的意識(shí).

一元一次方程教案7

  教學(xué)目標(biāo):

  一、知識(shí)和技能:

 、逯R(shí)目標(biāo):

  1、通過(guò)對(duì)典型實(shí)際問(wèn)題的分析,學(xué)生體驗(yàn)從算術(shù)方法到代數(shù)方法是一種進(jìn)步.

  2、在學(xué)生根據(jù)問(wèn)題尋找相等關(guān)系、根據(jù)相等關(guān)系列出方程的過(guò)程中,培養(yǎng)學(xué)生獲取信息、分析問(wèn)題、處理問(wèn)題的能力.

  3、使學(xué)生在方程的概念“含有未知數(shù)的等式”指引下經(jīng)歷把實(shí)際問(wèn)題抽象為數(shù)學(xué)方程的過(guò)程,認(rèn)識(shí)到方程是刻畫(huà)現(xiàn)實(shí)世界的一種有效的數(shù)學(xué)模型,初步體會(huì)建立數(shù)學(xué)模型的思想.

  ㈡能力目標(biāo):

  數(shù)學(xué)思考:能結(jié)合實(shí)際問(wèn)題背景發(fā)現(xiàn)和提出數(shù)學(xué)問(wèn)題。

  解決問(wèn)題:能利用一元一次方程解決商品銷售中的一些實(shí)際問(wèn)題

  二、過(guò)程與方法:

  經(jīng)歷“探究”的活動(dòng),激發(fā)學(xué)生的學(xué)習(xí)潛能,促使他們?cè)谧灾魈骄颗c合作交流的過(guò)程中,理解和掌握基本的數(shù)學(xué)知識(shí)、技能,數(shù)學(xué)模型思想.

  三、情感態(tài)度與價(jià)值觀目標(biāo):

  1、引導(dǎo)學(xué)生關(guān)注生活及培養(yǎng)學(xué)生在生活中應(yīng)用數(shù)學(xué)的意識(shí).學(xué)生可能設(shè)的未知數(shù)不同,列出不同的方程,但很有利于培養(yǎng)學(xué)生的發(fā)散思維.

  2、學(xué)會(huì)與人交流,通過(guò)實(shí)際問(wèn)題情景的體驗(yàn),讓學(xué)生增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣?坍(huà)事物間的相等關(guān)系.日常生活中的許多問(wèn)題得以用數(shù)學(xué)方法解決,體驗(yàn)到實(shí)際問(wèn)題“數(shù)學(xué)化”的過(guò)程.

  教學(xué)重點(diǎn):在學(xué)生自主分析題意的過(guò)程中能夠使已設(shè)未知數(shù)參與其中.

  教學(xué)難點(diǎn):找到問(wèn)題中的數(shù)量關(guān)系,將未知數(shù)參與其中的代數(shù)式用 “=”連接起來(lái),使之構(gòu)成方程.

  教學(xué)關(guān)鍵:明確問(wèn)題中的數(shù)量關(guān)系,找出等量關(guān)系.

  教學(xué)課型:新授課

  課時(shí)安排:一課時(shí)

  教學(xué)方法:啟發(fā)式講授,與學(xué)生探索相結(jié)合,情境教學(xué)法。

  教學(xué)準(zhǔn)備:幻燈片出示探究題目,三四個(gè)可供標(biāo)價(jià)的紙板

  教學(xué)過(guò)程:

  一、引入新課

  做一個(gè)游戲:可以讓同學(xué)自己當(dāng)一回老板:進(jìn)一次貨(例如:1000元)→→→→→→做一標(biāo)價(jià)→→→→→→根據(jù)實(shí)際做出調(diào)整(沒(méi)人買怎么辦?搶購(gòu)一空補(bǔ)貨又應(yīng)怎么辦?) →→→→→→調(diào)整后進(jìn)行銷售→→→→→→能算出是虧還是贏嗎,進(jìn)而得出利潤(rùn)率等數(shù)量之間的計(jì)算方法。

  (1)商品利潤(rùn)=商品售價(jià)-商品進(jìn)價(jià).

  (2)商品利潤(rùn)率= .

  (3)打x折的售價(jià)=原售價(jià)× .

  二、新授

  第一大部分

  探究1:銷售中的盈虧.

  某商店的某一時(shí)間以每件60元的價(jià)格賣出兩件衣服,其中一件盈利25%,另一件虧損25%,賣這兩件衣服總的是盈利還是虧損,或是不盈不虧?

 、儆蓪W(xué)生借以往經(jīng)驗(yàn)解決(極有可能使用四則運(yùn)算),作出判斷.

  ②要求應(yīng)用方程

  再讀題過(guò)程中引導(dǎo)學(xué)生發(fā)現(xiàn)待用數(shù)量: 某商店的某一時(shí)間以每件60元的價(jià)格賣出兩件衣服,其中一件盈利25%,另一件虧損25%,賣這兩件衣服總的'是盈利還是虧損,或是不盈不虧?

 、塾伞坝25%”和“虧損25%”找到合適的未知數(shù).并作出解設(shè)

  ④學(xué)生自主修整完成該方程,進(jìn)而解決問(wèn)題.

  解:設(shè)……………………

  ————————=——---

  ……………………

  ……………………

  答:…………………….

  另外:求出方程的解后,一定要檢驗(yàn)解的合理性.

  題后點(diǎn)撥:不要認(rèn)為一件盈利25%,一件虧損25%,結(jié)果不盈不虧,因?yàn)橛澮催@兩件的進(jìn)價(jià).

  第一大部分附題

  隨堂練習(xí)1:

  劉伶以八折優(yōu)惠價(jià)購(gòu)買了一件衣服,省了15元,那么她購(gòu)買這件衣服實(shí)際用了多少錢(qián)?

  分析:——————由學(xué)生自主找到合適的未知數(shù)并能闡述設(shè)此未知數(shù)的原因,以及方程形成的過(guò)程。

  “劉伶以八折優(yōu)惠價(jià)購(gòu)買了一件衣服,省了15元,那么她購(gòu)買這件衣服實(shí)際用了多少錢(qián)?”適當(dāng)?shù)目梢蕴崾荆菏裁吹陌苏?省了15元是什么意思?

  解:設(shè)……………………

  ————————=——---

  ……………………

  ……………………

  答:…………………….

  求出方程的解后,一定要檢驗(yàn)解的合理性.

  隨堂練習(xí)2:較難的一道利潤(rùn)問(wèn)題

  某商品去年提價(jià)25%,今年要恢復(fù)原價(jià),應(yīng)下調(diào)幾個(gè)百分點(diǎn)?

  分析:Ⅰ 由題中的“提價(jià)25%”翻譯為————提高原價(jià)的25%,并由此可設(shè)原價(jià)為x.——————表示為(1+25%)x翻譯為:今年的執(zhí)行價(jià)格如此表示.

 、 由題中的“恢復(fù)原價(jià)” 翻譯為————方程中的等量關(guān)系出現(xiàn)了,即————﹌﹌﹌﹌﹌﹌=x

 、 問(wèn)題隨之出現(xiàn),下調(diào)的百分點(diǎn)又是一個(gè)新的未知量,故可設(shè)下調(diào)

  m個(gè)百分點(diǎn).

 、

一元一次方程教案8

  教學(xué)目標(biāo):

  1、能說(shuō)出什么叫一元一次方程;

  2、知道“元”和“次”的含義;

  3、熟練掌握最簡(jiǎn)一元一次方程的解法及理論依據(jù);

  能力目標(biāo):

  1、培養(yǎng)學(xué)生準(zhǔn)確運(yùn)算的能力;

  2、培養(yǎng)學(xué)生觀察、分析和概括的能力;

  3、通過(guò)解方程的教學(xué),了解化歸的數(shù)學(xué)思想、

  德育目標(biāo):

  1、滲透由特殊到一般的辯證唯物主義思想;

  2、通過(guò)對(duì)方程的解進(jìn)行檢驗(yàn)的習(xí)慣的培養(yǎng),培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、細(xì)致的學(xué)習(xí)習(xí)慣和責(zé)任感;

  3、在學(xué)習(xí)和探索知識(shí)中提高學(xué)生的學(xué)習(xí)能力、合作精神及勇于探索的精神;

  重點(diǎn):

  1、一元一次方程的概念;

  2、最簡(jiǎn)方程的解法;

  難點(diǎn):正確地解最簡(jiǎn)方程。

  教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法

  教學(xué)過(guò)程

  一、舊知識(shí)的復(fù)習(xí):

  1、什么叫等式?等式具有哪些性質(zhì)?

  2、什么叫方程?方程的'解?解方程?

  二、新知識(shí)的教學(xué):

  觀察下列方程:…

  想一想:這些方程有什么共同特點(diǎn)?(學(xué)生思考后回答)

  特點(diǎn):

 。1)只含有一個(gè)未知數(shù);

  (2)未知數(shù)的次數(shù)都是一次。

  (板書(shū)課題,學(xué)生總結(jié)定義)

  定義:只含有一個(gè)未知數(shù)并且未知數(shù)的次數(shù)都是一次的方程叫做一元一次方程。

  強(qiáng)調(diào):“元”指什么?(未知數(shù)的個(gè)數(shù))

  “次”指什么?(方程中含有未知數(shù)項(xiàng)的最高次數(shù))

  想一想:

 。1)你認(rèn)為最簡(jiǎn)單的一元一次方程是什么樣的?

 。▽W(xué)生舉例說(shuō)明后總結(jié)出最簡(jiǎn)方程)

  最簡(jiǎn)方程:我們把形如(其中是未知數(shù))的方

  程稱為最簡(jiǎn)方程。

  強(qiáng)調(diào):為什么?

  (2)怎樣求最簡(jiǎn)方程(其中是未知數(shù))的解?

  三、解下列方程

 、 ②

 、 ④

  (學(xué)生探討求解過(guò)程及理論依據(jù)后板書(shū)解題過(guò)程)

  解:①根據(jù)等式的基本性質(zhì)2,在方程兩邊同除以3,

  未知數(shù)系數(shù)化為1,得

  ②③④解法略

  強(qiáng)調(diào):檢驗(yàn)解的方法。

  想一想:

  解最簡(jiǎn)方程(其中是未知數(shù))時(shí)的主要思路是什么?解題的關(guān)鍵步驟是什么?

 。ㄒ龑(dǎo)學(xué)生思考后回答)

  主要思路:把最簡(jiǎn)方程的未知數(shù)的系數(shù)化為1,變形為的形式;

  解題的關(guān)鍵步驟:根據(jù)等式的基本性質(zhì)2,在方程兩邊都除以未知數(shù)的系數(shù)(或兩邊都乘以未知數(shù)的系數(shù)的倒數(shù)),使未知數(shù)的系數(shù)化為1,得到最簡(jiǎn)方程的解。

  強(qiáng)調(diào):①方程兩邊都除以未知數(shù)的系數(shù)的步驟可以進(jìn)行的條件是什么?()

 、谧詈(jiǎn)方程一定有唯一的一個(gè)解。

  四、鞏固練習(xí)

  1、通過(guò)練習(xí),請(qǐng)你總結(jié)一下,解方程(是未知數(shù))把系數(shù)化為1時(shí),怎樣運(yùn)用等式的性質(zhì)2,使計(jì)算比較簡(jiǎn)單。

  2、檢測(cè):

  3、課堂小結(jié):

  五、本節(jié)學(xué)習(xí)的主要內(nèi)容

  1、一元一次方程定義;

  2、最簡(jiǎn)方程(其中是未知數(shù));

  3、解最簡(jiǎn)方程的主要思路和解題的關(guān)鍵步驟及依據(jù)。

  六、課堂作業(yè)

  A、解下列方程:

  B、如果關(guān)于的方程是一元一次方程,求的值;

  C、解關(guān)于的方程:

一元一次方程教案9

  2.自主探索、合作交流:

  先由學(xué)生獨(dú)立思考求解,再小組合作交流,師生共同評(píng)價(jià)分析.

  方法1:

  解:方程兩邊都加上2,得5x-2+2=8+2

  也就是 5x=8+2

  合并同類項(xiàng),得5x=10

  所以,x=2

  3.理性歸納、得出結(jié)論

 。ㄗ寣W(xué)生通過(guò)觀察、歸納,獨(dú)立發(fā)現(xiàn)移項(xiàng)法則.)

  比較方程5x=8+2與原方程5x-2=8,可以發(fā)現(xiàn),這個(gè)變形相當(dāng)于

  5x-2=8 5x=8+2

  即把原方程中的-2改變符號(hào)后,從方程的一邊移到另一邊,這種變形叫做移項(xiàng).

  教學(xué)建議:關(guān)于移項(xiàng)法則,不應(yīng)只強(qiáng)調(diào)記憶,更應(yīng)強(qiáng)調(diào)理解.學(xué)生開(kāi)始時(shí)也許仍習(xí)慣于利用逆運(yùn)算而不利用移項(xiàng)法則來(lái)求解方程,可借助例題、練習(xí)題使相互逐步體會(huì)到移項(xiàng)的優(yōu)越性).

  方法2;

  解:移項(xiàng),得 5x=8+2

  合并同類項(xiàng),得5x=10

  方程兩邊都除以5,得x=2

  4.運(yùn)用反思、拓展創(chuàng)新

  [例1] 解下列方程:(1) 2x+6=1 (2) 3x+3=2x+7

  教學(xué)建議:先鼓勵(lì)學(xué)生自己嘗試求解方程,教師要注意發(fā)現(xiàn)學(xué)生可能出現(xiàn)的錯(cuò)誤,然后組織學(xué)生進(jìn)行討論交流.

  [例2] 解方程:

  教學(xué)建議:①先放手讓學(xué)生去做,學(xué)生可能采取多種方法,教學(xué)時(shí),不要拘泥于教科書(shū)中的解法,只要學(xué)生的解法合理,就應(yīng)給予鼓勵(lì).

 、谠谝祈(xiàng)時(shí),學(xué)生常會(huì)犯一些錯(cuò)誤,如移項(xiàng)忘記變號(hào)等.這時(shí),教士不要急于求成,而要引導(dǎo)學(xué)生反思自己的解題過(guò)程.必要時(shí),可讓學(xué)生利用等式的'性質(zhì)和移項(xiàng)法則兩種方法解例1、例2中的方程,并將兩者加以對(duì)照,進(jìn)而使學(xué)生加深對(duì)移項(xiàng)法則的理解,并自覺(jué)地改正錯(cuò)誤.

  5.小結(jié)回顧: 學(xué)生談本節(jié)課的收獲與體會(huì).師強(qiáng)調(diào):移項(xiàng)法則.

  6.布置作業(yè): (略)

一元一次方程教案10

  一元一次方程

  一、教學(xué)目標(biāo):

  1、通過(guò)對(duì)多種實(shí)際問(wèn)題的分析,感受方程作為刻畫(huà)現(xiàn)實(shí)世界有效模型的意義。

  2、通過(guò)觀察,歸納一元一次方程的概念

  3、積累活動(dòng)經(jīng)驗(yàn)。

  二、重點(diǎn)和難點(diǎn)

  重點(diǎn):歸納一元一次方程的概念

  難點(diǎn):感受方程作為刻畫(huà)現(xiàn)實(shí)世界有效模型的意義

  三、教學(xué)過(guò)程

  1、課前訓(xùn)練一

  (1)如果 || =9,則=;如果2 =9,則=

 。2)在數(shù)軸上距離原點(diǎn)4個(gè)單位長(zhǎng)度的數(shù)為

  (3)下列關(guān)于相反數(shù)的說(shuō)法不正確的是( )

  A、兩個(gè)相反數(shù)只有符號(hào)不同,并且它們到原點(diǎn)的距離相等。

  B、互為相反數(shù)的兩個(gè)數(shù)的絕對(duì)值相等

  C、0的相反數(shù)是0

  D、互為相反數(shù)的兩個(gè)數(shù)的和為0(字母表示為、互為相反數(shù)則)

  E、有理數(shù)的相反數(shù)一定比0小

 。4)乘積為1的兩個(gè)數(shù)互為 倒數(shù) ,如:

  (5)如果,則( )

  A、,互為倒數(shù) B、,互為相反數(shù) C、,都是0 D、,至少有一個(gè)為0

 。6)小明種了一棵高度為40厘米的樹(shù)苗,栽種后每周樹(shù)苗長(zhǎng)高約為12厘米,問(wèn)大約經(jīng)過(guò)幾周后樹(shù)苗長(zhǎng)高到1米?設(shè)大約經(jīng)過(guò)周后樹(shù)苗長(zhǎng)高到1米,依題意得方程( )

  A、B、C、D、00

  2、由課本P149卡通圖畫(huà)引入新課

  3、分組討論P(yáng)149兩個(gè)練習(xí)

  4、P150:某長(zhǎng)方形的足球場(chǎng)的周長(zhǎng)為310米,長(zhǎng)與寬的差為25米,求這個(gè)足球場(chǎng)的長(zhǎng)與寬各是多少米?設(shè)這個(gè)足球場(chǎng)的寬為米,那么長(zhǎng)為(+25)米,依題意可列得方程為:( )

  A、+25=310 B、+(+25)=310 C、2 [+(+25)]=310 D、[+(+25)]2=310

  課本的寬為3厘米,長(zhǎng)比寬多4厘米,則課本的面積為 平方厘米。

  5、小芳買了2個(gè)筆記本和5個(gè)練習(xí)本,她遞給售貨員10元,售貨員找回0。8元。已知每個(gè)筆記本比練習(xí)本貴1。2元,求每個(gè)練習(xí)本多少元?

  解:設(shè)每個(gè)練習(xí)本要元,則每個(gè)筆記本要 元,依題意可列得方程:

  6、歸納方程、一元一次方程的概念

  7、隨堂練習(xí)PO151

  8、達(dá)標(biāo)測(cè)試

  (1)下列式子中,屬于方程的是( )

  A、B、C、D、

 。2)下列方程中,屬于一元一次方程的是( )

  A、B、C、D、

  (3)甲、乙兩隊(duì)開(kāi)展足球?qū)贡荣悾?guī)定每隊(duì)勝一場(chǎng)得3分,平一場(chǎng)得1分,負(fù)一場(chǎng)得0分。甲隊(duì)與乙隊(duì)一共進(jìn)行了10場(chǎng)比賽,且甲隊(duì)保持了不敗記錄,甲隊(duì)一共得22分。求甲隊(duì)勝了多少場(chǎng)?平了多少場(chǎng)?

  解:設(shè)甲隊(duì)勝了場(chǎng),則平了 場(chǎng),依題意可列得方程:

  解得=

  答:甲隊(duì)勝了 場(chǎng),平了 場(chǎng)。

  (4)根據(jù)條件“一個(gè)數(shù)比它的一半大2”可列得方程為

 。5)根據(jù)條件“某數(shù)的與2的差等于最大的一位數(shù)”可列得方程為

  四、課外作業(yè) P151習(xí)題5。1

  一元一次方程

  一、教學(xué)目標(biāo):

  1、通過(guò)對(duì)多種實(shí)際問(wèn)題的分析,感受方程作為刻畫(huà)現(xiàn)實(shí)世界有效模型的意義。

  2、通過(guò)觀察,歸納一元一次方程的概念

  3、積累活動(dòng)經(jīng)驗(yàn)。

  二、重點(diǎn)和難點(diǎn)

  重點(diǎn):歸納一元一次方程的概念

  難點(diǎn):感受方程作為刻畫(huà)現(xiàn)實(shí)世界有效模型的意義

  三、教學(xué)過(guò)程

  1、課前訓(xùn)練一

  (1)如果 || =9,則=;如果2 =9,則=

  (2)在數(shù)軸上距離原點(diǎn)4個(gè)單位長(zhǎng)度的數(shù)為

 。3)下列關(guān)于相反數(shù)的說(shuō)法不正確的是( )

  A、兩個(gè)相反數(shù)只有符號(hào)不同,并且它們到原點(diǎn)的距離相等。

  B、互為相反數(shù)的兩個(gè)數(shù)的絕對(duì)值相等

  C、0的相反數(shù)是0

  D、互為相反數(shù)的兩個(gè)數(shù)的和為0(字母表示為、互為相反數(shù)則)

  E、有理數(shù)的相反數(shù)一定比0小

  (4)乘積為1的兩個(gè)數(shù)互為 倒數(shù) ,如:

 。5)如果,則( )

  A、,互為倒數(shù) B、,互為相反數(shù) C、,都是0 D、,至少有一個(gè)為0

 。6)小明種了一棵高度為40厘米的樹(shù)苗,栽種后每周樹(shù)苗長(zhǎng)高約為12厘米,問(wèn)大約經(jīng)過(guò)幾周后樹(shù)苗長(zhǎng)高到1米?設(shè)大約經(jīng)過(guò)周后樹(shù)苗長(zhǎng)高到1米,依題意得方程( )

  A、B、C、D、00

  2、由課本P149卡通圖畫(huà)引入新課

  3、分組討論P(yáng)149兩個(gè)練習(xí)

  4、P150:某長(zhǎng)方形的足球場(chǎng)的`周長(zhǎng)為310米,長(zhǎng)與寬的差為25米,求這個(gè)足球場(chǎng)的長(zhǎng)與寬各是多少米?設(shè)這個(gè)足球場(chǎng)的寬為米,那么長(zhǎng)為(+25)米,依題意可列得方程為:( )

  A、+25=310 B、+(+25)=310 C、2 [+(+25)]=310 D、[+(+25)]2=310

  課本的寬為3厘米,長(zhǎng)比寬多4厘米,則課本的面積為 平方厘米。

  5、小芳買了2個(gè)筆記本和5個(gè)練習(xí)本,她遞給售貨員10元,售貨員找回0。8元。已知每個(gè)筆記本比練習(xí)本貴1。2元,求每個(gè)練習(xí)本多少元?

  解:設(shè)每個(gè)練習(xí)本要元,則每個(gè)筆記本要 元,依題意可列得方程:

  6、歸納方程、一元一次方程的概念

  7、隨堂練習(xí)PO151

  8、達(dá)標(biāo)測(cè)試

 。1)下列式子中,屬于方程的是( )

  A、B、C、D、

  (2)下列方程中,屬于一元一次方程的是( )

  A、B、C、D、

 。3)甲、乙兩隊(duì)開(kāi)展足球?qū)贡荣悾?guī)定每隊(duì)勝一場(chǎng)得3分,平一場(chǎng)得1分,負(fù)一場(chǎng)得0分。甲隊(duì)與乙隊(duì)一共進(jìn)行了10場(chǎng)比賽,且甲隊(duì)保持了不敗記錄,甲隊(duì)一共得22分。求甲隊(duì)勝了多少場(chǎng)?平了多少場(chǎng)?

  解:設(shè)甲隊(duì)勝了場(chǎng),則平了 場(chǎng),依題意可列得方程:

  解得=

  答:甲隊(duì)勝了 場(chǎng),平了 場(chǎng)。

 。4)根據(jù)條件“一個(gè)數(shù)比它的一半大2”可列得方程為

  (5)根據(jù)條件“某數(shù)的與2的差等于最大的一位數(shù)”可列得方程為

  四、課外作業(yè) P151習(xí)題5。1

一元一次方程教案11

  教學(xué)目標(biāo)

  1.在具體情境中,進(jìn)一步體會(huì)方程是刻畫(huà)現(xiàn)實(shí)世界的重要數(shù)學(xué)模型。

  2.知道什么是一元一次方程的標(biāo)準(zhǔn)形式,會(huì)通過(guò)移項(xiàng)、合并同類項(xiàng)把方程化為標(biāo)準(zhǔn)形式,然后利用等式的性質(zhì)解方程。

  教學(xué)重、難點(diǎn)

  重點(diǎn):把方程轉(zhuǎn)化為標(biāo)準(zhǔn)形式。

  難點(diǎn):解方程的應(yīng)用。

  教學(xué)過(guò)程

  一激情引趣,導(dǎo)入新課

  1解方程:9x+3=8+8x

  2(1)上面解方程的過(guò)程中,每一步的依據(jù)是什么?

  (2)什么叫移項(xiàng)?移項(xiàng)要注意什么?

  (3)2-4x+6+5x=8,變形為:-4x+5x+2+6=8,是不是移項(xiàng)?

  二合作交流,探究新知

  1動(dòng)腦筋:

  某實(shí)驗(yàn)中學(xué)舉行田徑運(yùn)動(dòng)會(huì),初一年級(jí)甲班和丙班參加的人數(shù)的和是乙班參加的人數(shù)的`3倍,甲班有40人參加,乙班參加的人數(shù)比丙班參加的人數(shù)少10人,你能算出乙班參加校運(yùn)會(huì)的人數(shù)嗎?

  觀察你解方程的過(guò)程,原方程做了哪些變形?

  形如ax=b(a≠0)的方程叫一元一次方程的_____形式。

  2訓(xùn)練

  (1)解方程:①11x-2=8x-8,②

  (2)下列方程求解正確的是()

  A-2x=3,解得:x=,B解得:x=

  C3x+4=4x-5解得:x=-9,D2x=3x+1,解得x=-1

  三應(yīng)用遷移,鞏固提高

  1方程的轉(zhuǎn)化

  例1已知x=-2是方程的解,求m的值。

  例2若方程2x+a=,與方程的解相同,求a的值。

  2實(shí)踐應(yīng)用

  例3甲倉(cāng)庫(kù)有某種糧食120噸,乙倉(cāng)庫(kù)有同樣的糧食96噸,甲倉(cāng)庫(kù)每天賣出糧食15噸,乙倉(cāng)庫(kù)每天賣出糧食9噸,多少天后,兩倉(cāng)庫(kù)剩下的糧食相等?

  例4百年問(wèn)題:我們明代數(shù)學(xué)家程大為曾提出過(guò)一個(gè)有趣的問(wèn)題,有一個(gè)人趕著一群羊在前面走,另一個(gè)人牽著一頭羊跟在后面,后面的人問(wèn)趕羊的人說(shuō):“你這群羊有一百只嗎?”趕羊人回答“我再得這么一群羊,再得這群羊的一半,再得這群羊的四分之一,把你牽的羊

  也給我,我恰好有一百只羊”,請(qǐng)問(wèn)這群羊有多少只?

  四沖刺奧賽

  例5當(dāng)b=1時(shí),關(guān)于x的方程a(3x-2)+b(2x-3)=8x-7,有無(wú)窮多個(gè)解,則a=()

  A2B–2CD不存在

  例6解方程:3x+=4

  例7用一隊(duì)卡車運(yùn)一批貨物,若每輛卡車裝7噸貨物,則尚余10噸貨物裝不完,若每輛卡車裝8噸貨物,則最后一輛卡車只裝3噸貨物就裝完了這批貨物,那么這批貨物共有多少噸?

  五課堂練習(xí),鞏固提高

  P1121

  六反思小結(jié),拓展提高

  1什么叫一元一次方程的標(biāo)準(zhǔn)形式?解一元一次方程一般要轉(zhuǎn)化成什么形式?

一元一次方程教案12

  教學(xué)目標(biāo):

  1、理解什么是一元一次方程。

  2、理解什么是方程的解及解方程,學(xué)會(huì)檢驗(yàn)一個(gè)數(shù)值是不是方程的解的方法。

  3、進(jìn)一步體會(huì)找等量關(guān)系,會(huì)用方程表示簡(jiǎn)單實(shí)際問(wèn)題。

  4、體會(huì)數(shù)學(xué)與我們?nèi)粘I盥?lián)系密切,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣。

  教學(xué)重點(diǎn):

  一元一次方程及方程的解。

  教學(xué)難點(diǎn):

  尋找問(wèn)題中的相等關(guān)系,列方程。

  學(xué)習(xí)過(guò)程:

  回顧舊知:方程的概念是什么?

  問(wèn)題1:雞兔同籠

  “今有雉兔同籠,上有四十九頭,下有一百足,問(wèn)雉兔各幾何?”(分別用算術(shù)方法和方程方法解決)

  問(wèn)題2:一輛客車和一輛卡車同時(shí)從A地出發(fā)沿同一公路同方向行駛,客車的速度是70km/h,卡車的速度是60km/h,客車比卡車早1小時(shí)到達(dá)B地,A、B兩地間的路程是多少?(客車與卡車之間的時(shí)間關(guān)系解題)

  1、用等號(hào)“=”來(lái)表示相等關(guān)系的式子,叫等式。

  2、像這樣含有未知數(shù)的等式叫做方程

  判斷:下列各式是不是方程:

  (1)-2+5=3 ;

 。2)3x-1=0;

  (3)y=3;

  (4)x+y>2;

  (5)2x-5y+1=0;

 。6)xy-1=0;

  (7)2m-n;

  探究新知;

  例1根據(jù)下列問(wèn)題,設(shè)未知數(shù)并列出方程

 。1)用一根長(zhǎng)24cm的鐵絲圍成一個(gè)正方形,正方形的邊長(zhǎng)是多少?

  (2)一臺(tái)計(jì)算機(jī)已使用1700小時(shí),預(yù)計(jì)每月再使用150小時(shí),經(jīng)過(guò)多少個(gè)月這臺(tái)計(jì)算機(jī)的使用時(shí)間達(dá)到規(guī)定的檢修時(shí)間2450小時(shí)?

  (3)某校女生占全體學(xué)生數(shù)的52%,比男生多80人,這個(gè)學(xué)校有多少學(xué)生?

  解:(1)設(shè)正方形的邊長(zhǎng)為x cm,然后發(fā)現(xiàn)相等關(guān)系:

  4×邊長(zhǎng)=周長(zhǎng)

  可以利用這個(gè)相等關(guān)系,得到方程:4x=24

 。2)設(shè)x個(gè)月后這臺(tái)計(jì)算機(jī)的`使用時(shí)間達(dá)到規(guī)定的檢修時(shí)間2450小時(shí),得到方程:1700+150x=2450

 。3)設(shè)這個(gè)學(xué)校有x名學(xué)生,那么女生數(shù)就是0.52x,男生數(shù)是(1-0.52)x,可列方程:0.52x-(1-0.52)x=80觀察上面三個(gè)方程有什么共同特點(diǎn):

  ①只含有一個(gè)未知數(shù);

 、谖粗獢(shù)的最高次數(shù)都是1。

  只含有一個(gè)未知數(shù)(元),未知數(shù)的次數(shù)都是1,等號(hào)兩邊都是整式,這樣的方程叫做一元一次方程。判斷:下列各式是一元一次方程嗎?

 。1)2x+3y-1;(2) x2+2x+1=0;(3)x+2y=3;

 。4)1-x=x+1;(5)x2+3=4;

  (6)x+y=5;(7)1+7=15-8+1;

  (8)2χ2-5χ+1=0做一做:

  x=1000和x=20xx中哪一個(gè)是方程0.52x-(1-0.52)x=80的解?

  方程的解:使方程左右兩邊相等的未知數(shù)的值。檢驗(yàn)一個(gè)數(shù)值是不是方程的解的步驟:

 。.將數(shù)值代入方程左邊進(jìn)行計(jì)算,

 。.將數(shù)值代入方程右邊進(jìn)行計(jì)算,

  3.比較左右兩邊的值,若左邊=右邊,則是方程的解,反之,則不是.

  練一練:

  請(qǐng)你判斷下列給定的t的值中,哪個(gè)是方程2t+1=7-t的解?

  (1)t=-2(2)t=2 (3)t=1

  練習(xí)提高:

  根據(jù)下列問(wèn)題,設(shè)未知數(shù),列出方程:

  1、鳥(niǎo)巢里的環(huán)形跑道一周長(zhǎng)400m,沿跑道跑多少周,可以跑3000m?

  2、甲種鉛筆每支0.3元,乙種鉛筆每支0.6元,用9元錢(qián)買了兩種鉛筆共20支,問(wèn)各買了多少支?

  3、一個(gè)梯形下底比上底多2cm,高是5cm,面積是40平方厘米,求上底。 小結(jié):

  1、方程的概念

  2、一元一次方程的概念

  3、方程的解的概念

一元一次方程教案13

  【教學(xué)目標(biāo)】

  1.熟練掌握一元一次方程的解法;

  2.進(jìn)一步感受列方程的一般思路;

  3.進(jìn)一步培養(yǎng)學(xué)生的建模能力及創(chuàng)新能力.

  4.通過(guò)觀察、實(shí)踐、討論等活動(dòng)經(jīng)歷從實(shí)際中抽象數(shù)學(xué)模型的過(guò)程.

  【對(duì)話探索設(shè)計(jì)】

  〖探索1

  一項(xiàng)工程,甲要做12天才能做完.如果把總工作量看作1,

  那么,根據(jù)工作效率=________÷________,

  得甲一天的工作量(工作效率)為_(kāi)_______.

  他做3天的`工作量是__________.

  〖探索2

  一項(xiàng)工程,甲單獨(dú)做要6天,乙單獨(dú)做要3天,兩人合做要幾天?

  (1)你能估算出答案嗎?

  (2)試一試,怎樣用直線型示意圖尋求答案:

  如圖,線段AB表示總工作量1,怎樣在線段AB上分別表示甲、乙一天的工作量?通過(guò)示意圖,能夠很直觀地看出答案嗎?

  如圖,用整個(gè)圓的面積表示全部工作量1,怎樣用扇形的面積分別表示甲、乙兩人一天的工作量?通過(guò)示意圖,能夠很直觀地看出答案嗎?與直線型示意圖相比,你更樂(lè)意用哪一種圖形分析?

  〖探索3

  一項(xiàng)工程,甲單獨(dú)做要12天,乙單獨(dú)做要18天,兩人合做要幾天?

  解:把總工作量看作1,那么,

  根據(jù)工作效率=________÷________,得

  甲一天的工作量(工作效率)為_(kāi)_____;乙一天的工作量為_(kāi)_____;

  設(shè)兩人合做要x天,那么,

  甲的總工作量為_(kāi)_______;乙的總工作量為_(kāi)_______;

  這工作由兩個(gè)人完成,根據(jù)兩人完成的工作量之和等于1,可列方程:

  _____________________.解這個(gè)方程得________________.

  答:_____________________.

  把這道題的解法與小學(xué)時(shí)的算術(shù)解法進(jìn)行比較,你有什么發(fā)現(xiàn)?

  〖探索4

  整理一批圖書(shū),由一個(gè)人做要40小時(shí)完成.現(xiàn)計(jì)劃由一部分人先做4小時(shí),再增加2人和他們一起做8小時(shí),完成這項(xiàng)工作.假設(shè)這些人的工作效率相同,具體應(yīng)先安排多少人工作?(P92例5)

  解:把總工作量看作1,那么,

  根據(jù)工作效率=________÷________,得

  人均效率(一個(gè)人1小時(shí)的工作量)為_(kāi)_______.

  設(shè)先安排x人工作4小時(shí),那么,

  這x個(gè)人4小時(shí)的工作量為_(kāi)______________(可化簡(jiǎn)為_(kāi)________).

  顯然,再增加2人后,參加工作的人數(shù)為x+2,這(x+2)個(gè)人工作8小時(shí)

  的工作量為_(kāi)__________________(可化簡(jiǎn)為_(kāi)________).

  這工作分兩段完成,根據(jù)兩段完成的工作量等于1可列方程:

  ________________________.

  解得_______.

  答:_________________.

  想一想:如果不是把總工作量看作是1,而是把一個(gè)人一小時(shí)的工作量看作是1,該如何解這道題?比較兩種解法,你有什么感受?

  教師本身要認(rèn)真?zhèn)湔n,要敢于質(zhì)疑,要不失時(shí)機(jī)地培養(yǎng)學(xué)生獨(dú)立思考的習(xí)慣.

  〖作業(yè)

  P93.習(xí)題3(3),(4);P94,8,9

一元一次方程教案14

  一、學(xué)習(xí)目標(biāo)

  1.知道解一元一次方程的去分母步驟,并能熟練地解一元一次方程。

  2.通過(guò)討論、探索解一元一次方程的一般步驟和容易產(chǎn)生的問(wèn)題,培養(yǎng)學(xué)生觀察、歸納和概括能力。

  二、重點(diǎn):

  解一元一次方程中去分母的方法;培養(yǎng)學(xué)生自己發(fā)現(xiàn)問(wèn)題、解決問(wèn)題的能力。

  難點(diǎn):去分母法則的正確運(yùn)用。

  三、學(xué)習(xí)過(guò)程:

 。ㄒ唬(fù)習(xí)導(dǎo)入

  1、解方程:(1);(2)2(x-2)-(4x-1)=3(1-x)

  2、回顧:解一元一次方程的一般步驟及每一步的依據(jù)

  3、(只列不解)為改善生態(tài)環(huán)境,避免水土流失,某村積極植樹(shù)造林,原計(jì)劃每天植樹(shù)60棵,實(shí)際每天植樹(shù)80棵,結(jié)果比預(yù)計(jì)時(shí)間提前4天完成植樹(shù)任務(wù),則計(jì)劃植樹(shù)_____棵。

 。ǘ⿲W(xué)生自學(xué)p99--100

  根據(jù)等式性質(zhì),方程兩邊同乘以,得

  即得不含分母的方程:4x-3x=960

  X=960

  像這樣在方程兩邊同時(shí)乘以,去掉分?jǐn)?shù)的分母的變形過(guò)程叫做。依據(jù)是

  (三)例題:

  例1解方程:

  解:去分母,得依據(jù)

  去括號(hào),得依據(jù)

  移項(xiàng),得依據(jù)

  合并同類項(xiàng),得依據(jù)

  系數(shù)化為1,得依據(jù)

  注意:1)、分?jǐn)?shù)線具有

  2)、不含分母的項(xiàng)也要乘以(即不要漏乘)

  討論:小明是個(gè)“小馬虎”下面是他做的題目,我們看看對(duì)不對(duì)?如果不對(duì),請(qǐng)幫他改正。

  (1)方程去分母,得

 。2)方程去分母,得

 。3)方程去分母,得

  (4)方程去分母,得

  通過(guò)這幾節(jié)課的學(xué)習(xí),你能歸納小結(jié)一下解一元一次方程的一般步驟嗎?

  解一元一次方程的一般步驟是:

  1.依據(jù);

  2.依據(jù);

  3.依據(jù);

  4.化成的形式;依據(jù);

  5.兩邊同除以未知數(shù)的系數(shù),得到方程的解;依據(jù);

  練一練:見(jiàn)P101練習(xí)解下列方程:(1)(2)

 。3)思考:如何求方程

  小明的'解法:解:去百分號(hào),得同學(xué)看看有沒(méi)有異議?

  四、小結(jié):

  談?wù)勥@節(jié)課有什么收獲以及解帶有分母的一元一次方程要注意的一些問(wèn)題。

  五、課堂檢測(cè):

  1、去分母時(shí),在方程的左右兩邊同時(shí)乘以各個(gè)分母的_____________,從而去掉分母,去分母時(shí),每一項(xiàng)都要乘,不要漏乘,特別是不含分母的項(xiàng),注意含分母的項(xiàng)約去分母分子必須加括號(hào),由于分?jǐn)?shù)線具有

  2、解方程(1)2x+5=5x-7(2)4-3(2-x)=5x(3)=3x-1

  (4)=+1(5)

  六、作業(yè)

  P102:3,10.

一元一次方程教案15

  一、教學(xué)目標(biāo)

  (一).知識(shí)與技能

  會(huì)利用合并同類項(xiàng)解一元一次方程.

  (二).過(guò)程與方法

  通過(guò)對(duì)實(shí)例的分析,體會(huì)一元一次方程作為實(shí)際問(wèn)題的數(shù)學(xué)模型的作用.

  (三).情感態(tài)度與價(jià)值觀

  開(kāi)展探究性學(xué)習(xí),發(fā)展學(xué)習(xí)能力.

  二、重、難點(diǎn)與關(guān)鍵

  (一).重點(diǎn):會(huì)列一元一次方程解決實(shí)際問(wèn)題,并會(huì)合并同類項(xiàng)解一元一次方程.

  (二).難點(diǎn):會(huì)列一元一次方程解決實(shí)際問(wèn)題.

  (三).關(guān)鍵:抓住實(shí)際問(wèn)題中的數(shù)量關(guān)系建立方程模型.

  三、教學(xué)過(guò)程

  (一)、復(fù)習(xí)提問(wèn)

  1.敘述等式的兩條性質(zhì).

  2.解方程:4(x- )=2.

  解法1:根據(jù)等式性質(zhì)2,兩邊同除以4,得:

  x- =

  兩邊都加 ,得x= .

  解法2:利用乘法分配律,去掉括號(hào),得:

  4x- =2

  兩邊同加 ,得4x=

  兩邊同除以4,得x= .

  (二)、新授

  公元825年左右,中亞細(xì)亞數(shù)學(xué)家阿爾、花拉子米寫(xiě)了一本代數(shù)書(shū),重點(diǎn)論述怎樣解方程.這本書(shū)的拉丁文譯本取名為《對(duì)消與還原》.對(duì)消與還原是什么意思呢?讓我們先討論下面內(nèi)容,然后再回答這個(gè)問(wèn)題.

  問(wèn)題1:某校三年級(jí)共購(gòu)買計(jì)算機(jī)140臺(tái),去年購(gòu)買數(shù)量是前年的2倍,今年購(gòu)買數(shù)量又是去年的2倍,前年這個(gè)學(xué)校購(gòu)買了多少臺(tái)計(jì)算機(jī)?

  分析:設(shè)前年這個(gè)學(xué)校購(gòu)買了x臺(tái)計(jì)算機(jī),已知去年購(gòu)買數(shù)量是前年的2倍,那么去年購(gòu)買2x臺(tái),又知今年購(gòu)買數(shù)量是去年的2倍,則今年購(gòu)買了22x(即4x)臺(tái).

  題目中的相等關(guān)系為:三年共購(gòu)買計(jì)算機(jī)140臺(tái),即

  前年購(gòu)買量+去年購(gòu)買量+今年購(gòu)買量=140

  列方程:x+2x+4x=140

  如何解這個(gè)方程呢?

  2x表示2x,4x表示4x,x表示1x.

  根據(jù)分配律,x+2x+4x=(1+2+4)x=7x.

  這樣就可以把含x的項(xiàng)合并為一項(xiàng),合并時(shí)要注意x的系數(shù)是1,不是0.

  下面的框圖表示了解這個(gè)方程的具體過(guò)程:

  x+2x+4x=140

  合并

  7x=140

  系數(shù)化為1

  x=20

  由上可知,前年這個(gè)學(xué)校購(gòu)買了20臺(tái)計(jì)算機(jī).

  上面解方程中合并起了化簡(jiǎn)作用,把含有未知數(shù)的項(xiàng)合并為一項(xiàng),從而達(dá)到把方程轉(zhuǎn)化為ax=b的形式,其中a、b是常數(shù).

  例:某班學(xué)生共60分,外出參加種樹(shù)活動(dòng),根據(jù)任何的不同,要分成三個(gè)小組且使甲、乙、丙三個(gè)小組人數(shù)之比是2:3:5,求各小組人數(shù).

  分析:這里甲、乙、丙三個(gè)小組人數(shù)之比是2:3:5,就是說(shuō)把總數(shù)60人分成10份,甲組人數(shù)占2份,乙組人數(shù)占3份,丙組人數(shù)占5份,如果知道每一份是多少,那么甲、乙、丙各組人數(shù)都可以求得,所以本題應(yīng)設(shè)每一份為x人.

  問(wèn):本題中相等關(guān)系是什么?

  答:甲組人數(shù)+乙組人數(shù)+丙組人數(shù)=60.

  解:設(shè)每一份為x人,則甲組人數(shù)為2x人,乙組人數(shù)為3x人,丙組為5x人,列方程:

  2x+3x+5x=60

  合并,得10x=60

  系數(shù)化為1,得x=6

  所以2x=12,3x=18,5x=30

  答:甲組12人,乙組18人,丙組30人.

  請(qǐng)同學(xué)們檢驗(yàn)一下,答案是否合理,即這三組人數(shù)的比是否是2:3:5,且這三組人數(shù)之和是否等于60.

  (三)、鞏固練習(xí)

  1.課本第89頁(yè)練習(xí).

  (1)x=3.

  (2)可以先合并,也可以先把方程兩邊同乘以2.

  具體解法如下:

  解法1:合并,得( + )x=7

  即 2x=7

  系數(shù)化為1,得x=

  解法2:兩邊同乘以2,得x+3x=14

  合并,得 4x=14

  系數(shù)化為1,得 x=

  (3)合并,得-2.5x=10

  系數(shù)化為1,得x=-4

  2.補(bǔ)充練習(xí).

  (1)足球的表面是由若干個(gè)黑色五邊形和白色六邊形皮塊圍成的,黑白皮塊的數(shù)目比為3:5,一個(gè)足球的表面一共有32個(gè)皮塊,黑色皮塊和白色皮塊各有多少?

  (2)某學(xué)生讀一本書(shū),第一天讀了全書(shū)的多2頁(yè),第二天讀了全書(shū)的少1頁(yè),還剩23頁(yè)沒(méi)讀,問(wèn)全書(shū)共有多少頁(yè)?(設(shè)未知數(shù),列方程,不求解)

  解:(1)設(shè)每份為x個(gè),則黑色皮塊有3x個(gè),白色皮塊有5x個(gè).

  列方程 3x+2x=32

  合并,得 8x=32

  系數(shù)化為1,得 x=4

  黑色皮塊為43=12(個(gè)),白色皮塊有54=20(個(gè)).

  (2)設(shè)全書(shū)共有x頁(yè),那么第一天讀了( x+2)頁(yè),第二天讀了( x-1)頁(yè).

  本問(wèn)題的相等關(guān)系是:第一天讀的量+第二天讀的量+還剩23頁(yè)=全書(shū)頁(yè)數(shù).

  列方程: x+2+ x-1+23=x.

  四、課堂小結(jié)

  初學(xué)用代數(shù)方法解應(yīng)用題,感到不習(xí)慣,但一定要克服困難,掌握這種方法,掌握列一元一次方程解決實(shí)際問(wèn)題的一般步驟,其中找等量關(guān)系是關(guān)鍵也是難點(diǎn),本節(jié)課的兩個(gè)問(wèn)題的相等關(guān)系都是:總量=各部分量的和.這是一個(gè)基本的相等關(guān)系.

  合并就是把類型相同的項(xiàng)系數(shù)相加合并為一項(xiàng),也就是逆用乘法分配律,合并時(shí),注意x或-x的系數(shù)分別是1,-1,而不是0.

  五、作業(yè)布置

  1.課本第93頁(yè)習(xí)題3.2第1、3(1)、(2)、4、5題.

  2.選用課時(shí)作業(yè)設(shè)計(jì).

  合并同類項(xiàng)習(xí)題課(第2課時(shí))

  一、解方程.

  1.(1)3x+3-2x=7; (2) x+ x=3;

  (3)5x-2-7x=8; (4) y-3-5y= ;

  (5) - =5; (6)0.6x- x-3=0.

  二、解答題.

  2.育紅小學(xué)現(xiàn)有學(xué)生320人,比1995年學(xué)生人數(shù)的 少150人,問(wèn)育紅小學(xué)1995年學(xué)生人數(shù)是多少?

  3.甲、乙兩地相距460千米,A、B兩車分別從甲、乙兩地開(kāi)出,A車每小時(shí)行駛60千米,B車每小時(shí)行駛48千米.

  (1)兩車同時(shí)出發(fā),相向而行,出發(fā)多少小時(shí)兩車相遇?

  (2)兩車相向而行,A車提前半小時(shí)出發(fā),則在B車出發(fā)后多少小時(shí)兩車相遇?相遇地點(diǎn)距離甲地多遠(yuǎn)?

  4.甲、乙二人從A地去B地,甲步行每小時(shí)走4千米,乙騎車每小時(shí)比甲多走8千米,甲出發(fā)半小時(shí)后乙出發(fā),恰好二人同時(shí)到達(dá)B地,求A、B兩地之間的距離.

  5.一條環(huán)形跑道長(zhǎng)400米,甲練習(xí)騎自行車,平均每分鐘行駛550米;乙練習(xí)長(zhǎng)跑,平均每分鐘跑250米,兩人同時(shí)、同地、同向出發(fā),經(jīng)過(guò)多少時(shí)間,兩人首次相遇?

  答案:

  一、1.(1)x=4 (2)x=4 (3)x=-5 (4)x=- (5)x=30 (6)x=11

  二、2.705人,設(shè)育紅小學(xué)1995年學(xué)生人數(shù)為x人,列方程320= x-150.

  3.(1)4 小時(shí),設(shè)出發(fā)后x小時(shí)相遇,列方程60x+48x=460.

  (2)3 小時(shí),設(shè)B車開(kāi)出后x小時(shí)兩車相遇,列方程60 +60x+48x=460.

  4.3千米,設(shè)A、B兩地間的距離為x千米, - = .

  5.1 分鐘,設(shè)經(jīng)過(guò)x分鐘兩人首次相遇,列方程550x-250x=400.

  解一元一次方程

  ──移項(xiàng)(第3課時(shí))

  一、教學(xué)內(nèi)容

  課本第89頁(yè)至第91頁(yè).

  二、教學(xué)目標(biāo)

  (一).知識(shí)與技能

  理解移項(xiàng)法,并知道移項(xiàng)法的依據(jù),會(huì)用移項(xiàng)法則解方程.

  (二).情感態(tài)度與價(jià)值觀

  鼓勵(lì)學(xué)生自主探索與合作交流,發(fā)展思維策略,體會(huì)方程的應(yīng)用價(jià)值.

  三、重、難點(diǎn)與關(guān)鍵

  (一).重點(diǎn):運(yùn)用方程解決實(shí)際問(wèn)題,會(huì)用移項(xiàng)法則解方程.方程的各項(xiàng)應(yīng)包括前面的符號(hào)

  (二).難點(diǎn):對(duì)立相等關(guān)系.

  (三).關(guān)鍵:理解移項(xiàng)法則的依據(jù),以及尋找問(wèn)題中的等量關(guān)系.

  四、教學(xué)過(guò)程 (一)、復(fù)習(xí)提問(wèn)

  1.運(yùn)用方程解決實(shí)際問(wèn)題的步驟是什么?

  2.解方程: + =10.

  (二)、新授

  問(wèn)題2:把一些圖書(shū)分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本,這個(gè)班有多少學(xué)生?

  分析:設(shè)這個(gè)班有x名學(xué)生,根據(jù)第一種分法,分析已知量和未知量間的關(guān)系.

  1.每人分3本,那么共分出多少本?(3x本)

  2.共分出3x本和剩余的20本,可知道什么?

  答:這批書(shū)共有(3x+20)本.

  根據(jù)第二種分法,分析已知量與未知量之間的關(guān)系.

  3.每人分4本,那么需要分出多少本?(4x本)

  4.需要分出4x本和還缺少25本那么這批書(shū)共有多少本?

  答:這批書(shū)共有(4x-25)本.

  這批書(shū)的總數(shù)有幾種表示法?它們之間有什么關(guān)系?本題哪個(gè)相等關(guān)系可以作為列方程的依據(jù)?

  這批書(shū)的總數(shù)是一個(gè)定值(不變量)表示它的兩個(gè)式子應(yīng)相等.

  根據(jù)這一相等關(guān)系,列方程:

  3x+20=4x-25

  本題還可以畫(huà)示意圖,幫助我們分析:

  從示意圖中容易得到這批書(shū)的總數(shù)與分出書(shū)、剩下書(shū)的關(guān)系是:

  這批書(shū)的總數(shù)=3x+30

  這批書(shū)的總數(shù)與需要分出的書(shū)的數(shù)量、還缺少書(shū)的數(shù)量關(guān)系是:

  這批書(shū)的總數(shù)=4x-25

  根據(jù)兩種分法,這批書(shū)的總數(shù)是相等的.

  所以,列方程3x+20=4x-25.

  注意變化中的不變量,尋找隱含的.相等關(guān)系,從本題列方程的過(guò)程,可以發(fā)現(xiàn):表示同一個(gè)量的兩個(gè)不同式子相等.

  思考:方程3x+20=4x-25的兩邊都含有x的項(xiàng)(3x與4x),也都含有不含字母的常數(shù)項(xiàng)(20與-25)怎樣才能使它轉(zhuǎn)化為x=a(常數(shù))的形式呢?

  要使方程右邊不含x的項(xiàng),根據(jù)等式性質(zhì)1,兩邊都減去4x,同樣,把方程兩邊都減去20,方程左邊就不含常數(shù)項(xiàng)20,即

  3x+20 -4x-20 =4x-25 -4x-20

  即 3x-4x=-25-20

  將它與原來(lái)方程比較,相當(dāng)于把原方程左邊的+20變?yōu)?20后移到方程右邊,把原方程右邊的4x變?yōu)?4x后移到左邊.

  像上面那樣,把等式一邊的某項(xiàng)變號(hào)后移到另一邊,叫做移項(xiàng).

  方程中的任何一項(xiàng)都可以在改變符號(hào)后,從方程的一邊移到另一邊,即可以把方程等號(hào)右邊的項(xiàng)改變符號(hào)后移到等號(hào)的左邊,也可以把方程左邊的項(xiàng)改變符號(hào)后移到方程的右邊,注意要先變號(hào)后移項(xiàng),別忘了變號(hào).

  下面的框圖表示了解這個(gè)方程的具體過(guò)程.

  3x+20=4x-25

  移項(xiàng)

  3x-4x=-25-20

  合并

  -x=-45

  系數(shù)化為1

  x=46

  由此可知這個(gè)班共有45個(gè)學(xué)生.

  思考:上面解方程中移項(xiàng)起了什么作用?

  答:移項(xiàng)使方程中含x的項(xiàng)歸到方程的同一邊(左邊),不含x的項(xiàng)即常數(shù)項(xiàng)歸到方程的另一邊(右邊),這樣就可以通過(guò)合并把方程轉(zhuǎn)化為x=a形式.

  在解方程時(shí),要弄清什么時(shí)候要移項(xiàng),移哪些項(xiàng),目的是什么?

  解方程時(shí)經(jīng)常要合并和移項(xiàng),前面提到的古老的代數(shù)書(shū)中的對(duì)消和還原,指的就是合并和移項(xiàng).

  如果把上面的問(wèn)題2的條件不變,這個(gè)班有多少學(xué)生改為這批書(shū)有多少本?你會(huì)解嗎?試試看.

  解法1:從原問(wèn)題的解答中,已求的這個(gè)班有45個(gè)學(xué)生,只要把x=45代入3x+20(或4x-25)就可以求得這批書(shū)的總數(shù)為:

  345+20=135+20=155(本)

  解法2:如果不先求學(xué)生數(shù),直接設(shè)這批書(shū)共有x本,又如何布列方程?這時(shí)該用哪個(gè)相等關(guān)系列方程呢?

  這批書(shū)共有x本,余下20本,共分出(x-20)本,每人分3本,可以分給 人,即這個(gè)班共有 人.

  這批書(shū)有x本,每人分4本,還缺少25本,共需要(x+25)本,可以分給 人,即這個(gè)班共有 人.

  這個(gè)班的人數(shù)是一個(gè)定值,表示它的兩個(gè)式子應(yīng)相等,根據(jù)這個(gè)相等關(guān)系列方程.

  = (你會(huì)解這個(gè)方程嗎?)

  即 - = +

  移項(xiàng),得 - = +

  合并,得 =

  系數(shù)化為1,得x=155.

  答:這批書(shū)共有155本.

  (三)、鞏固練習(xí)

  1.課本第91頁(yè)練習(xí).

  (1)解:移項(xiàng),得6x-4x=-5+7

  合并,得 2x=2

  系數(shù)化為1,得x=1

  (2)解:移項(xiàng),得 x- x=6

  合并,得- x=6

  系數(shù)化為1,得x=-24

  2.補(bǔ)充練習(xí).

  下列移項(xiàng)對(duì)不對(duì)?如果不對(duì),錯(cuò)在哪里?應(yīng)當(dāng)怎樣改正?

  (1)從3x+6=0得3x=6;

  (2)從2x=x-1得到2x-x=1;

  (3)從2+x-3=2x+1得到2-3-1=2x-x.

  解:(1)錯(cuò),移項(xiàng)忘了要變號(hào),應(yīng)改為3x=-6.

  (2)錯(cuò).原方程中的-1仍然在方程右邊,并沒(méi)有移項(xiàng),所以不要變號(hào),應(yīng)改為2x-x-=-1.

  (3)正確.

  四、課堂小結(jié)

  1.列一元一次方程解決實(shí)際問(wèn)題的關(guān)鍵是審題、讀懂題意和找相等關(guān)系,今天解決的這個(gè)問(wèn)題的相等關(guān)系不明顯,隱含在問(wèn)題中,表示同一個(gè)量的兩個(gè)式子是相等.這個(gè)相等關(guān)系可以作列方程的依據(jù).

  2.正確理解移項(xiàng)法則,移項(xiàng)中常犯的錯(cuò)誤是忘記變號(hào),還要注意移項(xiàng)與在方程的一邊交換兩項(xiàng)的位置有本質(zhì)區(qū)別,移項(xiàng)的依據(jù)是等式性質(zhì),在方程的一邊交換兩項(xiàng)的位置是根據(jù)交換律.

  五、作業(yè)布置

  1.課本第93頁(yè)至第94頁(yè)習(xí)題3.2第2、3(3)(4)、6、7、8題.

  2.選用課時(shí)作業(yè)設(shè)計(jì).

  移項(xiàng)習(xí)題課(第4課時(shí))

  一、填空題.

  1.在方程的兩邊加上或減去同一項(xiàng),相當(dāng)于把原方程中的項(xiàng)______后,從方程的一邊移到另一邊,這種變形叫做________,其依據(jù)是________,移項(xiàng)要注意_____.

  2.在方程的一邊交換兩項(xiàng)的位置______改變項(xiàng)的符號(hào),而移項(xiàng)______改變符號(hào).

  3.解方程x+21=36得x=________;由10x-3=9得x=______.

  二、判斷題.(對(duì)的打,錯(cuò)的打)

  4.移項(xiàng)就是把方程中的某一項(xiàng)移到等號(hào)的另一邊.( )

  5.從6x=1,移項(xiàng),得x=1-6,x=-5. ( )

  6.由方程-4+x=7移項(xiàng)得x=7-4. ( )

  三、解方程.

  7.(1)8=7-2y; (2) = - ;

  (3)5x-2=7x+8; (4)1- x=3x+ ;

  (5)2x- =- +2; (6)- x+6=4x+1;

  (7) -x=0.5x-3.

  四、解答題.

  8.設(shè)m=3x-2,n=-2x+3,當(dāng)x為何值時(shí)m=n?

  9.甲糧倉(cāng)存糧1000噸,乙糧倉(cāng)存糧798噸,現(xiàn)要從兩個(gè)糧倉(cāng)中運(yùn)走212噸糧食,使兩倉(cāng)庫(kù)剩余的糧食數(shù)量相等,那么應(yīng)從這兩個(gè)糧倉(cāng)各運(yùn)出多少噸?

  答案:

  一、1.合并 移項(xiàng) 合并同類項(xiàng) 變號(hào) 2.不 要 3.15 1.2

  二、4. 5. 6.

  三、7.(1)y=- (2)x= (3)x=-5 (4)x=-

  (5)x=1 (6)x= (7)x=3

  四、8.x=1 9.207,5,設(shè)從甲糧倉(cāng)運(yùn)出x噸,1000-x=798-(212-x)

【一元一次方程教案】相關(guān)文章:

一元一次方程教案02-13

《一元一次方程》教案04-02

解一元一次方程教案02-25

《解一元一次方程》教案08-31

一元一次方程教案15篇02-14

解一元一次方程教案15篇03-01

解一元一次方程教案(15篇)03-21

解一元一次方程教案(通用13篇)07-24

《一元一次方程》說(shuō)課稿12-29