[優(yōu)選]初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15篇
總結(jié)是對(duì)過(guò)去一定時(shí)期的工作、學(xué)習(xí)或思想情況進(jìn)行回顧、分析,并做出客觀評(píng)價(jià)的書(shū)面材料,它可以幫助我們總結(jié)以往思想,發(fā)揚(yáng)成績(jī),不如靜下心來(lái)好好寫(xiě)寫(xiě)總結(jié)吧?偨Y(jié)怎么寫(xiě)才能發(fā)揮它的作用呢?以下是小編為大家整理的初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎閱讀,希望大家能夠喜歡。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
動(dòng)點(diǎn)與函數(shù)圖象問(wèn)題常見(jiàn)的四種類(lèi)型:
1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.
2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),判斷函數(shù)圖象.
3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),判斷函數(shù)圖象.
4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),判斷函數(shù)圖象.
圖形運(yùn)動(dòng)與函數(shù)圖象問(wèn)題常見(jiàn)的三種類(lèi)型:
1、線段與多邊形的運(yùn)動(dòng)圖形問(wèn)題:把一條線段沿一定方向運(yùn)動(dòng)經(jīng)過(guò)三角形或四邊形,進(jìn)行分段,判斷函數(shù)圖象.
2、多邊形與多邊形的運(yùn)動(dòng)圖形問(wèn)題:把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過(guò)另一個(gè)多邊形,判斷函數(shù)圖象.
3、多邊形與圓的運(yùn)動(dòng)圖形問(wèn)題:把一個(gè)圓沿一定方向運(yùn)動(dòng)經(jīng)過(guò)一個(gè)三角形或四邊形,或把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過(guò)一個(gè)圓,判斷函數(shù)圖象.
動(dòng)點(diǎn)問(wèn)題常見(jiàn)的四種類(lèi)型:
1、三角形中的.動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),通過(guò)全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系.
2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),通過(guò)探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.
3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),探究構(gòu)成的新圖形的邊角等關(guān)系.
4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),探究是否存在動(dòng)點(diǎn)構(gòu)成的三角形是等腰三角形或與已知圖形相似等問(wèn)題.
總結(jié)反思:
本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.
解答動(dòng)態(tài)性問(wèn)題通常是對(duì)幾何圖形運(yùn)動(dòng)過(guò)程有一個(gè)完整、清晰的認(rèn)識(shí),發(fā)掘“動(dòng)”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達(dá)到解題目的
解答函數(shù)的圖象問(wèn)題一般遵循的步驟:
1、根據(jù)自變量的取值范圍對(duì)函數(shù)進(jìn)行分段.
2、求出每段的解析式.
3、由每段的解析式確定每段圖象的形狀.
對(duì)于用圖象描述分段函數(shù)的實(shí)際問(wèn)題,要抓住以下幾點(diǎn):
1、自變量變化而函數(shù)值不變化的圖象用水平線段表示.
2、自變量變化函數(shù)值也變化的增減變化情況.
3、函數(shù)圖象的最低點(diǎn)和最高點(diǎn).
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
基本定理
1、過(guò)兩點(diǎn)有且只有一條直線
2、兩點(diǎn)之間線段最短
3、同角或等角的補(bǔ)角相等
4、同角或等角的余角相等
5、過(guò)一點(diǎn)有且只有一條直線和已知直線垂直
6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7、平行公理經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內(nèi)錯(cuò)角相等,兩直線平行
11、同旁內(nèi)角互補(bǔ),兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內(nèi)錯(cuò)角相等
14、兩直線平行,同旁內(nèi)角互補(bǔ)
15、定理xxx兩邊的和大于第三邊
16、推論xxx兩邊的差小于第三邊
17、xxx內(nèi)角和定理xxx三個(gè)內(nèi)角的和等于180°
18、推論1直角xxx的兩個(gè)銳角互余
19、推論2 xxx的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
20、推論3 xxx的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21、全等xxx的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22、邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)xxx全等
23、角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)xxx全等
24、推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)xxx全等
25、邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)xxx全等
26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角xxx全等
27、定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30、等腰xxx的性質(zhì)定理等腰xxx的兩個(gè)底角相等(即等邊對(duì)等角)
31、推論1等腰xxx頂角的'平分線平分底邊并且垂直于底邊
32、等腰xxx的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3等邊xxx的各角都相等,并且每一個(gè)角都等于60°
34、等腰xxx的判定定理如果一個(gè)xxx有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
35、推論1三個(gè)角都相等的xxx是等邊xxx
36、推論2有一個(gè)角等于60°的等腰xxx是等邊xxx
37、在直角xxx中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半
38、直角xxx斜邊上的中線等于斜邊上的一半
39、定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
40、逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42、定理1關(guān)于某條直線對(duì)稱(chēng)的兩個(gè)圖形是全等形
43、定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱(chēng),那么對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
44、定理3兩個(gè)圖形關(guān)于某直線對(duì)稱(chēng),如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱(chēng)軸上
45、逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱(chēng)
46、勾股定理直角xxx兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理如果xxx的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)xxx是直角xxx
48、定理四邊形的內(nèi)角和等于360°
49、四邊形的外角和等于360°
50、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
知識(shí)要點(diǎn):數(shù)列中的項(xiàng)必須是數(shù),它可以是實(shí)數(shù),也可以是復(fù)數(shù)。
數(shù)列表示方法
如果數(shù)列{an}的第n項(xiàng)與序號(hào)n之間的關(guān)系可以用一個(gè)式子來(lái)表示,那么這個(gè)公式叫做這個(gè)數(shù)列的通項(xiàng)公式。如an=(-1)^(n+1)+1。
數(shù)列通項(xiàng)公式的特點(diǎn):(1)有些數(shù)列的通項(xiàng)公式可以有不同形式,即不唯一。(2)有些數(shù)列沒(méi)有通項(xiàng)公式
如果數(shù)列{an}的第n項(xiàng)與它前一項(xiàng)或幾項(xiàng)的關(guān)系可以用一個(gè)式子來(lái)表示,那么這個(gè)公式叫做這個(gè)數(shù)列的遞推公式。如an=2a(n-1)+1 (n>;1)
數(shù)列遞推公式的特點(diǎn):(1)有些數(shù)列的遞推公式可以有不同形式,即不唯一。(2)有些數(shù)列沒(méi)有遞推公式
有遞推公式不一定有通項(xiàng)公式
知識(shí)要領(lǐng)總結(jié):數(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系
下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱(chēng)為_(kāi)軸或橫軸,豎直的數(shù)軸稱(chēng)為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成
對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來(lái)學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱(chēng)為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做_軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,_軸或y軸統(tǒng)稱(chēng)為坐標(biāo)軸,它們的公共原點(diǎn)o稱(chēng)為直角坐標(biāo)系的原點(diǎn)。
通過(guò)上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)
下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)c,過(guò)點(diǎn)c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)c的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)c的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒(méi)有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的'多項(xiàng)式,通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解
下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。
因式分解
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫(xiě)成積的形式。
分解因式注意;
、俨粶(zhǔn)丟字母
、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
、垭p重括號(hào)化成單括號(hào)
、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
、菹嗤蚴綄(xiě)成冪的形式
、奘醉(xiàng)負(fù)號(hào)放括號(hào)外
⑦括號(hào)內(nèi)同類(lèi)項(xiàng)合并。
通過(guò)上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4
第一章:勾股定理
1.如果直角三角形的兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么a的平方加上b的平方等于c的平方。
2.如果直角三角形的兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么a的平方加上b的平方等于c的平方。
3.如果直角三角形的兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么兩條直角邊長(zhǎng)的平方和等于斜邊長(zhǎng)的平方。
4.如果直角三角形的兩條直角邊長(zhǎng)分別是a和b,斜邊長(zhǎng)為c,那么a、b、c三者之間的關(guān)系是a的平方加上b的平方等于c的平方。
第二章:四邊形
1.平行四邊形:兩組對(duì)邊分別平行的四邊形叫做平行四邊形。
2.菱形:有一組鄰邊相等的平行四邊形叫做菱形。
3.矩形:有一個(gè)角是直角的平行四邊形叫做矩形。
4.正方形:有一組鄰邊相等的矩形叫做正方形。
5.平行四邊形的性質(zhì):對(duì)邊平行且相等;對(duì)角相等,且互補(bǔ);對(duì)角線互相平分。
6.菱形的性質(zhì):四邊相等;對(duì)角線互相垂直,且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半。
7.矩形的性質(zhì):矩形的四個(gè)角都是直角;矩形的對(duì)角線相等。
8.正方形的性質(zhì):四個(gè)角都是直角,四條邊都相等;對(duì)角線相等,且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形被兩條對(duì)角線分成四個(gè)全等的直角三角形;正方形是特殊的長(zhǎng)方形,所以正方形具有矩形的`一切性質(zhì)。
第三章:一次函數(shù)
1.一次函數(shù):如果所給函數(shù)表達(dá)式是正比例函數(shù),那么它經(jīng)過(guò)原點(diǎn)(0,0);如果所給函數(shù)表達(dá)式是一次函數(shù)(斜截式),那么它經(jīng)過(guò)原點(diǎn)(0,0)。
2.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。
3.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過(guò)第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過(guò)第一、二、三象限。
4.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過(guò)第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過(guò)第一、二、三象限。
5.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。
6.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過(guò)第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過(guò)第一、二、三象限。
7.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。
8.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過(guò)第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過(guò)第一、二、三象限。
9.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。
10.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過(guò)第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過(guò)第一、二、三象限。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5
1、乘法與因式分解
a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)
2、三角不等式
|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
3、一元二次方程的解
-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
4、根與系數(shù)的關(guān)系
X1+X2=-b/a X1*X2=c/a注:韋達(dá)定理
5、判別式
①b2-4a=0注:方程有相等的兩實(shí)根
、赽2-4ac>0注:方程有一個(gè)實(shí)根
、踒2-4ac<0注:方程有共軛復(fù)數(shù)根
6、三角函數(shù)公式
、賰山呛凸
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
、诒督枪
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
③半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
、芎筒罨e
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
、菽承⿺(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
、拚叶ɡ
a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑
⑦余弦定理
b2=a2+c2-2accosB注:角B是邊a和邊c的夾角
、鄨A的方程
圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)
圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
、崃Ⅲw體積與側(cè)面積
直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c'*h
正棱錐側(cè)面積S=1/2c*h'正棱臺(tái)側(cè)面積S=1/2(c+c')h'
圓臺(tái)側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi*r2
圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l
弧長(zhǎng)公式l=a*r a是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r
錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h
斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長(zhǎng)
柱體體積公式V=s*h圓柱體V=pi*r2h
二、初中幾何公式
1、平行線證明
、俳(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行
②如果兩條直線都和第三條直線平行,這兩條直線也互相平行
、弁唤窍嗟龋瑑芍本平行
、軆(nèi)錯(cuò)角相等,兩直線平行
、萃詢(nèi)角互補(bǔ),兩直線平行
⑥兩直線平行,同位角相等
、邇芍本平行,內(nèi)錯(cuò)角相等
、鄡芍本平行,同旁內(nèi)角互補(bǔ)
2、全等三角形證明
①邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
、诮沁吔枪(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
③推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
、苓呥呥吂(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
、菪边、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
3、三角形基本定理
、俣ɡ1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
②定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
、劢堑钠椒志是到角的兩邊距離相等的所有點(diǎn)的集合
④等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)
、萃普1等腰三角形頂角的平分線平分底邊并且垂直于底邊
、薜妊切蔚捻斀瞧椒志、底邊上的中線和底邊上的高互相重合
、咄普3等邊三角形的各角都相等,并且每一個(gè)角都等于60°
、嗟妊切蔚呐卸ǘɡ砣绻粋(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
、嶂苯侨切
4、多邊形定理
、俣ɡ硭倪呅蔚膬(nèi)角和等于360°
②四邊形的外角和等于360°
、鄱噙呅蝺(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°
、芡普撊我舛噙叺耐饨呛偷扔360°
5、平行四邊形證明與等腰梯形證明
、倨叫兴倪呅涡再|(zhì)定理1平行四邊形的對(duì)角相等
、谄叫兴倪呅涡再|(zhì)定理2平行四邊形的對(duì)邊相等
③平行四邊形性質(zhì)定理3平行四邊形的`對(duì)角線互相平分
……
、芫匦涡再|(zhì)定理1矩形的四個(gè)角都是直角
、菥匦涡再|(zhì)定理2矩形的對(duì)角線相等
……
、薜妊菪涡再|(zhì)定理等腰梯形在同一底上的兩個(gè)角相等
、叩妊菪闻卸ǘɡ碓谕坏咨系膬蓚(gè)角相等的梯形是等腰梯形
⑧推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
⑨推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊
7、相似三角形證明
、傧嗨迫切闻卸ǘɡ1兩角對(duì)應(yīng)相等,兩三角形相似(ASA)
、谂卸ǘɡ2兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS)
、叟卸ǘɡ3三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)
、芏ɡ砣绻粋(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似
、菪再|(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比
、扌再|(zhì)定理2相似三角形周長(zhǎng)的比等于相似比
、咝再|(zhì)定理3相似三角形面積的比等于相似比的平方
8、弦和圓的證明
、俣ɡ聿辉谕恢本上的三點(diǎn)確定一個(gè)圓。
、诖箯蕉ɡ泶怪庇谙业闹睆狡椒诌@條弦并且平分弦所對(duì)的兩條弧
③推論1
平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧
平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
、芡普2圓的兩條平行弦所夾的弧相等
⑤圓是以圓心為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形
、薅ɡ碓谕瑘A或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦
相等,所對(duì)的弦的弦心距相等
、呔與圓的位置關(guān)系
直線L和⊙O相交d 直線L和⊙O相切d=r 直線L和⊙O相離d>r 、鄨A與圓之間的位置關(guān)系 兩圓外離d>R+r②兩圓外切d=R+r 兩圓相交R-r 兩圓內(nèi)切d=R-r(R>r) 兩圓內(nèi)含dr) QQ截圖20150129173906.jpg 三、數(shù)學(xué)學(xué)習(xí)方法 1、突出一個(gè)“勤”字(克服一個(gè)“惰”字) 數(shù)學(xué)家華羅庚曾經(jīng)說(shuō)過(guò):“聰明在于學(xué)習(xí),天才在于勤奮”,“勤能補(bǔ)拙是良訓(xùn),一分辛勞一分才“:我們?cè)趯W(xué)習(xí)的時(shí)候要突出一個(gè)勤字,克服一個(gè)“懶”字,怎么突出“勤”字,從這個(gè)字面上來(lái)看,要做到五勤:“耳勤”“眼勤”(耳朵聽(tīng),眼睛看,接受信息) “口勤”(討論,回答問(wèn)題,而不是講話,消化信息)“腦勤”(善于思考問(wèn)題,積極思考問(wèn)題——吸收、儲(chǔ)存信息)那是不是做到以上四點(diǎn)就行了呢?不是。這個(gè)字還有缺陷,在聰下面加上“手” “手勤”(動(dòng)手多實(shí)踐,不僅光做題,做課件,做模型) 這樣的人聰明不聰明? 最大的提高學(xué)習(xí)效率,首先要做到——上課認(rèn)真聽(tīng)講(這是根本)回家先復(fù)習(xí)再做題如果課聽(tīng)不好,就別想消化知識(shí) 2、學(xué)好初中數(shù)學(xué)還有兩個(gè)要點(diǎn),要狠抓兩個(gè)要點(diǎn): 學(xué)好數(shù)學(xué),一要(動(dòng)手),二要(動(dòng)腦)。動(dòng)腦就是要學(xué)會(huì)觀察分析問(wèn)題,學(xué)會(huì)思考,不要拿到題就做,找到已知和未知想象之間有什么聯(lián)系,多問(wèn)幾個(gè)為什么。動(dòng)手就是多實(shí)踐,多做題,要“拳不離手”(武術(shù))“曲不離口”(唱歌)。同學(xué)就是“題不離手”,這兩個(gè)要點(diǎn)大家要記住。“動(dòng)腦又動(dòng)手,才能最大地發(fā)揮大腦的效率” 3、做到“三個(gè)一遍” 大家聽(tīng)過(guò)“失敗是成功之母”聽(tīng)過(guò)“重復(fù)是學(xué)習(xí)之母”嗎?培根(18-19世紀(jì)英國(guó)的哲學(xué)家)——“知識(shí)就是力量”,“重復(fù)是學(xué)習(xí)之母”。如何重復(fù),我給你們解釋一下: “上課要認(rèn)真聽(tīng)一遍,動(dòng)手推一遍,想一遍” “下課看” “考試前” 4、重視“四個(gè)依據(jù)” 讀好一本教科書(shū)——它是教學(xué)、中考的主要依據(jù); 記好一本筆記——它是教師多年經(jīng)驗(yàn)的結(jié)晶; 做好做凈一本習(xí)題集——它是使知識(shí)拓寬; 記好一本心得筆記,最好每人自己準(zhǔn)備一本錯(cuò)題集 1、相交線 對(duì)頂角相等。 過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。 連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短(簡(jiǎn)單說(shuō)成:垂線段最短)。 2、平行線 經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。 如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。 直線平行的條件: 兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。 兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角相等,那么兩直線平行。 兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么兩直線平行。 3、平行線的性質(zhì) 兩條平行線被第三條直線所截,同位角相等。 兩條平行線被第三條直線所截,內(nèi)錯(cuò)角相等。 兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)。 判斷一件事情的'語(yǔ)句,叫做命題。 一、數(shù)與代數(shù) 1.有理數(shù) 有理數(shù): 、僬麛(shù)→正整數(shù)/0/負(fù)整數(shù) 、诜?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù) 數(shù)軸: ①畫(huà)一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较颍偷玫綌?shù)軸。 ②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。 、廴绻麅蓚(gè)數(shù)只有符號(hào)不同,那么我們稱(chēng)其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱(chēng)這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。 ④數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。 2.實(shí)數(shù) 無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù) 平方根:如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)就叫做a的平方根(或二次方跟);一個(gè)數(shù)有兩個(gè)平方根,他們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒(méi)有平方根。 算術(shù)平方根:正數(shù)的正的平方根和零的平方根統(tǒng)稱(chēng)為主根,用符號(hào)“√a”表示,a為“被開(kāi)方數(shù)”。 立方根:如果一個(gè)數(shù)的立方等于a,那么這個(gè)數(shù)就叫做a的立方根(或a的三次方根);一個(gè)正數(shù)的立方根是正數(shù)、零的立方根是零、負(fù)數(shù)的立方根是負(fù)數(shù); 二、方程 1.代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)字或一個(gè)字母也是代數(shù)式。 2.一元一次方程:含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1的所有整式方程是一元一次方程。 3.一元二次方程:含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是2的所有整式方程是一元二次方程。 4.二元一次方程:含有兩個(gè)未知數(shù),并且含有一個(gè)未知數(shù)的次數(shù)是1的所有整式方程叫二元一次方程。 5.二元二次方程:含有兩個(gè)未知數(shù),并且含有一個(gè)未知數(shù)的次數(shù)是2的所有整式方程叫二元二次方程。 三、三角形 1.幾何圖形:學(xué)過(guò)的立體圖形有圓柱、圓錐和球以及長(zhǎng)方體、正方體、棱柱、棱錐、棱臺(tái)。 2.圖形的三視圖:俯視圖、主視圖、左視圖。 3.三角形的穩(wěn)定性。 4.三角形的分類(lèi):銳角三角形、直角三角形、鈍角三角形。 5.三角形的內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180度。 6.解直角三角形:解直角三角形需要運(yùn)用勾股定理及銳角三角函數(shù)的定義。銳角三角函數(shù)的定義:在直角三角形中,一銳角的正切等于銳角A對(duì)邊與鄰邊的比值;一銳角的余切等于銳角A的鄰邊與對(duì)邊的`比值;一銳角的正弦等于銳角A的對(duì)邊與斜邊的比值;一銳角的余弦等于銳角A的鄰邊與斜邊的比值。 7.全等三角形:全等三角形的對(duì)應(yīng)邊相等;全等三角形的對(duì)應(yīng)角相等。 8.等腰三角形的性質(zhì)定理:等腰三角形的兩個(gè)底角相等;(簡(jiǎn)稱(chēng):等邊對(duì)等角)以及等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合。(簡(jiǎn)稱(chēng):三線合一) 9.等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等。(簡(jiǎn)稱(chēng):等角對(duì)等邊) 10.等邊三角形:三條邊都相等的三角形是等腰三角形;三個(gè)角都相等的三角形是等邊三角形。 11.相似的三角形:相似三角形的對(duì)應(yīng)邊成比例;對(duì)應(yīng)角相等。 12.反證法:在證明一個(gè)命題的論證中,假設(shè)命題的結(jié)論不成立,從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)推理論證,得出與定義、公理或已經(jīng)證明過(guò)的命題或已經(jīng)掌握的事實(shí)相矛盾,從而使這個(gè)假設(shè)成為一個(gè)不成立的命題,這種推證方法叫做反證法。證明兩條線段相等時(shí)常常用反證法。 四、四邊形 1.平行四邊形及特殊平行四邊形的重心:平行四邊形及特殊平行四邊形的重心是它的兩條對(duì)角線的交點(diǎn)。 2.矩形、菱形、正方形的重心:矩形、菱形、正方形的重心是它們的對(duì)角線的交點(diǎn)。 3.梯形問(wèn)題 一、基本知識(shí) 一、數(shù)與代數(shù) A、數(shù)與式: 1、有理數(shù): ①整數(shù)→正整數(shù),0,負(fù)整數(shù); ②分?jǐn)?shù)→正分?jǐn)?shù),負(fù)分?jǐn)?shù) 數(shù)軸: ①畫(huà)一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较颍偷玫綌?shù)軸。 ②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。 、廴绻麅蓚(gè)數(shù)只有符號(hào)不同,那么我們稱(chēng)其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱(chēng)這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。 ④數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。 絕對(duì)值: 、僭跀(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。 、谡龜(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0、兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。 有理數(shù)的運(yùn)算:帶上符號(hào)進(jìn)行正常運(yùn)算。 加法: 、偻(hào)相加,取相同的符號(hào),把絕對(duì)值相加。 ②異號(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。 、垡粋(gè)數(shù)與0相加不變。 減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。 乘法: 、賰蓴(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。 、谌魏螖(shù)與0相乘得0、 、鄢朔e為1的兩個(gè)有理數(shù)互為倒數(shù)。 除法: ①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。 ②0不能作除數(shù)。 乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)或指數(shù)。 混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。 2、實(shí)數(shù) 無(wú)理數(shù) 無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù),例如:π=… 平方根: 、偃绻粋(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。 、谌绻粋(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。 、垡粋(gè)正數(shù)有2個(gè)平方根;0的平方根為0;負(fù)數(shù)沒(méi)有平方根。 、芮笠粋(gè)數(shù)A的平方根運(yùn)算,叫做開(kāi)平方,其中A叫做被開(kāi)方數(shù)。 立方根: 、偃绻粋(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。 、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。 ③求一個(gè)數(shù)A的立方根的運(yùn)算叫開(kāi)立方,其中A叫做被開(kāi)方數(shù)。 實(shí)數(shù): 、賹(shí)數(shù)分有理數(shù)和無(wú)理數(shù)。 、谠趯(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣; 、勖恳粋(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。 3、代數(shù)式 代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。 合并同類(lèi)項(xiàng): ①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類(lèi)項(xiàng);②把同類(lèi)項(xiàng)合并成一項(xiàng)就叫做合并同類(lèi)項(xiàng)。 ③在合并同類(lèi)項(xiàng)時(shí),我們把同類(lèi)項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。 4、整式與分式 整式: 、贁(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱(chēng)整式。 、谝粋(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。 、垡粋(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。 整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類(lèi)項(xiàng)。 冪的運(yùn)算: A^M+A^N=A^(M+N) (A^M)^N=A^(MN 。ˋ/B)^N=A^N/B^N 除法一樣。 整式的乘法: 、賳雾(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。 、趩雾(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。 、鄱囗(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。 公式兩條:平方差公式:A^2—B^2=(A+B)(A—B); 完全平方公式:(A+B)^2=A^2+2AB+B^2;(A—B)^2=A^2—2AB+B^2、 整式的除法: ①單項(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。 、诙囗(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。 分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。 方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。 分式: 、僬紸除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0、 ②分式的分子與分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。 分式的運(yùn)算: 乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。 除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。 加減法: 、偻帜阜质较嗉訙p,分母不變,把分子相加減。 、诋惙帜傅姆质较韧ǚ郑癁橥帜傅姆质,再加減。 分式方程: 、俜帜钢泻形粗獢(shù)的方程叫分式方程。 、谑狗匠痰姆帜笧0的解稱(chēng)為原方程的增根。 B、方程與不等式 1、方程與方程組 一元一次方程: 、僭谝粋(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。 、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。 解一元一次方程的步驟:去分母,移項(xiàng),合并同類(lèi)項(xiàng),未知數(shù)系數(shù)化為1、 二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的'方程叫做二元一次方程。 二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。 適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。 二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。 解二元一次方程組的方法:代入消元法;加減消元法。 一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程:ax^2+bx+c=0; 1)一元二次方程的二次函數(shù)的關(guān)系 大家已經(jīng)學(xué)過(guò)二次函數(shù)(即拋物線)了,對(duì)他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來(lái)表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)Y=0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來(lái),一元二次方程就是二次函數(shù)中,圖像與X軸的交點(diǎn)。也就是該方程的解了 2)一元二次方程的解法 大家知道,二次函數(shù)有頂點(diǎn)式(—b/2a,4ac—b^2/4a),這大家要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說(shuō)過(guò)了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解 (1)配方法 利用配方,使方程變?yōu)橥耆椒焦剑谟弥苯娱_(kāi)平方法去求出解 。2)分解因式法 提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解 。3)公式法 這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根X1={—b+√[b^2—4ac)]}/2a,X2={—b—√[b^2—4ac)]}/2a 3)解一元二次方程的步驟: 。1)配方法的步驟: 先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式 。2)分解因式法的步驟: 把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式 (3)公式法 就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c 4)韋達(dá)定理 利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=—b/a,二根之積=c/a 也可以表示為x1+x2=—b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用 5)一元二次方程根的情況 利用根的判別式去了解,根的判別式可在書(shū)面上可以寫(xiě)為“△”,讀作“diao ta”,而△=b2—4ac,這里可以分為3種情況: I當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根; II當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根; III當(dāng)△B,則A+C>B+C; 在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向; 例如:如果A>B,則A—C>B—C; 在不等式中,如果乘以同一個(gè)正數(shù),不等式符號(hào)不改向; 例如:如果A>B,則A*C>B*C(C>0); 在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號(hào)改向; 例如:如果A>B,則A*C 如果不等式乘以0,那么不等號(hào)改為等號(hào); 所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘的數(shù)就不等于0,否則不等式不成立; 3、函數(shù) 變量:因變量Y,自變量X。 在用圖像表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。 一次函數(shù): 、偃魞蓚(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱(chēng)Y是X的一次函數(shù)。 、诋(dāng)B=0時(shí),稱(chēng)Y是X的正比例函數(shù)。 一次函數(shù)的圖像: 、侔岩粋(gè)函數(shù)的自變量X與對(duì)應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖像。 、谡壤瘮(shù)Y=KX的圖像是經(jīng)過(guò)原點(diǎn)的一條直線。 、墼谝淮魏瘮(shù)中,當(dāng)K〈0,B〈O時(shí),則經(jīng)234象限; 當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限; 當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限; 當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。 ④當(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。 二空間與圖形 A、圖形的認(rèn)識(shí) 1、點(diǎn),線,面 點(diǎn),線,面: 、賵D形是由點(diǎn),線,面構(gòu)成的。 、诿媾c面相交得線,線與線相交得點(diǎn)。 、埸c(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。 展開(kāi)與折疊: 、僭诶庵,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。 ②N棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。 截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。 視圖:主視圖,左視圖,俯視圖。 多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。 弧、扇形: 、儆梢粭l弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。 、趫A可以分割成若干個(gè)扇形。 2、角 線: 、倬段有兩個(gè)端點(diǎn)。 ②將線段向一個(gè)方向無(wú)限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。 、蹖⒕段的兩端無(wú)限延長(zhǎng)就形成了直線。直線沒(méi)有端點(diǎn)。 、芙(jīng)過(guò)兩點(diǎn)有且只有一條直線。 比較長(zhǎng)短: 、賰牲c(diǎn)之間的所有連線中,線段最短。兩點(diǎn)之間直線最短。 、趦牲c(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。 角的度量與表示: 、俳怯蓛蓷l具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。 、谝欢鹊1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。 角的比較: 、俳且部梢钥闯墒怯梢粭l射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。 、谝粭l射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角,180、始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角,360、 、蹚囊粋(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。 平行: 、偻黄矫鎯(nèi),不相交的兩條直線叫做平行線。 、诮(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。 、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。 垂直: ①如果兩條直線相交成直角,那么這兩條直線互相垂直。 ②互相垂直的兩條直線的交點(diǎn)叫做垂足。 、燮矫鎯(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。 垂直平分線:垂直和平分一條線段的直線叫垂直平分線。 垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無(wú)限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫(huà)垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫(huà)法,后面會(huì)講)一定要把線段穿出2點(diǎn)。 垂直平分線定理: 性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等; 判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上; 角平分線:把一個(gè)角平分的射線叫該角的角平分線。 定義中有幾個(gè)要點(diǎn)要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱(chēng)軸才會(huì)用直線的,這也涉及到軌跡的問(wèn)題,一個(gè)角的角平分線就是到角兩邊距離相等的點(diǎn)的集合。 性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等; 判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上; 正方形:一組鄰邊相等的矩形是正方形 性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì) 判定: 1、對(duì)角線相等的菱形 2、鄰邊相等的矩形 二、基本定理 1、過(guò)兩點(diǎn)有且只有一條直線 2、兩點(diǎn)之間線段最短 3、同角或等角的補(bǔ)角相等——補(bǔ)角=180—角度。 4、同角或等角的余角相等——余角=90—角度。 5、過(guò)一點(diǎn)有且只有一條直線和已知直線垂直 6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短 7、平行公理:經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行 8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9、同位角相等,兩直線平行 10、內(nèi)錯(cuò)角相等,兩直線平行 11、同旁內(nèi)角互補(bǔ),兩直線平行 12、兩直線平行,同位角相等 13、兩直線平行,內(nèi)錯(cuò)角相等 14、兩直線平行,同旁內(nèi)角互補(bǔ) 15、定理:三角形兩邊的和大于第三邊 16、推論:三角形兩邊的差小于第三邊 17、三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180° 18、推論1:直角三角形的兩個(gè)銳角互余 19、推論2:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 20、推論3:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角 21、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等 22、邊角邊公理(SAS):有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等 23、角邊角公理(ASA):有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等 24、推論(AAS):有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等 25、邊邊邊公理(SSS):有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等 26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等 27、定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等 28、定理2:到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上 29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合 30、推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊 31、推論2:等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一; 32、推論3:等邊三角形的各角都相等,并且每一個(gè)角都等于60° 33、等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊) 34、等腰三角形的性質(zhì)定理:等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角) 35、推論1:三個(gè)角都相等的三角形是等邊三角形 36、推論:有一個(gè)角等于60°的等腰三角形是等邊三角形 37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半 38、直角三角形斜邊上的中線等于斜邊上的一半 39、定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等 40、逆定理:和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上 41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合 42、定理1:關(guān)于某條直線對(duì)稱(chēng)的兩個(gè)圖形是全等形 43、定理:如果兩個(gè)圖形關(guān)于某直線對(duì)稱(chēng),那么對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線 44、定理3:兩個(gè)圖形關(guān)于某直線對(duì)稱(chēng),如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱(chēng)軸上 45、逆定理:如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱(chēng) 46、勾股定理:直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2 47、勾股定理的逆定理:如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形 48、定理:四邊形的內(nèi)角和等于360° 49、四邊形的外角和等于360° 50、多邊形內(nèi)角和定理:n邊形的內(nèi)角的和等于(n—2)×180° 51、推論:任意多邊的外角和等于360° 52、平行四邊形性質(zhì)定理1:平行四邊形的對(duì)角相等 53、平行四邊形性質(zhì)定理2:行四邊形的對(duì)邊相等 54、推論:夾在兩條平行線間的平行線段相等 55、平行四邊形性質(zhì)定理3:平行四邊形的對(duì)角線互相平分 56、平行四邊形判定定理1:兩組對(duì)角分別相等的四邊形是平行四邊形 57、平行四邊形判定定理2:兩組對(duì)邊分別相等的四邊形是平行四邊形 58、平行四邊形判定定理3:對(duì)角線互相平分的四邊形是平行四邊形 59、平行四邊形判定定理4:一組對(duì)邊平行相等的四邊形是平行四邊形 60、矩形性質(zhì)定理1:矩形的四個(gè)角都是直角 61、矩形性質(zhì)定理2:矩形的對(duì)角線相等 62、矩形判定定理1:有三個(gè)角是直角的四邊形是矩形 63、矩形判定定理2:對(duì)角線相等的平行四邊形是矩形 64、菱形性質(zhì)定理1:菱形的四條邊都相等 65、菱形性質(zhì)定理2:菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角 66、菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2 67、菱形判定定理1:四邊都相等的四邊形是菱形 68、菱形判定定理2:對(duì)角線互相垂直的平行四邊形是菱形 69、正方形性質(zhì)定理1:正方形的四個(gè)角都是直角,四條邊都相等 70、正方形性質(zhì)定理2:正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角 71、定理1:關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形是全等的 72、定理2:關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形,對(duì)稱(chēng)點(diǎn)連線都經(jīng)過(guò)對(duì)稱(chēng)中心,并且被對(duì)稱(chēng)中心平分 73、逆定理:如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱(chēng) 74、等腰梯形性質(zhì)定理:等腰梯形在同一底上的兩個(gè)角相等 75、等腰梯形的兩條對(duì)角線相等 76、等腰梯形判定定理:在同一底上的兩個(gè)角相等的梯形是等腰梯形 77、對(duì)角線相等的梯形是等腰梯形 78、平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等 79、推論1:經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰 80、推論2:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊 81、三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半 82、梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2,S=L×h 83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc,ad=bc,那么a:b=c:d 84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d 85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b 86、平行線分線段成比例定理:三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例 87、推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例 88、定理:如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊 89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例 90、定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似 91、相似三角形判定定理1:兩角對(duì)應(yīng)相等,兩三角形相似(ASA) 92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似 93、判定定理2:兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS) 94、判定定理3:三邊對(duì)應(yīng)成比例,兩三角形相似(SSS) 95、定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似(HL) 96、性質(zhì)定理1:相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比 97、性質(zhì)定理2:相似三角形周長(zhǎng)的比等于相似比 98、性質(zhì)定理3:相似三角形面積的比等于相似比的平方 99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90—a),cos(a)=sin(90—a)(a<90) 100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90—a),cot(a)=tan(90—a) 101、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合 102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合 103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合 104、同圓或等圓的半徑相等 105、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓 106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線 107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線 108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線 109、定理:不在同一直線上的三點(diǎn)確定一個(gè)圓。 110、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧 111、推論1 、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙遥⑶移椒窒宜鶎(duì)的兩條弧 、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條。ㄖ睆剑 、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧 112、推論2 圓的兩條平行弦所夾的弧相等 113、圓是以圓心為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形 114、定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等 115、推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等 116、定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半 117、推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等 118、推論2 半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑 119、推論3 如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形 120、定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角 121、①直線L和⊙O相交0<=d<r ②直線L和⊙O相切d=r 、壑本L和⊙O相離d>r 122、切線的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線 123、切線的性質(zhì)定理 圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑 124、推論1 經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn) 125、推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心 126、切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線相交與一點(diǎn),它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角 127、圓的外切四邊形的兩組對(duì)邊的和相等 128、弦切角定理 弦切角等于它所夾的弧對(duì)的圓周角? 129、推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等 130、相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等 131、推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng) 132、切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)? 133、推論 從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條 割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等 134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上 135、①兩圓外離d>R+r 、趦蓤A外切d=R+r ③兩圓相交R—r<d<R+r(R>r) 、軆蓤A內(nèi)切d=R—r(R>r) 、輧蓤A內(nèi)含d<R—r(R>r) 136、定理 相交兩圓的連心線垂直平分兩圓的公共弦 137、定理 把圓平均分成n(n≥3): 、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形 、平(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形 138、定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓 139、正n邊形的每個(gè)內(nèi)角都等于(n—2)×180°/n 140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形 141、正n邊形的面積Sn=pn*rn/2,p表示正n邊形的周長(zhǎng) 142、正三角形面積√3a^2/4,a表示邊長(zhǎng) 143、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n—2)180°/n=360°化為(n—2)(k—2)=4 144、弧長(zhǎng)計(jì)算公式:L=n兀R/180——》L=nR 145、扇形面積公式:S扇形=n兀R^2/360=LR/2 146、內(nèi)公切線長(zhǎng)=d—(R—r),外公切線長(zhǎng)=d—(R+r) 三角形兩邊: 定理三角形兩邊的和大于第三邊。 推論三角形兩邊的差小于第三邊。 三角形中位線定理: 三角形的中位線平行于第三邊,并且等于它的一半。 三角形的重心: 三角形的重心到頂點(diǎn)的距離是它到對(duì)邊中點(diǎn)距離的2倍。 在三角形中,連接一個(gè)頂點(diǎn)和它對(duì)邊中點(diǎn)的線段叫做三角形的`中線,三角形的三條中線交于一點(diǎn),這一點(diǎn)叫做“三角形的重心”。 與三角形有關(guān)的角: 1、三角形的內(nèi)角和定理:三角形的內(nèi)角和為180°,與三角形的形狀無(wú)關(guān)。 2、直角三角形兩個(gè)銳角的關(guān)系:直角三角形的兩個(gè)銳角互余(相加為90°)。有兩個(gè)角互余的三角形是直角三角形。 3、三角形外角的性質(zhì):三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角之和;三角形的一個(gè)外角大于與它不相鄰的任何一個(gè)內(nèi)角;三角形三個(gè)外角和為360°。 全等三角形的性質(zhì)和判定: 全等三角形共有5種判定方式:SSS、SAS、ASA、AAS、HL。特殊情況下平移、旋轉(zhuǎn)、對(duì)折也會(huì)構(gòu)成全等三角形。 。ㄟ呥呥叄慈厡(duì)應(yīng)相等的兩個(gè)三角形全等。 。ㄟ吔沁叄慈切蔚钠渲袃蓷l邊對(duì)應(yīng)相等,且兩條邊的夾角也對(duì)應(yīng)相等的兩個(gè)三角形全等。 。ń沁吔牵,即三角形的其中兩個(gè)角對(duì)應(yīng)相等,且兩個(gè)角夾的的邊也對(duì)應(yīng)相等的兩個(gè)三角形全等。 。ń墙沁叄慈切蔚钠渲袃蓚(gè)角對(duì)應(yīng)相等,且對(duì)應(yīng)相等的角所對(duì)應(yīng)的邊也對(duì)應(yīng)相等的兩個(gè)三角形全等。 (斜邊、直角邊),即在直角三角形中一條斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等。 等邊三角形的判定: 1、三邊相等的三角形是等邊三角形(定義)。 2、三個(gè)內(nèi)角都相等的三角形是等邊三角形。 3、有一個(gè)角是60度的等腰三角形是等邊三角形。 4、有兩個(gè)角等于60度的三角形是等邊三角形。 關(guān)鍵詞:初一數(shù)學(xué);基礎(chǔ)知識(shí);教學(xué)策略 初中數(shù)學(xué)是一個(gè)整體,相對(duì)而言,初一數(shù)學(xué)知識(shí)點(diǎn)很多,注重基礎(chǔ),初一數(shù)學(xué)是對(duì)學(xué)數(shù)學(xué)的適當(dāng)深入,也為后續(xù)的學(xué)習(xí)打下良好的基礎(chǔ)。在初一數(shù)學(xué)的教學(xué)中,注重學(xué)生基礎(chǔ)知識(shí)的掌握是非常必要的。如今的現(xiàn)狀是,剛?cè)氤踔械膶W(xué)生并沒(méi)有對(duì)打好數(shù)學(xué)基礎(chǔ)有足夠的重視。一些學(xué)生剛進(jìn)入初中,在數(shù)學(xué)學(xué)習(xí)中感受不到壓力,沒(méi)有投入足夠的精力,因而漸漸地就積累了很多關(guān)于基礎(chǔ)知識(shí)的小問(wèn)題,這些小問(wèn)題在學(xué)生進(jìn)入后續(xù)的學(xué)習(xí)中,慢慢就越來(lái)越多,形成大問(wèn)題,大問(wèn)題漸漸就會(huì)凸顯出來(lái),學(xué)生漸漸就會(huì)感到力不從心。下面就針對(duì)初一學(xué)生學(xué)習(xí)中的問(wèn)題,具體談?wù)勅绾未蚝贸跻粩?shù)學(xué)的基礎(chǔ)。 一、打好初一數(shù)學(xué)基礎(chǔ)的重要性 進(jìn)入中學(xué),學(xué)生的科目增加,內(nèi)容拓展,知識(shí)深入,數(shù)學(xué)這門(mén)學(xué)科由具體到抽象,從文字發(fā)展成了符號(hào),從靜態(tài)逐漸發(fā)展成了動(dòng)態(tài)。初一數(shù)學(xué)學(xué)習(xí)是很重要的一年,能夠讓學(xué)生感受到初中數(shù)學(xué)與小學(xué)的不同,并能感受到數(shù)學(xué)學(xué)習(xí)帶來(lái)的快樂(lè),然而,一些學(xué)生對(duì)數(shù)學(xué)產(chǎn)生厭惡情緒也大都是從初中開(kāi)始的,由于基礎(chǔ)沒(méi)打好對(duì)數(shù)學(xué)產(chǎn)生厭惡是很多學(xué)生的通病;A(chǔ)知識(shí)是進(jìn)行深入學(xué)習(xí)的根基,它為數(shù)學(xué)學(xué)習(xí)的深入做鋪墊,然而基礎(chǔ)知識(shí)卻并沒(méi)有得到初一學(xué)生應(yīng)有的足夠重視。初中的數(shù)學(xué)知識(shí)相對(duì)小學(xué)來(lái)說(shuō),已有了很大的深入,如果初一的基礎(chǔ)知識(shí)沒(méi)有打好,學(xué)生會(huì)漸漸感到吃力,從而跟不上教學(xué)步伐,導(dǎo)致產(chǎn)生厭學(xué)情緒。不利于學(xué)生的發(fā)展。因此,教師在教學(xué)中必須注重初一學(xué)生基礎(chǔ)知識(shí)的培養(yǎng),并使學(xué)生認(rèn)識(shí)到打好基礎(chǔ)知識(shí)的重要性。 二、初一數(shù)學(xué)學(xué)習(xí)中常出現(xiàn)的問(wèn)題 1、知識(shí)點(diǎn)理解不透徹 初一學(xué)生剛?cè)氤踔,依然保留著小學(xué)生的一些習(xí)慣,愛(ài)玩并且厭煩課本上的基礎(chǔ)知識(shí)點(diǎn)。對(duì)知識(shí)點(diǎn)的理解停留在一知半解的層次上。并且,學(xué)生并沒(méi)有對(duì)基礎(chǔ)知識(shí)有足夠的重視,沒(méi)有認(rèn)識(shí)到基礎(chǔ)知識(shí)的重要性,從而導(dǎo)致基礎(chǔ)知識(shí)越來(lái)越差,產(chǎn)生對(duì)數(shù)學(xué)的厭煩,進(jìn)入惡性循環(huán)。 2、解答題目小錯(cuò)誤多,無(wú)法完整地解決問(wèn)題 學(xué)生由于不重視基礎(chǔ),導(dǎo)致一些題目無(wú)法完整地進(jìn)行解決,無(wú)論簡(jiǎn)單的題型還是難的題型,都是建立在基礎(chǔ)知識(shí)點(diǎn)上的。學(xué)生的問(wèn)題是無(wú)法把握其中的`基礎(chǔ)技巧,忽視基礎(chǔ)知識(shí),始終不能完整地解決問(wèn)題。 3、沒(méi)有養(yǎng)成歸納總結(jié)的好習(xí)慣 學(xué)生在平時(shí)的練習(xí)中會(huì)有許多解錯(cuò)的題型和忽視了的知識(shí)點(diǎn),然而大都都是錯(cuò)了就錯(cuò)了,并沒(méi)有進(jìn)行歸納總結(jié),導(dǎo)致對(duì)錯(cuò)誤的題型沒(méi)有進(jìn)行反思,從而一錯(cuò)再錯(cuò)。對(duì)一些基礎(chǔ)知識(shí)點(diǎn),也沒(méi)有進(jìn)行很好的歸納,腦海里沒(méi)有一個(gè)系統(tǒng)的基礎(chǔ)知識(shí)網(wǎng)。 三、打好學(xué)生數(shù)學(xué)基礎(chǔ)的策略 1、明確教學(xué)目標(biāo),突出重點(diǎn) 每一堂課的教學(xué),都有它的重點(diǎn)內(nèi)容,每一堂課,作為教師,首先都需要明確這堂課的教學(xué)目標(biāo),并要突出重點(diǎn),讓學(xué)生對(duì)這堂課所學(xué)的知識(shí)點(diǎn)有一個(gè)清晰的輪廓。教師可以在黑板的一角把重點(diǎn)內(nèi)容簡(jiǎn)短地寫(xiě)出來(lái),并保持一節(jié)課,引起學(xué)生的關(guān)注和重視。教師要通過(guò)不斷強(qiáng)調(diào)和引用,使學(xué)生對(duì)重點(diǎn)知識(shí)點(diǎn)留下深刻的印象,并可以出一個(gè)引用了重點(diǎn)知識(shí)的題目讓學(xué)生解答。例如,學(xué)習(xí)《數(shù)軸》這一節(jié)時(shí),教師可先對(duì)重點(diǎn)基礎(chǔ)知識(shí)點(diǎn)進(jìn)行講解,讓學(xué)生了解數(shù)軸的基本定義,在腦海里留下一個(gè)概念,再讓學(xué)生上講臺(tái)到黑板上按要求畫(huà)下來(lái)。畫(huà)完后,讓學(xué)生自己做必要的講解,比如畫(huà)數(shù)軸的三要素原點(diǎn)、正方向、單位長(zhǎng)度。這樣,學(xué)生對(duì)數(shù)軸的基礎(chǔ)知識(shí)點(diǎn)就會(huì)有一個(gè)深刻的印象。 2、精講例題,多做課堂練習(xí) 針對(duì)基礎(chǔ)知識(shí),教師可在課堂上多設(shè)置一些例題,使學(xué)生能夠把基礎(chǔ)知識(shí)應(yīng)用到題目中去解答,從而認(rèn)識(shí)到基礎(chǔ)知識(shí)的重要性。教師要精選例題,按照這節(jié)課的重點(diǎn)基礎(chǔ)內(nèi)容進(jìn)行選題,從結(jié)構(gòu)特征、思維方式等各個(gè)方面進(jìn)行對(duì)題型的剖析,從而讓學(xué)生在解題的基礎(chǔ)之上掌握基礎(chǔ)知識(shí)的關(guān)鍵。知識(shí)點(diǎn)講得再多也是抽象空洞的,只有與題目進(jìn)行結(jié)合,讓學(xué)生靈活運(yùn)用,才能夠使學(xué)生對(duì)知識(shí)點(diǎn)有一個(gè)深刻的理解。課堂上需根據(jù)實(shí)際情況布置課堂練習(xí),練習(xí)量針對(duì)知識(shí)點(diǎn)的難易程度可多可少,重要的是要讓學(xué)生有一個(gè)思考解答的過(guò)程。教師可讓學(xué)生自主進(jìn)行解答,若解答不出教師則做必要的指點(diǎn)進(jìn)行幫助,并且要鼓勵(lì)學(xué)生不懂就要問(wèn)。還可以讓學(xué)生共同討論一些難點(diǎn)問(wèn)題,促進(jìn)學(xué)生勤學(xué)好問(wèn)的習(xí)慣培養(yǎng)。 3、形象教學(xué),變抽象為具體 教師在實(shí)際課堂教學(xué)中,可以運(yùn)用很多種教學(xué)方式,每一堂課都有其教學(xué)目標(biāo),教學(xué)需根據(jù)教學(xué)內(nèi)容的變化選擇適當(dāng)?shù)慕虒W(xué)方式,形象教學(xué)是很重要并且很有效的教學(xué)方式。例如,進(jìn)行幾何的教學(xué),教師可以進(jìn)行具體演示,向?qū)W生展示幾何模型,運(yùn)用幾何模型來(lái)驗(yàn)證幾何結(jié)論。 4、讓學(xué)生收集題目,制作錯(cuò)題集 基礎(chǔ)是在無(wú)數(shù)次練習(xí)的基礎(chǔ)之上總結(jié)出來(lái)的,做題如同挖金礦,對(duì)待錯(cuò)題就如同對(duì)待發(fā)掘冶煉金礦一樣。學(xué)生在做題時(shí),會(huì)遇到很多難題和易錯(cuò)題,對(duì)于做錯(cuò)了的題目,學(xué)生看看就丟到一邊,是沒(méi)有起到練習(xí)應(yīng)有的效果的。教師要促使學(xué)生制作一個(gè)錯(cuò)題集,專(zhuān)門(mén)收集自己做錯(cuò)或者不會(huì)做的題目,讓學(xué)生自己分析做錯(cuò)的原因,為什么會(huì)做錯(cuò),下次如何避免,學(xué)生在總結(jié)反思的過(guò)程中,自然而然就對(duì)知識(shí)進(jìn)行了一次梳理。例如,用科學(xué)計(jì)數(shù)法計(jì)數(shù)是學(xué)生經(jīng)常容易犯錯(cuò)的知識(shí)點(diǎn),學(xué)生的粗心導(dǎo)致很簡(jiǎn)單的問(wèn)題經(jīng)常犯錯(cuò),通過(guò)錯(cuò)題集,學(xué)生收集表示錯(cuò)的科學(xué)計(jì)數(shù)法,不斷總結(jié)、強(qiáng)化,從而做到更細(xì)心。 初一數(shù)學(xué)學(xué)習(xí)對(duì)剛進(jìn)入初中的學(xué)生來(lái)說(shuō)是非常重要的,其既是對(duì)小學(xué)數(shù)學(xué)知識(shí)的必要深入,也為后續(xù)更深層次的學(xué)習(xí)打下關(guān)鍵的基礎(chǔ)。然而,初一學(xué)生往往并沒(méi)有認(rèn)識(shí)到進(jìn)入初中打好數(shù)學(xué)基礎(chǔ)的重要性。本文針對(duì)學(xué)好初一數(shù)學(xué)的重要性和初一數(shù)學(xué)學(xué)習(xí)面臨的一些問(wèn)題進(jìn)行了具體討論,最后總結(jié)出提高學(xué)生數(shù)學(xué)基礎(chǔ)知識(shí)的幾條教學(xué)策略,給以后的數(shù)學(xué)教學(xué)提供參考。 參考文獻(xiàn): [1]吳遠(yuǎn),學(xué)生數(shù)學(xué)自主能力的培養(yǎng)[J]。巨人教學(xué)資源,20xx。 一、數(shù)與代數(shù) 1.有理數(shù) 有理數(shù):包括正整數(shù)、0和負(fù)整數(shù)。 數(shù)軸:包括原點(diǎn)、正方向和單位長(zhǎng)度。 相反數(shù):只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù)。 絕對(duì)值:正數(shù)的絕對(duì)值是其本身,負(fù)數(shù)的.絕對(duì)值是它的相反數(shù),0的絕對(duì)值是0。 2.整式與分式 整式:包括單項(xiàng)式和多項(xiàng)式。 分式:包括一般形式和特殊形式。 代數(shù)式:包括單字母、單項(xiàng)式和多項(xiàng)式。 二、空間與圖形 1.點(diǎn)、線、面 點(diǎn):沒(méi)有大小,沒(méi)有長(zhǎng)度。 線:沒(méi)有寬度,只有長(zhǎng)度。 面:有長(zhǎng)度和寬度,沒(méi)有高度。 2.基本圖形 直線:包括直線、射線、線段。 角:包括平角、周角和一般的角。 三角形:包括等邊三角形、等腰三角形和一般三角形。 四邊形:包括矩形、正方形、梯形和平行四邊形。 圓:包括圓的性質(zhì)和圓的定理。 三、統(tǒng)計(jì)與概率 1.統(tǒng)計(jì) 統(tǒng)計(jì)圖:包括扇形統(tǒng)計(jì)圖、折線統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖。 統(tǒng)計(jì)表:包括簡(jiǎn)單統(tǒng)計(jì)表和復(fù)合統(tǒng)計(jì)表。 數(shù)據(jù)的收集與整理:包括抽樣調(diào)查、全面調(diào)查和自主調(diào)查。 2.概率 隨機(jī)事件:包括必然事件、不可能事件和隨機(jī)事件。 概率:包括計(jì)算事件發(fā)生的概率和隨機(jī)事件的概率。 以上是初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)的主要內(nèi)容,這些知識(shí)點(diǎn)是數(shù)學(xué)學(xué)習(xí)的基礎(chǔ),需要學(xué)生熟練掌握和應(yīng)用。 一、基本知識(shí) 、、數(shù)與代數(shù) A、數(shù)與式: 1、有理數(shù) 有理數(shù): ①整數(shù)→正整數(shù)/0/負(fù)整數(shù) 、诜?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù) 數(shù)軸: 、佼(huà)一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较,就得到?shù)軸。 、谌魏我粋(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。 、廴绻麅蓚(gè)數(shù)只有符號(hào)不同,那么我們稱(chēng)其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱(chēng)這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。 、軘(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。 絕對(duì)值: ①在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。 、谡龜(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0、兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。 有理數(shù)的運(yùn)算: 加法: ①同號(hào)相加,取相同的符號(hào),把絕對(duì)值相加。 ②異號(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。 、垡粋(gè)數(shù)與0相加不變。 減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。 乘法: ①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。 、谌魏螖(shù)與0相乘得0、 、鄢朔e為1的兩個(gè)有理數(shù)互為倒數(shù)。 除法: ①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。 、0不能作除數(shù)。 乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。 混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。 2、實(shí)數(shù) 無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù) 平方根: 、偃绻粋(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。 、谌绻粋(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。 ③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒(méi)有平方根。 、芮笠粋(gè)數(shù)A的平方根運(yùn)算,叫做開(kāi)平方,其中A叫做被開(kāi)方數(shù)。 立方根: 、偃绻粋(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。 ②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。 、矍笠粋(gè)數(shù)A的立方根的運(yùn)算叫開(kāi)立方,其中A叫做被開(kāi)方數(shù)。 實(shí)數(shù): 、賹(shí)數(shù)分有理數(shù)和無(wú)理數(shù)。 、谠趯(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。 ③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。 3、代數(shù)式 代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。 合并同類(lèi)項(xiàng): 、偎帜赶嗤⑶蚁嗤帜傅闹笖(shù)也相同的項(xiàng),叫做同類(lèi)項(xiàng)。 、诎淹(lèi)項(xiàng)合并成一項(xiàng)就叫做合并同類(lèi)項(xiàng)。 、墼诤喜⑼(lèi)項(xiàng)時(shí),我們把同類(lèi)項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。 4、整式與分式 整式: ①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱(chēng)整式。 ②一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。 、垡粋(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。 整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類(lèi)項(xiàng)。 冪的運(yùn)算:AM+AN=A(M+N) 。ˋM)N=AMN 。ˋ/B)N=AN/BN除法一樣。 整式的乘法: ①單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。 ②單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。 、鄱囗(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。 公式兩條:平方差公式/完全平方公式 整式的除法: 、賳雾(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。 、诙囗(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。 分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。 方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。 分式: 、僬紸除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0、 、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。分式的運(yùn)算: 乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。 除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。 加減法: ①同分母分式相加減,分母不變,把分子相加減。 、诋惙帜傅姆质较韧ǚ,化為同分母的分式,再加減。 分式方程: 、俜帜钢泻形粗獢(shù)的方程叫分式方程。 、谑狗匠痰姆帜笧0的解稱(chēng)為原方程的增根。 B、方程與不等式 1、方程與方程組 一元一次方程: 、僭谝粋(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。 、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。 解一元一次方程的步驟:去分母,移項(xiàng),合并同類(lèi)項(xiàng),未知數(shù)系數(shù)化為1、 二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的`方程叫做二元一次方程。二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。 一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程 1)一元二次方程的二次函數(shù)的關(guān)系 大家已經(jīng)學(xué)過(guò)二次函數(shù)(即拋物線)了,對(duì)他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來(lái)表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)Y的0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來(lái),一元二次方程就是二次函數(shù)中,圖象與X軸的交點(diǎn)。也就是該方程的解了 2)一元二次方程的解法 大家知道,二次函數(shù)有頂點(diǎn)式(—b/2a,4ac—b2/4a),這大家要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說(shuō)過(guò)了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解 。1)配方法 利用配方,使方程變?yōu)橥耆椒焦,在用直接開(kāi)平方法去求出解 (2)分解因式法 提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解 。3)公式法 這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根X1={—b+√[b2—4ac)]}/2a,X2={—b—√[b2—4ac)]}/2a 3)解一元二次方程的步驟: 。1)配方法的步驟: 先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式 (2)分解因式法的步驟: 把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式 。3)公式法 就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c 4)韋達(dá)定理 利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=—b/a,二根之積=c/a,也可以表示為x1+x2=—b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用 5)一元一次方程根的情況 利用根的判別式去了解,根的判別式可在書(shū)面上可以寫(xiě)為“△”,讀作“diaota”,而△=b2—4ac,這里可以分為3種情況: I當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根; II當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根; III當(dāng)△B,A+C>B+C在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向;例如:A>B,A—C>B—C在不等式中,如果乘以同一個(gè)正數(shù),不等號(hào)不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號(hào)改向;例如:A>B,A*C系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。 、谡壤瘮(shù)Y=KX的圖象是經(jīng)過(guò)原點(diǎn)的一條直線。 、墼谝淮魏瘮(shù)中,當(dāng)K〈0,B〈O,則經(jīng)234象限;當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。 、墚(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。 、婵臻g與圖形A、圖形的認(rèn)識(shí)1、點(diǎn),線,面 點(diǎn),線,面: 、賵D形是由點(diǎn),線,面構(gòu)成的。 、诿媾c面相交得線,線與線相交得點(diǎn)。 、埸c(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。 展開(kāi)與折疊: 、僭诶庵,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。 、贜棱柱就是底面圖形有N條邊的棱柱。 截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。 多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。 弧、扇形: 、儆梢粭l弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。 ②圓可以分割成若干個(gè)扇形。 2、角 線: ①線段有兩個(gè)端點(diǎn)。 、趯⒕段向一個(gè)方向無(wú)限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。 ③將線段的兩端無(wú)限延長(zhǎng)就形成了直線。直線沒(méi)有端點(diǎn)。 、芙(jīng)過(guò)兩點(diǎn)有且只有一條直線。 比較長(zhǎng)短: ①兩點(diǎn)之間的所有連線中,線段最短。 、趦牲c(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。 角的度量與表示: ①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。 、谝欢鹊1/60是一分,一分的1/60是一秒。 角的比較: ①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。 、谝粭l射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。 、蹚囊粋(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。 平行: 、偻黄矫鎯(nèi),不相交的兩條直線叫做平行線。 ②經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。 、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。 垂直: ①如果兩條直線相交成直角,那么這兩條直線互相垂直。 、诨ハ啻怪钡膬蓷l直線的交點(diǎn)叫做垂足。 、燮矫鎯(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。垂直平分線:垂直和平分一條線段的直線叫垂直平分線。 垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無(wú)限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫(huà)垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫(huà)法,后面會(huì)講)一定要把線段穿出2點(diǎn)。 垂直平分線定理: 性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上角平分線:把一個(gè)角平分的射線叫該角的角平分線。 定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出 現(xiàn)直線,這是角平分線的對(duì)稱(chēng)軸才會(huì)用直線的,這也涉及到軌跡的問(wèn)題,一個(gè)角個(gè)角平分線就是到角兩邊距離相等的點(diǎn) 性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等 判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上正方形:一組鄰邊相等的矩形是正方形 性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì) 判定:1、對(duì)角線相等的菱形2、鄰邊相等的矩形 二、基本定理 1、過(guò)兩點(diǎn)有且只有一條直線 2、兩點(diǎn)之間線段最短 3、同角或等角的補(bǔ)角相等 4、同角或等角的余角相等 5、過(guò)一點(diǎn)有且只有一條直線和已知直線垂直 6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短 7、平行公理經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行 8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9、同位角相等,兩直線平行 10、內(nèi)錯(cuò)角相等,兩直線平行 11、同旁內(nèi)角互補(bǔ),兩直線平行 12、兩直線平行,同位角相等 13、兩直線平行,內(nèi)錯(cuò)角相等 14、兩直線平行,同旁內(nèi)角互補(bǔ) 15、定理三角形兩邊的和大于第三邊 16、推論三角形兩邊的差小于第三邊 17、三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180° 18、推論1直角三角形的兩個(gè)銳角互余 19、推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 20、推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角 21、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等 22、邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等 23、角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等 24、推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等 25、邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等 26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等 27、定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等 28、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上 29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合 30、等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角) 31、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊 32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33、推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60° 34、等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊) 35、推論1三個(gè)角都相等的三角形是等邊三角形 36、推論2有一個(gè)角等于60°的等腰三角形是等邊三角形 37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半 38、直角三角形斜邊上的中線等于斜邊上的一半 39、定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等 40、逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上 41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合 42、定理1關(guān)于某條直線對(duì)稱(chēng)的兩個(gè)圖形是全等形 43、定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱(chēng),那么對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線 44、定理3兩個(gè)圖形關(guān)于某直線對(duì)稱(chēng),如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱(chēng)軸上 45、逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱(chēng) 46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2 47、勾股定理的逆定理如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形 48、定理四邊形的內(nèi)角和等于360° 49、四邊形的外角和等于360° 50、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n—2)×180° 51、推論任意多邊的外角和等于360° 52、平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等 53、平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等 54、推論夾在兩條平行線間的平行線段相等 55、平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線互相平分 56、平行四邊形判定定理1兩組對(duì)角分別相等的四邊形是平行四邊形 57、平行四邊形判定定理2兩組對(duì)邊分別相等的四邊形是平行四邊形 58、平行四邊形判定定理3對(duì)角線互相平分的四邊形是平行四邊形 59、平行四邊形判定定理4一組對(duì)邊平行相等的四邊形是平行四邊形 60、矩形性質(zhì)定理1矩形的四個(gè)角都是直角 61、矩形性質(zhì)定理2矩形的對(duì)角線相等 62、矩形判定定理1有三個(gè)角是直角的四邊形是矩形 63、矩形判定定理2對(duì)角線相等的平行四邊形是矩形 64、菱形性質(zhì)定理1菱形的四條邊都相等 65、菱形性質(zhì)定理2菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角 66、菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2 67、菱形判定定理1四邊都相等的四邊形是菱形 68、菱形判定定理2對(duì)角線互相垂直的平行四邊形是菱形 69、正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等 70、正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角 71、定理1關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形是全等的 72、定理2關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形,對(duì)稱(chēng)點(diǎn)連線都經(jīng)過(guò)對(duì)稱(chēng)中心,并且被對(duì)稱(chēng)中心平分 73、逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱(chēng) 74、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等 75、等腰梯形的兩條對(duì)角線相等 76、等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形 77、對(duì)角線相等的梯形是等腰梯形 78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等 79、推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰 80、推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊 81、三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半 82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h 83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d 84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d 85、(3)等比性質(zhì):如果a/b=c/d==m/n(b+d++n≠0),那么(a+c++m)/(b+d++n)=a/b 86、平行線分線段成比例定理三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例 87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例 88、定理如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊 89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例 90、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似 91、相似三角形判定定理1兩角對(duì)應(yīng)相等,兩三角形相似(ASA) 92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似 93、判定定理2兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS) 94、判定定理3三邊對(duì)應(yīng)成比例,兩三角形相似(SSS) 95、定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似 96、性質(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比 97、性質(zhì)定理2相似三角形周長(zhǎng)的比等于相似比 98、性質(zhì)定理3相似三角形面積的比等于相似比的平方 99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值 100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值 101、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合 102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合 103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合 104、同圓或等圓的半徑相等 105、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓 106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線 107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線 108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線 109、定理不在同一直線上的三點(diǎn)確定一個(gè)圓。 110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧 111、推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧 ②弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧 ③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧 112、推論2圓的兩條平行弦所夾的弧相等 113、圓是以圓心為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形 114、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等 115、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等 116、定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半 117、推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等 118、推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑 119、推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形 120、定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角 121、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr 122、切線的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線 123、切線的性質(zhì)定理圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑 124、推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn) 125、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心 126、切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等圓心和這一點(diǎn)的連線平分兩條切線的夾角 127、圓的外切四邊形的兩組對(duì)邊的和相等 128、弦切角定理弦切角等于它所夾的弧對(duì)的圓周角 129、推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等 130、相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等 131、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng) 132、切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng) 133、推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等 134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上 135、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R—rdR+r(Rr)④兩圓內(nèi)切d=R—r(Rr)⑤兩圓內(nèi)含dR—r(Rr) 136、定理相交兩圓的連心線垂直平分兩圓的公共弦 137、定理把圓分成n(n≥3): 、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形 、平(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形 138、定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓 139、正n邊形的每個(gè)內(nèi)角都等于(n—2)×180°/n 140、定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形 141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng) 142、正三角形面積√3a/4a表示邊長(zhǎng) 143、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n—2)180°/n=360°化為(n—2)(k—2)=4 144、弧長(zhǎng)計(jì)算公式:L=n兀R/180 145、扇形面積公式:S扇形=n兀R^2/360=LR/2146、內(nèi)公切線長(zhǎng)=d—(R—r)外公切線長(zhǎng)=d—(R+r) 一、常用數(shù)學(xué)公式 公式分類(lèi)公式表達(dá)式乘法與因式分解a2—b2=(a+b)(a—b)a3+b3=(a+b)(a2—ab+b2)a3—b3=(a—b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a—b|≤|a|+|b| |a|≤b—b≤a≤b|a—b|≥|a|—|b|—|a|≤a≤|a| 一元二次方程的解—b+√(b2—4ac)/2a—b—√(b2—4ac)/2a 根與系數(shù)的關(guān)系X1+X2=—b/aX1*X2=c/a注:韋達(dá)定理判別式 b2—4ac=0注:方程有兩個(gè)相等的實(shí)根b2—4ac>0注:方程有兩個(gè)不等的實(shí)根 b2—4ac歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無(wú)源之水,無(wú)本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類(lèi)型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。 8、面積法 平面幾何中講的面積公式以及由面積公式推出的與面積計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積,而且用它來(lái)證明平面幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面積關(guān)系來(lái)證明或計(jì)算平面幾何題的方法,稱(chēng)為面積方法,它是幾何中的一種常用方法。 用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來(lái),通過(guò)運(yùn)算達(dá)到求證的結(jié)果。所以用面積法來(lái)解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。 9、幾何變換法 在數(shù)學(xué)問(wèn)題的研究中,常常運(yùn)用變換法,把復(fù)雜性問(wèn)題轉(zhuǎn)化為簡(jiǎn)單性的問(wèn)題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來(lái),有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對(duì)稱(chēng)。 10、客觀性題的解題方法 選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類(lèi)題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識(shí)和基本技能,從而增大了試卷的容量和知識(shí)覆蓋面。 填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識(shí)復(fù)蓋面廣,評(píng)卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計(jì)算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計(jì)算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過(guò)實(shí)例介紹常用方法。 。1)直接推演法:直接從命題給出的條件出發(fā),運(yùn)用概念、公式、定理等進(jìn)行推理或運(yùn)算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。 。2)驗(yàn)證法:由題設(shè)找出合適的驗(yàn)證條件,再通過(guò)驗(yàn)證,找出正確答案,亦可將供選擇的答案代入條件中去驗(yàn)證,找出正確答案,此法稱(chēng)為驗(yàn)證法(也稱(chēng)代入法)。當(dāng)遇到定量命題時(shí),常用此法。 。3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。 。4)排除、篩選法:對(duì)于正確答案有且只有一個(gè)的選擇題,根據(jù)數(shù)學(xué)知識(shí)或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。 。5)圖解法:借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點(diǎn)來(lái)判斷,作出正確的選擇稱(chēng)為圖解法。圖解法是解選擇題常用方法之一。 (6)分析法:直接通過(guò)對(duì)選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,為分析法。 1.圓是以圓心為對(duì)稱(chēng)中心的中心對(duì)稱(chēng)圖形;同圓或等圓的半徑相等。 2.到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓。 3.定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等。 4.圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合。 5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合;圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。 6.不在同一直線上的三點(diǎn)確定一個(gè)圓。 7.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧。 推論1: 、倨椒窒(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧; ②弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧; 、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧。 推論2:圓的兩條平行弦所夾的弧相等。 8.推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。 9.定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角。 10.經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心。 11.切線的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線。 12.切線的性質(zhì)定理圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑。 13.經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn) 14.切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。 15.圓的外切四邊形的兩組對(duì)邊的和相等外角等于內(nèi)對(duì)角。 16.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上。 17. 、賰蓤A外離d>R+r 、趦蓤A外切d=R+r ③兩圓相交d>R-r) 、軆蓤A內(nèi)切d=R-r(R>r) 、輧蓤A內(nèi)含d=r) 18.定理把圓分成n(n≥3): 、乓来芜B結(jié)各分點(diǎn)所得的`多邊形是這個(gè)圓的內(nèi)接正n邊形 ⑵經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形。 19.定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓。 20.弧長(zhǎng)計(jì)算公式:L=n兀R/180;扇形面積公式:S扇形=n兀R^2/360=LR/2。 21.內(nèi)公切線長(zhǎng)= d-(R-r)外公切線長(zhǎng)= d-(R+r)。 22.定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。 23.推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。 24.推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。 一、特殊的平行四邊形: 1.矩形: 。1)定義:有一個(gè)角是直角的平行四邊形。 (2)性質(zhì):矩形的四個(gè)角都是直角;矩形的對(duì)角線平分且相等。 。3)判定定理: ①有一個(gè)角是直角的平行四邊形叫做矩形。 ②對(duì)角線相等的平行四邊形是矩形。 、塾腥齻(gè)角是直角的四邊形是矩形。 直角三角形的性質(zhì):直角三角形中所對(duì)的直角邊等于斜邊的一半。 2.菱形: (1)定義:鄰邊相等的平行四邊形。 。2)性質(zhì):菱形的四條邊都相等;菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。 。3)判定定理: 、僖唤M鄰邊相等的平行四邊形是菱形。 、趯(duì)角線互相垂直的平行四邊形是菱形。 、鬯臈l邊相等的四邊形是菱形。 。4)面積: 3.正方形: 。1)定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。 。2)性質(zhì):四條邊都相等,四個(gè)角都是直角,對(duì)角線互相垂直平分。正方形既是矩形,又是菱形。 (3)正方形判定定理: 、賹(duì)角線互相垂直平分且相等的四邊形是正方形; 、谝唤M鄰邊相等,一個(gè)角為直角的平行四邊形是正方形; 、蹖(duì)角線互相垂直的矩形是正方形; 、茑忂呄嗟鹊木匦问钦叫 、萦幸粋(gè)角是直角的'菱形是正方形; ⑥對(duì)角線相等的菱形是正方形。 二、矩形、菱形、正方形與平行四邊形、四邊形之間的聯(lián)系: 1.矩形、菱形和正方形都是特殊的平行四邊形,其性質(zhì)都是在平行四邊形的基礎(chǔ)上擴(kuò)充來(lái)的。矩形是由平行四邊形增加“一個(gè)角為90°”的條件得到的,它在角和對(duì)角線方面具有比平行四邊形更多的特性;菱形是由平行四邊形增加“一組鄰邊相等”的條件得到的,它在邊和對(duì)角線方面具有比平行四邊形更多的特性;正方形是由平行四邊形增加“一組鄰邊相等”和“一個(gè)角為90°”兩個(gè)條件得到的,它在邊、角和對(duì)角線方面都具有比平行四邊形更多的特性。 2.矩形、菱形的判定可以根據(jù)出發(fā)點(diǎn)不同而分成兩類(lèi):一類(lèi)是以四邊形為出發(fā)點(diǎn)進(jìn)行判定,另一類(lèi)是以平行四邊形為出發(fā)點(diǎn)進(jìn)行判定。而正方形除了上述兩個(gè)出發(fā)點(diǎn)外,還可以從矩形和菱形出發(fā)進(jìn)行判定。 三、判定一個(gè)四邊形是特殊四邊形的步驟: 常見(jiàn)考法 (1)利用菱形、矩形、正方形的性質(zhì)進(jìn)行邊、角以及面積等計(jì)算; 。2)靈活運(yùn)用判定定理證明一個(gè)四邊形(或平行四邊形)是菱形、矩形、正方形; 。3)一些折疊問(wèn)題; 。4)矩形與直角三角形和等腰三角形有著密切聯(lián)系、正方形與等腰直角三角形也有著密切聯(lián)系。所以,以此為背景可以設(shè)置許多考題。 誤區(qū)提醒 。1)平行四邊形的所有性質(zhì)矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性質(zhì)平行四邊形不一定具有,這點(diǎn)易出現(xiàn)混淆; 。2)矩形、菱形具有的性質(zhì)正方形都具有,而正方形具有的性質(zhì),矩形不一定具有,菱形也不一定具有,這點(diǎn)也易出現(xiàn)混淆; 。3)不能正確的理解和運(yùn)用判定定理進(jìn)行證明,(如在證明菱形時(shí),把四條邊相等的四邊形是菱形誤解成兩組鄰邊相等的四邊形是菱形); 。4)再利用對(duì)角線長(zhǎng)度求菱形的面積時(shí),忘記乘; 。5)判定一個(gè)四邊形是特殊的平行四邊形的條件不充分。 1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。 2、菱形的性質(zhì):⑴矩形具有平行四邊形的一切性質(zhì); 、屏庑蔚乃臈l邊都相等; ⑶菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。 、攘庑问禽S對(duì)稱(chēng)圖形。 提示:利用菱形的性質(zhì)可證得線段相等、角相等,它的對(duì)角線互相垂直且把菱形分成四個(gè)全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對(duì)角線與邊之間的關(guān)系,即邊長(zhǎng)的平方等于對(duì)角線一半的'平方和。 3、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。 4、因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④因式分解與整式乘法的關(guān)系:m(a+b+c) 5、公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。 6、公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。 7、提取公因式步驟:①確定公因式。②確定商式③公因式與商式寫(xiě)成積的形式。 8、平方根表示法:一個(gè)非負(fù)數(shù)a的平方根記作,讀作正負(fù)根號(hào)a。a叫被開(kāi)方數(shù)。 9、中被開(kāi)方數(shù)的取值范圍:被開(kāi)方數(shù)a≥0 10、平方根性質(zhì):①一個(gè)正數(shù)的平方根有兩個(gè),它們互為相反數(shù)。②0的平方根是它本身0。③負(fù)數(shù)沒(méi)有平方根開(kāi)平方;求一個(gè)數(shù)的平方根的運(yùn)算,叫做開(kāi)平方。 11、平方根與算術(shù)平方根區(qū)別:定義不同、表示方法不同、個(gè)數(shù)不同、取值范圍不同。 12、聯(lián)系:二者之間存在著從屬關(guān)系;存在條件相同;0的算術(shù)平方根與平方根都是0 13、含根號(hào)式子的意義:表示a的平方根,表示a的算術(shù)平方根,表示a的負(fù)的平方根。 14、求正數(shù)a的算術(shù)平方根的方法; 完全平方數(shù)類(lèi)型:①想誰(shuí)的平方是數(shù)a。②所以a的平方根是多少。③用式子表示。 求正數(shù)a的算術(shù)平方根,只需找出平方后等于a的正數(shù)。 【初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章: 初中數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié)03-01 初中數(shù)學(xué)幾何知識(shí)點(diǎn)總結(jié)11-05 初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)11-24 初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)12-05 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-14 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-15 (優(yōu))初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12-04 初中數(shù)學(xué)人教知識(shí)點(diǎn)總結(jié)10-09初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15