當前位置:育文網>高中>高中數學> 高中數學學習的知識點

高中數學學習的知識點

時間:2024-04-12 07:00:11 高中數學 我要投稿
  • 相關推薦

高中數學學習的知識點

  上學期間,說起知識點,應該沒有人不熟悉吧?知識點在教育實踐中,是指對某一個知識的泛稱。相信很多人都在為知識點發(fā)愁,下面是小編整理的高中數學學習的知識點,歡迎閱讀,希望大家能夠喜歡。

高中數學學習的知識點

高中數學學習的知識點1

  1、正角、負角、零角、象限角的概念你清楚嗎,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?

  2、三角函數的定義及單位圓內的`三角函數線(正弦線、余弦線、正切線)的定義你知道嗎?

  3、 在解三角問題時,你注意到正切函數、余切函數的定義域了嗎?你注意到正弦函數、余弦函數的有界性了嗎?

  4、 你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉化出現特殊角。 異角化同角,異名化同名,高次化低次)

  5、 反正弦、反余弦、反正切函數的取值范圍分別是

  6、你還記得某些特殊角的三角函數值嗎?

  7、掌握正弦函數、余弦函數及正切函數的圖象和性質。你會寫三角函數的單調區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數形結合與書寫規(guī)范,可別忘了),你是否清楚函數的圖象可以由函數經過怎樣的變換得到嗎?

高中數學學習的知識點2

  一、初中數學形象化,便于學生理解,并且聯系生活實際比較多。對于這些知識點,只要用心一些,很是比較容易把握的,運用起來也會比較自如。而高中數學相對來說則比較抽象,學生經常不能很好的把所學知識理解透徹,甚至進入理解誤區(qū),如此,便造成運用定理和公式不熟練或運用錯誤的現象。針對這些情況,建議家長由專業(yè)教師引導一下,深入淺出,為高中數學后續(xù)課程的學習打下堅實的基礎;

  二、初中數學淺顯化,學生只要認真思考,理解其所表達的意思。而高中很多知識點則較為隱晦,學生體會不到所表達的意思。比如:初中所學的.二次函數,比較多的偏向于感性認識,學生們往往能較好地掌握,但是進入高中之后,高中數學對二次函數提出了新的更高的要求,比較偏向于理性思維時,某些學生便會適應不過來。

  三、初中數學知識容量相對較小。總體而言,初中數學知識點較少,學生能夠通過三年的系統(tǒng)學習,比較好地掌握。高中數學則知識點眾多,而每個章節(jié)所包含的小知識點則更是繁雜,學生們則往往難以適應。

  綜上,建議學生與家長以謹慎、認真的態(tài)度去對待初三升高中這一蛻變的階段,因為這是我們邁進高中的第一步,只有第一步走踏實了,我們才能走過高中,踏進高考的大門!

高中數學學習的知識點3

  1、解決一些等比數列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?

  2、在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應有)需要驗證,有些題目通項是分段函數。

  3、你知道存在的條件嗎?(你理解數列、有窮數列、無窮數列的概念嗎?你知道無窮數列的前項和與所有項的和的不同嗎?什么樣的無窮等比數列的所有項的和必定存在?

  4、數列單調性問題能否等同于對應函數的'單調性問題?(數列是特殊函數,但其定義域中的值不是連續(xù)的。)

  5、應用數學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結合一些數學方法用來證明時也成立。

高中數學學習的知識點4

  橢圓的標準方程共分兩種情況:當焦點在x軸時,橢圓的標準方程是:x^2/a^2+y^2/b^2=1,(a>b>0);當焦點在y軸時,橢圓的`標準方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a^2—c^2=b^2推導:PF1+PF2>F1F2(P為橢圓上的點F為焦點)

  橢圓的對稱性:不論焦點在X軸還是Y軸,橢圓始終關于X/Y/原點對稱。

  頂點:焦點在X軸時:長軸頂點:(—a,0),(a,0),短軸頂點:(0,b),(0,—b),焦點在Y軸時:長軸頂點:(0,—a),(0,a),短軸頂點:(b,0),(—b,0)。注意長短軸分別代表哪一條軸,在此容易引起混亂,還需數形結合逐步理解透徹。

  焦點:當焦點在X軸上時焦點坐標F1(—c,0)F2(c,0),當焦點在Y軸上時焦點坐標F1(0,—c)F2(0,c)。

  距離問題

  習題:一列火車從甲地開往乙地,開出2。5小時,行了150千米。照這樣的速度,再行駛3小時到達乙地。甲、乙兩地相距多少千米?

  答案:先求火車每小時行多少千米,再求共行了幾小時,最后求出共行了多少千米(即甲、乙兩地距離);疖嚸啃r行多少千米:150÷2。5=60(千米)火車共行了多少小時:2。5+3=5。5(小時)甲乙兩地相距多少千米:60×5。5=330(千米)

  綜合算式:150÷2。5×(2。5+3)=150÷2。5×5。5=60×5。5=330(千米)

  常見運算符號

  如加號(+),減號(—),乘號(×或·),除號(÷或/),兩個集合的并集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb,lim),比(:),絕對值符號| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。

【高中數學學習的知識點】相關文章:

高中數學必修知識點11-08

高中數學知識點11-03

高中數學知識點07-25

高中數學橢圓知識點06-15

高中數學導數知識點總結05-09

高中數學全部知識點總結04-25

高中數學統(tǒng)計知識點總結10-21

高中數學知識點的總結03-07

高中數學知識點總結11-12

愛在高中數學知識點01-15