當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>說課稿> 最小公倍數(shù)說課稿

最小公倍數(shù)說課稿

時(shí)間:2022-05-23 17:40:11 說課稿 我要投稿

最小公倍數(shù)說課稿

  作為一位優(yōu)秀的人民教師,很有必要精心設(shè)計(jì)一份說課稿,說課稿有助于教學(xué)取得成功、提高教學(xué)質(zhì)量。說課稿要怎么寫呢?下面是小編精心整理的最小公倍數(shù)說課稿,供大家參考借鑒,希望可以幫助到有需要的朋友。

最小公倍數(shù)說課稿

最小公倍數(shù)說課稿1

  《最小公倍數(shù)》是浙教版小學(xué)數(shù)學(xué)第十冊的教學(xué)內(nèi)容,是最小公倍數(shù)的第一課時(shí),是引導(dǎo)學(xué)生在自主參與、發(fā)現(xiàn)、歸納的基礎(chǔ)上認(rèn)識并建立最小公倍數(shù)的概念的過程。新課標(biāo)要求教材選擇具有現(xiàn)實(shí)性和趣味性的素材,由淺入深地促使學(xué)生在探索與交流中建立公倍數(shù)與最小公倍數(shù)的概念。在此之前,學(xué)生已經(jīng)了解了整除、倍數(shù)、約數(shù)以及公約數(shù)和最大公約數(shù)。例1通過寫出幾個(gè)數(shù)的倍數(shù),找出公有的倍數(shù),再從公有的倍數(shù)中找出最小的一個(gè),從而引出公倍數(shù)與最小公倍數(shù)的概念。接著用集合圖形象地表示出6的倍數(shù)、9的倍數(shù)與它們公倍數(shù)之間的關(guān)系,這一內(nèi)容的學(xué)習(xí)也為今后的通分、約分學(xué)習(xí)打下了基礎(chǔ),具有科學(xué)的、嚴(yán)密的邏輯性。

  本節(jié)課的教學(xué)目標(biāo)是:

  1、建立公倍數(shù)與最小公倍數(shù)的概念。使學(xué)生理解公倍數(shù)和最小公倍數(shù)的含義。

  2、學(xué)會用列舉法找兩個(gè)數(shù)的公倍數(shù)和最小公倍數(shù)。

  3、初步培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識與解決簡單實(shí)際問題的能力。

  4、培養(yǎng)學(xué)生主動探究的意識和能力,培養(yǎng)學(xué)生的比較推理與抽象概括能力。

  本堂課的教學(xué)重點(diǎn)在于公倍數(shù)與最小公倍數(shù)的概念建立。教學(xué)難點(diǎn)在于運(yùn)用“公倍數(shù)與最小公倍數(shù)”的知識解決簡單的生活實(shí)際問題。

  這部分的教材是這樣的:例1通過寫出幾個(gè)數(shù)的倍數(shù),找出公有的倍數(shù),再從公有的倍數(shù)中找出最小的一個(gè)。這部分的知識對學(xué)生來說比較容易掌握。接著教材用集合圖形象地表示出6的倍數(shù)、9的倍數(shù)與它們公倍數(shù)之間的關(guān)系,出示公倍數(shù)和最小公倍數(shù)的概念。然后教材安排了試一試,讓學(xué)生在學(xué)會找兩個(gè)數(shù)的公倍數(shù)和最小公倍數(shù)的基礎(chǔ)上,用同樣的方法找三個(gè)數(shù)的公倍數(shù)和最小公倍數(shù)。在此之后,提示學(xué)生想一想:1.有沒有最大公倍數(shù),為什么?2.倍數(shù),公倍數(shù)和最小公倍數(shù)有什么區(qū)別?最后教材安排了練習(xí),1.找6和8的倍數(shù),公倍數(shù)和最小公倍數(shù)。2.找50以內(nèi)的3和7的倍數(shù),公倍數(shù)和最小公倍數(shù)。3.用集合圖表示4和6的公倍數(shù),并找出它們的最小公倍數(shù)。4和5在給定的數(shù)里找公倍數(shù)和最小公倍數(shù)。

  根據(jù)教材的安排意圖和學(xué)生的實(shí)際情況,我對教材進(jìn)行了一定的處理。圍繞本節(jié)課的教學(xué)目標(biāo)和重難點(diǎn),我是這樣設(shè)計(jì)我的.教學(xué)過程的。

 。ㄒ唬⿵(fù)習(xí)舊知,引入新授

  1.師:我們已經(jīng)學(xué)習(xí)過一個(gè)數(shù)的倍數(shù),誰來說一說倍數(shù)的三個(gè)特性?

  (通過復(fù)習(xí)倍數(shù)的特性,為解決公倍數(shù)的特性作鋪墊)

  2.師:我們分別來找一找4和6的倍數(shù)。觀察4和6的倍數(shù),你有什么發(fā)現(xiàn)?

  (觀察4和6的倍數(shù),發(fā)現(xiàn)有些數(shù)既是4的倍數(shù),也是6的倍數(shù),從而引出公倍數(shù)這個(gè)概念)

  3.師:你覺得什么是公倍數(shù)?說一個(gè)4和6的公倍數(shù)。為什么說它是4和6的公倍數(shù)。4和6的公倍數(shù)還有嗎?

 。ㄍㄟ^這一連串的問題的深入,使學(xué)生明白公有的倍數(shù)就是他們的公倍數(shù))

  4.師:象公約數(shù)一樣用集合圖來表示4與6的倍數(shù)和它們公倍數(shù)之間的關(guān)系。

  (通過知識的遷移,讓學(xué)生借助集合圖進(jìn)一步感受倍數(shù)和公倍數(shù)之間的關(guān)系,明確公倍數(shù)是公有的倍數(shù),使學(xué)生理解公倍數(shù)和最小公倍數(shù)的含義)

  5.師:觀察這些公倍數(shù),你發(fā)現(xiàn)了公倍數(shù)有什么特性?

 。ㄍㄟ^觀察,明確兩個(gè)知識點(diǎn),公倍數(shù)的個(gè)數(shù)是無限的,沒有最大的公倍數(shù),有一個(gè)最小的公倍數(shù))

  6.師:根據(jù)自己的理解,說一說什么是公倍數(shù)和最小公倍數(shù)?

 。ㄍㄟ^上面的學(xué)習(xí),學(xué)生對公倍數(shù)和最小公倍數(shù)的概念已經(jīng)有了深入的認(rèn)識,適時(shí)地提問什么是公倍數(shù),用語言把公倍數(shù)的概念表達(dá)出來,建立公倍數(shù)與最小公倍數(shù)的概念。明了公倍數(shù)的概念,解決這堂課的教學(xué)重點(diǎn))

  2、師生共同小結(jié)方法。

  3、找三個(gè)數(shù)的公倍數(shù)、最小公倍數(shù)。

  (小結(jié)尋找兩個(gè)數(shù)的公倍數(shù)和最小公倍數(shù)的方法,為學(xué)生獨(dú)立尋找三個(gè)數(shù)的公倍數(shù)和最小公倍數(shù)提供方法指導(dǎo),學(xué)會用列舉法找?guī)讉(gè)數(shù)的公倍數(shù)和最小公倍數(shù)。)

  4.倍數(shù),公倍數(shù)和最小公倍數(shù)之間的關(guān)系。

 。ㄓ懻撍鼈兊年P(guān)系,使學(xué)生能夠分清倍數(shù)和公倍數(shù)。)

 。ǘ┱n堂練習(xí),深入學(xué)習(xí)新知

  1.找出8和32的最小公倍數(shù)

 。ㄕn堂練習(xí),鞏固上一部分的知識,通過觀察,明確大數(shù)是小數(shù)的倍數(shù),大數(shù)就是它們的最小公倍數(shù),并學(xué)會簡單的應(yīng)用。)

  2.找6和8的最小公倍數(shù)

 。ㄕ莆账械墓稊(shù)都是最小公倍數(shù)的倍數(shù),并會在實(shí)際的操作中運(yùn)用。通過1和2這兩個(gè)練習(xí),培養(yǎng)學(xué)生主動探究的意識和能力,培養(yǎng)學(xué)生的比較推理與抽象概括能力。)

  3.判斷

  如果18是A和B的最小公倍數(shù),那么

  1.18是A和B的公倍數(shù)()

  2.18是A的倍數(shù)()

  3.B是18的約數(shù)()

  兩個(gè)數(shù)的公倍數(shù)的個(gè)數(shù)是無限的,而最小公倍數(shù)只有一個(gè)。()

 。ǔ鍪具@些判斷題的用意在于幫學(xué)生理清公倍數(shù)和最小公倍數(shù))

  (三)總結(jié)課堂,梳理知識

 。ㄋ模﹦(chuàng)設(shè)情境,應(yīng)用知識

  師:用你掌握的知識,來幫小蘭解決她遇到的困難。

  從今年7月1日開始,小蘭的爸爸媽媽就要去新公司上班了。根據(jù)新公司的規(guī)定,小蘭的媽媽每4天休息一天,小蘭的爸爸每5天休息一天,小蘭很希望等爸爸媽媽一起休息時(shí),全家一塊兒去公園玩。

 。1)由故事引出問題一:爸爸和媽媽能有機(jī)會一起休息嗎?

  (2)由故事引出問題二:爸爸媽媽的第一次一起休息是在第幾天?

  (3)由故事引出問題三:爸爸媽媽的第3次一起休息是在幾月幾日?

 。ǖ谝粋(gè)問題是應(yīng)用了公倍數(shù)的知識,第二個(gè)問題應(yīng)用最小公倍數(shù)的知識,第三個(gè)問題是綜合運(yùn)用知識,初步培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識與解決簡單實(shí)際問題的能力。)

最小公倍數(shù)說課稿2

  張**老師的這節(jié)課按照數(shù)學(xué)教學(xué)模式“嘗試發(fā)現(xiàn)——探究形成——聯(lián)想應(yīng)用”進(jìn)行設(shè)計(jì),層次清晰,由淺入深。故事的導(dǎo)入一下子就吸引了學(xué)生的注意力,進(jìn)而在具體的問題中抽象出數(shù)學(xué)問題。教學(xué)過程中,落實(shí)了“最小公倍數(shù)”的概念和“求最小公倍數(shù)”的方法。練習(xí)題的設(shè)計(jì)也體現(xiàn)了基礎(chǔ)知識的運(yùn)用和拓展訓(xùn)練的層次性。

  教師問題的提出很有效。如引導(dǎo)學(xué)生探究公倍數(shù)的個(gè)數(shù)時(shí),教師在學(xué)生給出答案的時(shí)候,并沒有急于總結(jié),而是利用板書追問4的倍數(shù)是無限的,6的倍數(shù)也是無限的,從而學(xué)生們會發(fā)現(xiàn)4、6公倍數(shù)的個(gè)數(shù)也是無限的。再如:找到50以內(nèi)8和12的最小公倍數(shù),教師提出問題:“最小公倍數(shù)與后面的.公倍數(shù)之間有什么關(guān)系?”在逐步落實(shí)基礎(chǔ)知識教學(xué)的同時(shí),提升了學(xué)生的認(rèn)識。

  喜聞樂見的阿凡提故事是學(xué)生們喜歡的經(jīng)典內(nèi)容,張聰聰老師巧妙地運(yùn)用到了教學(xué)的導(dǎo)入中,通過猜想,圈一圈、說一說、議一議等自主活動,讓學(xué)生初步嘗試?yán)斫、在生活情境中接觸最小公倍數(shù)和公倍數(shù)的知識。在探究的過程中,張老師更加注重學(xué)生的自主探究,完全運(yùn)用學(xué)生的方法來求兩個(gè)數(shù)的最小公倍數(shù),張老師在學(xué)生的匯報(bào)中,結(jié)合學(xué)生的講解,不斷點(diǎn)撥,不斷提升,不但介紹了多種解決問題的方法,還注重了學(xué)生的方法的擇優(yōu)思想的培養(yǎng),這樣才能使學(xué)生學(xué)會靈活運(yùn)用所學(xué)的知識。整個(gè)課堂過程流暢、清晰,關(guān)注學(xué)生的發(fā)展。

最小公倍數(shù)說課稿3

  一、教材分析:

  我說課的內(nèi)容是:人教版五年級下冊第88~90頁的《最小公倍數(shù)》一課。最小公倍數(shù)是在學(xué)生掌握了倍數(shù)、因數(shù)和公因數(shù)概念的基礎(chǔ)上進(jìn)行教學(xué)的,主要是為了以后學(xué)習(xí)通分做準(zhǔn)備。在生活實(shí)際中也存在它自身的的意義和作用,這節(jié)課是一節(jié)以概念為本的教學(xué)。教材的編寫意圖是使抽象的數(shù)學(xué)知識與生活實(shí)際相聯(lián)系,建立概念 ;用自己想到的方法嘗試求兩個(gè)數(shù)的最小公倍數(shù),體現(xiàn)算法的多樣化。

  二、學(xué)情分析:

  在不同的學(xué)校、班級進(jìn)行前測,直接讓不同認(rèn)知水平的學(xué)生,用模擬的小長方形墻磚鋪成正方形。在動手操作中,由于受密鋪的影響,橫拼豎擺,不但耗時(shí)過長,而且很難有效的構(gòu)建公倍數(shù)內(nèi)在的結(jié)構(gòu)關(guān)系。因此在設(shè)計(jì)操作環(huán)節(jié)時(shí),我搭建 “腳手架”。通過構(gòu)建公倍數(shù)內(nèi)在的結(jié)構(gòu)關(guān)系和構(gòu)建公倍數(shù)體系兩個(gè)環(huán)節(jié)進(jìn)行有效教學(xué)。成功搭建起教學(xué)內(nèi)容與學(xué)生求知心理之間的橋梁。

  三、教學(xué)目標(biāo):

  (1)建立公倍數(shù)與最小公倍數(shù)的概念,會用集合圖表示。掌握求100以內(nèi)兩個(gè)數(shù)最小公倍數(shù)的方法。

  (2)通過動手操作、獨(dú)立思考、合作探究、合作交流等方式,建立公倍數(shù)和最小公倍數(shù)的概念,培養(yǎng)發(fā)現(xiàn)問題、解決問題的能力。

  (3)學(xué)會用數(shù)學(xué)的眼光觀察生活、思考問題。積極參與到對數(shù)學(xué)問題的探究活動中。真真切切地體驗(yàn)到學(xué)習(xí)數(shù)學(xué)的快樂和價(jià)值。

  教學(xué)重點(diǎn):建立公倍數(shù)與最小公倍數(shù)的概念。

  教學(xué)難點(diǎn):掌握求100以內(nèi)兩個(gè)數(shù)最小公倍數(shù)的方法。

  四、教學(xué)準(zhǔn)備:

  游戲卡片一套,模擬墻壁的平面圖、模擬長方形墻磚多套,作業(yè)紙多張和多媒體課件一套。

  五、教法和學(xué)法:

  加點(diǎn)理念課堂上我采用嘗試教學(xué)法和啟發(fā)教學(xué)法。

  學(xué)生通過動手操作、獨(dú)立思考、合作探究、合作交流等方法進(jìn)行學(xué)習(xí)。

  六、教學(xué)過程:

  這節(jié)課我按照下面五個(gè)環(huán)節(jié)進(jìn)行教學(xué):初步感知,建立表象;動手操作,建立概念;自主探究,歸納方法;實(shí)際應(yīng)用,回歸生活;全課總結(jié),延伸課外。

  (一)、初步感知,建立表象。

  首先我從游戲中引入,我把枯燥的倍數(shù)復(fù)習(xí)設(shè)計(jì)成“搶倍數(shù)的游戲”。讓學(xué)生初步感悟公倍數(shù)。(預(yù)設(shè)5-6分鐘)

  具體操作:

  首先我手里拿著數(shù)字卡片,給學(xué)生說,今天老師給大家?guī)硪粋(gè)風(fēng)靡我們?nèi)嗟挠螒颉獡尡稊?shù)游戲。面對全體同學(xué)講一下規(guī)則:找兩個(gè)同學(xué)上來,一個(gè)負(fù)責(zé)搶3的倍數(shù),一個(gè)負(fù)責(zé)搶2的倍數(shù)。老師把卡片放到黑板上,過了搶的時(shí)間老師會把卡片收起來。最后搶的多的同學(xué)獲勝。

  然后把全班分成兩大組,要求每組快速派一名代表上來。當(dāng)兩名學(xué)生上臺進(jìn)行游戲,其他學(xué)生做裁判共同參與。

  接下來游戲,當(dāng)?shù)?張卡片出來的`時(shí)候,兩個(gè)同學(xué)會同時(shí)搶6這個(gè)數(shù)字。如果沒有出現(xiàn)搶的局面。我會再出示12這個(gè)數(shù)字。學(xué)生很容易發(fā)現(xiàn)并說出:數(shù)字6是決定游戲勝負(fù)的關(guān)鍵,因?yàn)?既是2的倍數(shù),又是3的倍數(shù)。

  緊跟著追問:“為什么都來搶6這張卡片”。先讓這兩個(gè)代表說說,再讓其他同學(xué)說說。

  然后揭示出公倍數(shù)的概念。6既是2的倍數(shù),又是3的倍數(shù),也就是說6是3和2公有的倍數(shù),我們把6叫做3和2的公倍數(shù).(板書公倍數(shù)及概念。)

  引導(dǎo)學(xué)生想想:那你還知道哪個(gè)數(shù)是3和2的公倍數(shù)?

  學(xué)生答出12、18、24等數(shù),并用這些數(shù)完整的表述出公倍數(shù)的概念。

  及時(shí)表揚(yáng)說的對,說的完整的同學(xué)。多讓幾個(gè)同學(xué)說說,并讓同桌說說,強(qiáng)化公倍數(shù)的概念。

  【設(shè)計(jì)理念:布魯納說過:“獲得的知識如果沒有完整的結(jié)構(gòu)把他們連在一起,那是多半會遺忘的知識!睂W(xué)習(xí)一個(gè)概念,需要組織起適當(dāng)?shù)恼J(rèn)知結(jié)構(gòu),并使之成為內(nèi)部知識網(wǎng)絡(luò)的一部分。所以復(fù)習(xí)倍數(shù)的知識是理解公倍數(shù)、最小公倍數(shù)意義的關(guān)鍵。為了創(chuàng)設(shè)學(xué)生樂學(xué)的氛圍,讓學(xué)生從無意識的玩到有意識的關(guān)注6是3和2的公倍數(shù),建立公倍數(shù)的概念。體現(xiàn)了認(rèn)知的由淺入深的過程!

  (二)、動手操作,建立概念。

  這一大環(huán)節(jié)是深刻理解公倍數(shù),建立最小公倍數(shù)的重點(diǎn)內(nèi)容,為此我分兩個(gè)層次進(jìn)行教學(xué)。

  (1) 固定的正方形邊長,選擇長方形墻磚。(預(yù)設(shè)6-7分)

  首先在前面通過游戲感悟公倍數(shù)的基礎(chǔ)上,過渡到生活中。讓學(xué)生體驗(yàn)公倍數(shù)能在生活中幫我們做什么。

  (出示生活情境,課件顯示。)

  當(dāng)學(xué)生明白題意后,要求學(xué)生利用模擬的長方形墻磚和墻壁正方形平面圖,

  分小組活動進(jìn)行動手操作。學(xué)生通過擺一擺,畫一畫,得到不同的方案。

  然后讓學(xué)生匯報(bào)想法,誰來說說:你們小組選擇的是長幾分米,寬幾分米的墻磚,怎樣鋪的?

  在匯報(bào)方案時(shí),學(xué)生都會選擇長3分米,寬2分米的墻磚。讓學(xué)生說說自己的想法。適時(shí)進(jìn)行追問:“正方形墻面墻壁的邊長所用墻磚的長和寬有什么關(guān)系?”

  讓學(xué)生自主發(fā)現(xiàn):按照要求進(jìn)行,所鋪成的正方形邊長必須是小長方形長和寬的公倍數(shù)這一結(jié)論。

  這個(gè)時(shí)候多讓幾個(gè)學(xué)生說說這一結(jié)論。

  其次我再追問:“大家為什么都不選擇長5分米,寬3分米的墻磚?”

  學(xué)生很容易答出,因?yàn)?2不是5和3的公倍數(shù)。

  最后我作課堂小結(jié):“看來所鋪正方形墻壁的邊長必須是長方形墻磚長3分米,寬2分米的公倍數(shù)!

  【設(shè)計(jì)意圖:這一環(huán)節(jié)搭建的“腳手架”過程,讓學(xué)生直觀的感受到公倍數(shù)的意義,這樣由實(shí)際生活抽象出概念,既有利于培養(yǎng)學(xué)生的數(shù)學(xué)抽象能力,也有利揭示數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系,幫助學(xué)生理解公倍數(shù)、最小公倍數(shù)概念的現(xiàn)實(shí)意義!

  (2) 用固定的長方形墻磚,鋪多個(gè)的正方形。(預(yù)設(shè)6-7分)

  從上個(gè)環(huán)節(jié)直接過渡到問題中!巴瑢W(xué)們,真了不起,通過動手操作,獲得很有價(jià)值的發(fā)現(xiàn)。(課件出示情境)用這種長3分米寬2分米的長方形墻磚,整塊整塊的鋪,還可以鋪成邊長是多少分米的正方形?”

  然后先讓學(xué)生獨(dú)立思考。當(dāng)有的同學(xué)有想法后,請同學(xué)們拿出表格,填寫完整。

  讓學(xué)生填出表格,空間想象能力好的學(xué)生能直接想到這些正方形的邊長都是2和3的公倍數(shù),想象不出來的,允許動手?jǐn)[一擺,畫一畫。

  其次把兩個(gè)同學(xué)的表格用實(shí)物投影儀打出。讓學(xué)生交流這樣填的想法。

  學(xué)生有可能答出:發(fā)現(xiàn)這些正方形的邊長必須是所鋪長方形墻磚長和寬的公倍數(shù)。及時(shí)表揚(yáng):“你能用今天所學(xué)的公倍數(shù)知識解決問題,這了不起”

  還可能發(fā)現(xiàn):其他公倍數(shù)都是6的倍數(shù);最小的公倍數(shù);公倍數(shù)是有很多個(gè)…

  如果沒有學(xué)生說出來,及時(shí)追問:“察這些公倍數(shù),最小的是幾?”學(xué)生很容易

  說出6是公倍數(shù)中最小的。 揭示出:6是最小的公倍數(shù)。叫做3和2的最小公倍數(shù)。(板書:最小)

  及時(shí)強(qiáng)化最小公倍數(shù)的概念。讓多個(gè)學(xué)生說說6是3和2的什么數(shù)?同桌也互相說說。

  再次追問:3和2有沒有最大的公倍數(shù)?這些公倍數(shù)能寫完嗎?讓學(xué)生說出公倍數(shù)是無限的。

  【設(shè)計(jì)意圖:怎樣能讓學(xué)生深刻理解最小公倍數(shù)的意義,是本節(jié)課的一個(gè)重點(diǎn)。學(xué)生構(gòu)建數(shù)學(xué)概念的過程,決不能是簡單“告知”的過程,以概念為本的學(xué)習(xí)需要經(jīng)歷一些經(jīng)驗(yàn)性的活動過程。通過學(xué)生親自操作和體驗(yàn),在一種富有生命活力的再創(chuàng)造過程中,主動建立概念。完成數(shù)形結(jié)合思想的滲透。】

  (3) 用集合圈表示倍數(shù)、公倍數(shù)、最小公倍數(shù)。(預(yù)設(shè)4-5分)

  首先讓學(xué)生用數(shù)學(xué)上的集合圈的形式表示3的倍數(shù)和2的倍數(shù)。并把3和2的公倍數(shù)畫出來。(課件出示兩個(gè)空白的集合圈)。學(xué)生寫完后,匯報(bào)結(jié)果。同時(shí)課件顯示出答案。

  然后利用課件使集合圈重疊一部分。給學(xué)生問題:如果這兩個(gè)集合圈這樣放在一起,該怎樣填呢?(課件出示空白的交叉的集合圈)

  讓學(xué)生思考、交流。明白各部分填什么,怎樣填。讓學(xué)生在作業(yè)紙上

  完成后匯報(bào)結(jié)果。(課件出示答案)并讓學(xué)生說說3和2的公倍數(shù)和最小公倍數(shù),再次理解公倍數(shù)和最小公倍數(shù)。

  【設(shè)計(jì)意圖:根據(jù)弗賴登塔爾“數(shù)學(xué)是一項(xiàng)人類活動”的觀點(diǎn),從學(xué)生熟悉的生活開始,從生活中的問題到數(shù)學(xué)問題,從具體到抽象概念,從特殊關(guān)系到一般規(guī)則,逐步通過學(xué)生自己的發(fā)現(xiàn)去學(xué)習(xí)數(shù)學(xué)。進(jìn)行集合思想和極限思想的滲透。感受數(shù)學(xué)化的簡潔美!

  (三)、自主探究,歸納方法。(預(yù)設(shè)7-8分鐘)

  這一環(huán)節(jié)是讓學(xué)生自主探究出找兩個(gè)數(shù)的最小公倍數(shù)的方法。

  直接出示問題:那給你兩個(gè)數(shù)6和8,怎樣求這兩個(gè)數(shù)的最小公倍數(shù)。(板書:怎樣求6和8的最小公倍數(shù)。)

  這時(shí)候給學(xué)生獨(dú)立思考的時(shí)間。當(dāng)學(xué)生有了想法后,讓學(xué)生拿出作業(yè)紙,把過程寫出來。

  然后讓學(xué)生小組可以互相交流一下。

  接下來讓學(xué)生進(jìn)行匯報(bào)。(找?guī)讉(gè)不同的方法,用實(shí)物投影儀展示出來。)

  在展示過程中,讓學(xué)生交流、爭辯,在交流各種方法的同時(shí),可能發(fā)現(xiàn):兩個(gè)數(shù)相乘方法和倍數(shù)關(guān)系時(shí)找最大數(shù)的局限性。認(rèn)識到列舉法的普遍性。

  在學(xué)生交流各自的方法后。我會說:老師非常欣賞大家的方法。我這也

  有個(gè)方法。我們可以把這些數(shù)在有方向的直線上表示出來。上面表示6的倍數(shù),下面表示8的倍數(shù)。所圈重疊的線段是6和8的公倍數(shù)。

  (教材中出現(xiàn)了數(shù)軸上表示倍數(shù)的方法,考慮到學(xué)生想不到這種方法,我參與活動中,最后展示這種圖形結(jié)合的方法。)

  【設(shè)計(jì)理念:探究學(xué)習(xí)是新一輪基礎(chǔ)教育課程改革所倡導(dǎo)的學(xué)習(xí)方式。在教學(xué)中,創(chuàng)設(shè)一種類似學(xué)術(shù)研究的情境,通過學(xué)生自主發(fā)現(xiàn)問題,獲得能力發(fā)展和深層次的情感體驗(yàn)。滲透數(shù)學(xué)歸納思想,體現(xiàn)方法的多樣化,個(gè)性化!

  (四)、實(shí)際應(yīng)用,回歸生活。(預(yù)設(shè)3-4分鐘)

  做一個(gè)課堂小結(jié),轉(zhuǎn)到學(xué)生解決問題中!按蠹彝ㄟ^自己的努力,認(rèn)識了公倍數(shù)和最小公倍 。掌握了求兩個(gè)數(shù)的最小公倍數(shù)的方法。相信大家一定有很深的收獲。讓我們帶著收獲進(jìn)行下面的練習(xí)。相信你一定沒有問題。”

  課件出示一道生活情境題)

  2、學(xué)生交流匯報(bào)得出:全班可能有48人或24人,最少為24人。

  【教學(xué)理念:數(shù)學(xué)教育的出發(fā)點(diǎn)和歸宿都應(yīng)當(dāng)是學(xué)生熟悉的現(xiàn)實(shí)生活。學(xué)生得到抽象化的數(shù)學(xué)知識之后,應(yīng)及時(shí)把它們應(yīng)用到新的現(xiàn)實(shí)問題中去!

  (五)、全課總結(jié),延伸課外。(預(yù)設(shè)3分鐘)

  告訴學(xué)生在天文學(xué)中也有最小公倍數(shù)的知識,讓學(xué)生邊聽邊看屏幕:

  (隨著音樂的響起,播放圖片。)。

  我朗誦:中國人對日食現(xiàn)象的記載,已有將近四千年的歷史。在漢代就發(fā)現(xiàn)日食出現(xiàn)具有一定的周期。月球從月初到下一次月初是一個(gè)朔望月,平均約長30天。太陽從月球軌道的升交點(diǎn)再回到升交點(diǎn)是一交點(diǎn)年,平均約長347天。朔望月與交點(diǎn)年的最小公倍數(shù)就和日食的周期有關(guān)。

  課堂結(jié)語:“奇妙吧!如果大家還想繼續(xù)了解,回去可以上網(wǎng)查找一下相關(guān)的資料。讓我們帶著收獲,下課!”

  【教學(xué)理念:數(shù)學(xué)與生活有著密切的聯(lián)系。利用收集到的生活資料,開發(fā)出更多的教學(xué)資源,讓學(xué)生整體感知數(shù)學(xué)在生活中的應(yīng)用,真正體驗(yàn)“數(shù)學(xué)來源于生活,又運(yùn)用于生活”。 學(xué)生是帶著問號走進(jìn)課堂,又將帶著問號走出課堂?這樣的數(shù)學(xué)教學(xué)帶給學(xué)生的是智慧的行囊,生命的啟迪!

最小公倍數(shù)說課稿4

  一、 說教材

  1、教材分析

  最小公倍數(shù)這部分內(nèi)容是在學(xué)生掌握了倍數(shù)概念的基礎(chǔ)上進(jìn)行教學(xué)的,主要是為學(xué)習(xí)通分做準(zhǔn)備。按照《標(biāo)準(zhǔn)》的要求,教材中只出現(xiàn)求兩個(gè)數(shù)的最小公倍數(shù)。

  2、教學(xué)目標(biāo)

  結(jié)合教材所處的地位和學(xué)生實(shí)際,我制定了以下教學(xué)目標(biāo):

  知識與能力:

  讓學(xué)生理解公倍數(shù)和最小公倍數(shù)的意義,用列舉法和短除法會正確找出兩個(gè)數(shù)的公倍數(shù)和最小公倍數(shù)。

  過程與方法:

  培養(yǎng)觀察、操作、表達(dá)、思維能力與探索意識,發(fā)揮學(xué)生的想像力、創(chuàng)造力,能根據(jù)兩個(gè)數(shù)的不同關(guān)系靈活地求兩個(gè)數(shù)的最小公倍數(shù)。滲透集合思想,體驗(yàn)解決問題策略的多樣化。

  情感態(tài)度價(jià)值觀:

  讓孩子在生活經(jīng)驗(yàn)中體會成功的快樂,體會數(shù)學(xué)與人類的密切聯(lián)系,感受數(shù)學(xué)與日常生活的關(guān)系。體驗(yàn)生活中處處有數(shù)學(xué),處處用數(shù)學(xué)的理念。

  3、教學(xué)重、難點(diǎn):

  新課標(biāo)鼓勵學(xué)生通過思考、討論交流,經(jīng)歷探索的過程。據(jù)以上的目標(biāo),我確定了本課的教學(xué)重點(diǎn)是讓學(xué)生理解公倍數(shù)和最小公倍數(shù)的意義,教學(xué)難點(diǎn)是選用恰當(dāng)?shù)姆椒ㄇ髢蓚(gè)數(shù)的最小公倍數(shù).

  二、說學(xué)法

  1、學(xué)情分析

  小學(xué)生的動手欲較強(qiáng),學(xué)生認(rèn)識數(shù)的概念時(shí)更愿意自主參與,自己發(fā)現(xiàn)。再者,學(xué)生個(gè)人的解題能力有限,而小組合作則能更好地激發(fā)他們的數(shù)學(xué)思維,通過交流獲得數(shù)學(xué)信息。

  2、學(xué)法指導(dǎo)

  通過動手,讓學(xué)生用長方形紙片拼一拼、擺一擺,通過動口,在概念揭示前,學(xué)生動口說一說。給學(xué)生機(jī)會說動手之后的感悟,還可以在個(gè)人表達(dá)的同時(shí)傾聽他人的說法。

  三、說教法

  為了實(shí)現(xiàn)教學(xué)目標(biāo),達(dá)到《標(biāo)準(zhǔn)》中的要求,也為了更好的解決教學(xué)重、難點(diǎn),我將本節(jié)課設(shè)計(jì)成寓教于樂的形式,將教學(xué)內(nèi)容融入一環(huán)環(huán)的學(xué)生自主探索發(fā)現(xiàn)的過程中。

  1、利用溫故知新引入新課,通過動手?jǐn)[一擺紙片來探索新知。

  2、順其自然地滲透概念,初步理解公倍數(shù)和最小公倍數(shù)。

  學(xué)生探索后,用自己的語言梳理新知,學(xué)生便能在環(huán)環(huán)相扣的教學(xué)進(jìn)程中順理成章的理解概念,溝通二者之間的聯(lián)系。

  3、創(chuàng)設(shè)問題情境,嘗試應(yīng)用,方法提煉。

  結(jié)合教學(xué)內(nèi)容特征,創(chuàng)設(shè)富有生活情趣的問題情境,利用學(xué)生的生活經(jīng)驗(yàn)與知識背景,鼓勵學(xué)生解決簡單的實(shí)際問題,激活學(xué)生的數(shù)學(xué)思維,提高解題技能。

  4、鞏固練習(xí)、不斷刺激,不斷鞏固提升。

  四、教具準(zhǔn)備:多媒體課件。

  學(xué)具準(zhǔn)備:長3分米、寬2分米的長方形紙片若干個(gè)

  五、說教學(xué)設(shè)計(jì):

  我設(shè)計(jì)的總體理念:讓學(xué)生在自主參與的基礎(chǔ)上感悟、理解、應(yīng)用、鞏固。將直觀演示與抽象思維相結(jié)合。我的'教學(xué)流程如下:

  (一)溫故知新,引出新知

  教材創(chuàng)設(shè)了學(xué)生在裁紙中遇到的問題創(chuàng)設(shè)情境,是想通過求正方形的邊長及其最小值,抽象出公倍數(shù)、最小公倍數(shù)的概念。學(xué)生嘗試拼擺而且沒有目的的去擺,且花費(fèi)的時(shí)間也不少。怎樣才能在一節(jié)課內(nèi)完成概念及方法的教學(xué)呢?對,直奔主題。在復(fù)習(xí)完找倍數(shù)以后,我直接請學(xué)生觀察這兩個(gè)數(shù)的倍數(shù)中有什么相同點(diǎn),從而引出公倍數(shù)。通過找其中最小的公倍數(shù),順利地引出最小公倍數(shù)。概念的教學(xué)由學(xué)生觀察得出,學(xué)生很快就理解了。教師引導(dǎo)學(xué)生總結(jié)公倍數(shù)和最小公倍數(shù)的概念。

  (二)動手操作、合作探究

  強(qiáng)調(diào):一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無限的,所以兩個(gè)數(shù)的公倍數(shù)的個(gè)數(shù)也是無限的,所以用省略號來表示。

  讓學(xué)生自己說說什么是公倍數(shù)和最小公倍數(shù)。

  出示12和18

  用自己的方法來找出最小公倍數(shù)。

  學(xué)生會用到列舉法和幾何圖形的方法。對數(shù)比較小的可以用這些方法,那么1200和3400的找出公倍數(shù)和最小公倍數(shù)可以嗎?

  教師及時(shí)引導(dǎo)學(xué)生有沒有比較簡便的方法呢?由于前面學(xué)習(xí)最大公因數(shù)的時(shí)候?qū)W過短除法,有的學(xué)生會想到,及時(shí)表揚(yáng)學(xué)生。

  引出了短除法.讓學(xué)生自學(xué)課本來解決這個(gè)問題.教師在適當(dāng)?shù)募右渣c(diǎn)撥。

  找生匯報(bào)解答的方法。

  師生共同總結(jié)找最小公倍數(shù)的方法。(把所有的除數(shù)和商連乘起來,就是這兩個(gè)數(shù)的最小公倍數(shù))

  (三)運(yùn)用知識 解決問題

  1、你發(fā)現(xiàn)了嗎?

  出示一組數(shù).如:5和74和96和128和24

  讓學(xué)生求出最小公倍數(shù)

  仔細(xì)觀察,每組數(shù)的最小公倍數(shù)與這組數(shù)之間的關(guān)系?你發(fā)現(xiàn)了什么?

  出示一點(diǎn)小竅門:

  當(dāng)兩數(shù)只有公因數(shù)1時(shí),他們的最大公因數(shù)也是1.

  當(dāng)兩數(shù)成倍數(shù)關(guān)系時(shí),較小的數(shù)就是他們的最大公因數(shù).

  這樣的練習(xí)設(shè)計(jì),目的是讓學(xué)生發(fā)現(xiàn)求最小公倍數(shù)中的特殊情況。

  2.火眼金睛:鞏固今天這節(jié)課的概念性的知識點(diǎn).

  (四)遷移運(yùn)用,拓展探究

  寫出下列各分?jǐn)?shù)分子和分母的最小公倍數(shù)。

  7/21 8/28 16/40 6/15

  目的是為下一節(jié)課《通分》做好了知識的鋪墊。

  (五)學(xué)以致用:

  有一袋糖果,無論8人來分,還是9人來分,都正好分完,這袋糖果至少有多少粒?

  (六)全課總結(jié):

  通過今天的學(xué)習(xí),你有什么收獲?同桌互說,指名匯報(bào)。這樣的總結(jié),從知識的層面上做了一次回顧。并及時(shí)的總結(jié)了解學(xué)情,真正做到堂堂清。

  六、說板書設(shè)計(jì)

  我本節(jié)課的板書設(shè)計(jì)力圖全面而簡明的將本課的內(nèi)容傳遞給學(xué)生,便于學(xué)生理解和記憶。

  各位評委老師,我僅從教材、教法、學(xué)法、及教學(xué)過程、板書設(shè)計(jì)等幾個(gè)方面對本課進(jìn)行說明。這只是我預(yù)設(shè)的一種方案,但是課堂千變?nèi)f化的生成效果,最終還要和學(xué)生、課堂相結(jié)合。

最小公倍數(shù)說課稿5

  一、教學(xué)內(nèi)容

  《義務(wù)教育教科書數(shù)學(xué)》(人教版)五年級下冊第70頁例3。

  二、教學(xué)目標(biāo)

  1、學(xué)會用公倍數(shù)和最小公倍數(shù)的知識解決生活中的實(shí)際問題,體驗(yàn)數(shù)學(xué)與生活的密切聯(lián)系。

  2、能夠?qū)⑸钪械膶?shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,提高解決問題的能力。

  三、教學(xué)重難點(diǎn)

  學(xué)會用公倍數(shù)和最小公倍數(shù)的知識解決生活中的實(shí)際問題。

  四、活動設(shè)計(jì)

  接下來,讓我們一起走進(jìn)今天的數(shù)學(xué)課堂。在學(xué)習(xí)新知識前,我們先來復(fù)習(xí)上節(jié)課的內(nèi)容。

  1、回顧求兩個(gè)數(shù)的公倍數(shù)和最小公倍數(shù)的方法。

  請你找出下列每組數(shù)的最小公倍數(shù)。6和92和148和9

  第一組:找6和9的最小公倍數(shù),可以先寫出9的倍數(shù),再從中圈出6的倍數(shù),其中從小到大第一個(gè)圈出的就是它們的最小公倍數(shù)。

  第二組:因?yàn)?4是2的倍數(shù),所以14是它們的最小公倍數(shù)。

  第三組:因?yàn)?和9只有公因數(shù)1,所以兩個(gè)數(shù)的積72是它們的最小公倍數(shù)。

  2、教學(xué)例3。

  這節(jié)課,我們一起利用求公倍數(shù)和最小公倍數(shù)的方法解決生活中的實(shí)際問題。王叔叔在裝修房子時(shí)遇到了這樣的問題,請你認(rèn)真讀一讀,題目中有哪些重要的數(shù)學(xué)信息呢?(出示例3)

  閱讀與理解:王叔叔裝修墻面用的墻磚是一個(gè)長3分米,寬2分米的長方形,要用許多塊這樣的長方形墻磚鋪成一個(gè)正方形,而且墻磚必須用整塊的,王叔叔想讓我們幫著找一找,拼成的正方形的邊長是多少分米?其中最小是多少分米呢?可以怎么拼呢,一起試一試。

  分析與解答:橫著鋪兩塊,我們先鋪一行,鋪成的圖形顯然不是正方形,再鋪一行,也不是正方形,那么鋪三行呢?鋪成的圖形是正方形嗎?我們一起算一算,橫著鋪兩塊,它的長就是2個(gè)3,6分米,鋪了這樣的三行,豎著看就有3個(gè)2,它的長度也是6分米,不錯(cuò),我們鋪成了一個(gè)邊長是6分米的正方形。

  那么橫著鋪3塊可以嗎?再一起試一試,橫著鋪3塊,它的長是9分米,鋪兩行寬是4分米,鋪三行是6分米,鋪四行是8分米,如果鋪五行就是10分米,因?yàn)閴Υu必須是整塊的,所以不能鋪成9分米的長度,也就不能鋪成一個(gè)正方形。

  我們還可以這么拼,橫著鋪4塊,鋪一行、鋪兩行,顯然都不是正方形,大家想一想,鋪幾行才能鋪成一個(gè)正方形呢?有同學(xué)說可以鋪6行,大家一起算一算,鋪6行是不是正方形?橫著鋪4塊,長就是4個(gè)3,12分米,鋪這樣的6行,就有6個(gè)2,也是12分米,真好,我們又鋪成了一個(gè)邊長是12分米的正方形。

  通過鋪一鋪,算一算,我們鋪成了一個(gè)邊長是6分米的正方形,我們也鋪成了一個(gè)邊長是12分米的正方形,相信同學(xué)們還能鋪成其他很多不同的正方形,那么為什么橫著鋪2塊和4塊,都能鋪成正方形,而橫著鋪3塊卻不能鋪成正方形呢?請你仔細(xì)觀察,試著找一找,鋪成的正方形的邊長與長方形墻磚之間有什么聯(lián)系呢?

  橫著鋪兩塊的時(shí)候,長是6分米,有2個(gè)3,我們也可以說6是3的倍數(shù),像這樣鋪3行,就是6分米,有3個(gè)2,6也是2的倍數(shù),鋪出的正方形邊長6分米既是3的倍數(shù),又是2的倍數(shù),也就是它們的公倍數(shù)。同樣,12分米既是2的倍數(shù),也是3的倍數(shù),也就是2和3的公倍數(shù),所以它們能鋪成正方形。那么,是不是邊長是2和3的公倍數(shù)就能鋪成正方形,如果不是它們的公倍數(shù)就不能鋪成正方形了呢?

  我們一起看看,橫著鋪3塊墻磚時(shí)的情況。橫著鋪3塊,長9分米,是3的倍數(shù),但不是2的倍數(shù),所以另一條邊不可能鋪出9分米。因?yàn)?不是2和3的公倍數(shù),所以不能鋪成正方形。

  看來只要鋪成的正方形的邊長是2和3的公倍數(shù),也就是鋪成的正方形的邊長是長方形墻磚長與寬的公倍數(shù)的時(shí)候,就一定能鋪成正方形。

  2和3的公倍數(shù)有6、12、18……所以鋪成的正方形的邊長可以是6分米,12分米,18分米,還有很多不同邊長的正方形,其中最小公倍數(shù)6分米,就是鋪成的正方形的最小邊長。

  回顧與反思:回憶整個(gè)解決問題的過程,我們發(fā)現(xiàn)解決這類問題的關(guān)鍵是把用整塊的長方形墻磚鋪成正方形的問題轉(zhuǎn)化成求公倍數(shù)和最小公倍數(shù)的數(shù)學(xué)問題,同學(xué)們,你們掌握了嗎?

  3、實(shí)際應(yīng)用(練習(xí)十七5—12題、生活中的數(shù)學(xué))

  【P71—6】請你認(rèn)真讀一讀,題目中有哪些重要的數(shù)學(xué)信息呢?李阿姨要給花澆水,月季每4天澆一次,君子蘭每6天澆一次。李阿姨5月1日給月季和君子蘭同時(shí)澆了水,她想讓大家?guī)兔λ阋凰,下一次再給這兩種花同時(shí)澆水應(yīng)是5月幾日?同學(xué)們一定想到了,4和6的公倍數(shù)是同時(shí)澆花的間隔天數(shù),因?yàn)槭乔蟆跋乱淮瓮瑫r(shí)澆花”,所以要取最小的間隔天數(shù),也就是4和6的'最小公倍數(shù)。4和6的最小公倍數(shù)是12,所以下一次同時(shí)給兩種花澆水應(yīng)是5月13日。

  【P71—7】請大家先讀題,找出重要的數(shù)學(xué)信息。好,我們一起來看,這些學(xué)生可以分成6人一組,也可以分成9人一組,都正好分完。說明這些學(xué)生的總?cè)藬?shù)是6和9的公倍數(shù)。又已知總?cè)藬?shù)在40以內(nèi),所以是求40以內(nèi)6和9的公倍數(shù)。40以內(nèi)6和9的公倍數(shù)有18、36,所以這些學(xué)生的總?cè)藬?shù)可能是18人,可能是36人。

  【P72—10】接著請大家把教材翻到72頁看第10題,自己先嘗試獨(dú)立完成,看看大家能不能將這個(gè)生活中的實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題。相信大家一定做出來了。每隔幾分鐘發(fā)車即每過幾分鐘發(fā)車,3路車每過6分鐘發(fā)一次車,5路車每過8分鐘發(fā)一次車,在它們同時(shí)發(fā)車后,第二次同時(shí)發(fā)車過的分鐘數(shù)就是6和8的最小公倍數(shù)。因?yàn)?和8的最小公倍數(shù)是24,所以兩路公共汽車過24分鐘第二次同時(shí)發(fā)車。

  【P72—11】請大家認(rèn)真讀題,解答出第1個(gè)數(shù)學(xué)問題后,再嘗試提出其他數(shù)學(xué)問題并解答。我們一起來看,爸爸跑一圈用3分鐘,媽媽跑一圈用4分鐘,女孩跑一圈用6分鐘。如果爸爸媽媽同時(shí)起跑,至少多少分鐘后兩人在起點(diǎn)再次相遇,這里的“至少”就是取最小的間隔時(shí)間,也就是求3和4的最小公倍數(shù),3和4的最小公倍數(shù)是12,所以爸爸媽媽至少12分鐘后在起點(diǎn)再次相遇。此時(shí),爸爸跑了12÷3=4圈,媽媽跑了12÷4=3圈。根據(jù)題意,我們還可以提出爸爸和女孩,媽媽和女孩以及三人同時(shí)起跑,至少多少分鐘再在起點(diǎn)相遇,此時(shí)分別跑了多少圈。請你檢查一下,自己做對了嗎?

  【P72—12】第12題是一道帶*號的選做題,讓我們一起挑戰(zhàn)一下吧!36可能是哪兩個(gè)數(shù)的最小公倍數(shù)?請你先試著找一找,看看你能找出幾組。

  我們知道當(dāng)兩數(shù)成倍數(shù)關(guān)系時(shí),較大的數(shù)就是它們的最小公倍數(shù)。所以任意一個(gè)36的因數(shù),除36以外,與36組合,兩個(gè)數(shù)的最小公倍數(shù)都是36。我們先寫出36的所有因數(shù),即1、2、3、4、6、9、12、18、36。去掉36,其他因數(shù)與36組合,可以得到8組。此外,兩個(gè)數(shù)不成倍數(shù)關(guān)系的還有4組,分別是4和9,4和18,9和12,12和18。

  【生活中的數(shù)學(xué)】我們一起看“生活中的數(shù)學(xué)”,用洗衣液手洗衣物時(shí),一盆5升30攝氏度左右的溫水,可以加入《最小公倍數(shù)例3》教學(xué)設(shè)計(jì)瓶蓋20毫升的洗衣液調(diào)勻。相機(jī)可以用《最小公倍數(shù)例3》教學(xué)設(shè)計(jì)秒的快門速度曝光,美國科學(xué)家研制出了粗細(xì)只有頭發(fā)絲的《最小公倍數(shù)例3》教學(xué)設(shè)計(jì)的太陽能電池。數(shù)學(xué)家華羅庚曾經(jīng)說過:宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,日用之繁,無處不用數(shù)學(xué)。這是對數(shù)學(xué)與生活的精彩描述,課后,同學(xué)們可以繼續(xù)尋找生活中與分?jǐn)?shù)有關(guān)的例子,還可以尋找生活中公倍數(shù)、最小公倍數(shù)的實(shí)際應(yīng)用。

  4、課后作業(yè):71頁第5題、第8題,72頁第9題。

  這節(jié)課就上到這里,同學(xué)們,再見!

最小公倍數(shù)說課稿6

  獲獎最小公倍數(shù)說課稿

  公倍數(shù)和最小公倍數(shù)這部分內(nèi)容,是在學(xué)生理解了倍數(shù)的基礎(chǔ)上教學(xué)的。

  本節(jié)課需要完成的教學(xué)目標(biāo)有:

  1、使學(xué)生在具體的操作活動中,認(rèn)識公倍數(shù)和最小公倍數(shù),會在集合圖中分別表示兩個(gè)數(shù)的倍數(shù)和它們的公倍數(shù)。

  2、使學(xué)生學(xué)會用列舉的方法找到10以內(nèi)兩個(gè)數(shù)的公倍數(shù)和最小公倍數(shù),并能在解決問題的過程中主動探索簡捷的方法,進(jìn)行有條理的思考。

  3、使學(xué)生在自主探索與合作交流的過程中,進(jìn)一步發(fā)展與同伴進(jìn)行合作交流的意識和能力,獲得成功的體驗(yàn)。

  本課的教學(xué)重點(diǎn)是公倍數(shù)與最小公倍數(shù)的概念建立。教學(xué)難點(diǎn)是運(yùn)用“公倍數(shù)與最小公倍數(shù)”解決生活實(shí)際問題。

  在教學(xué)公倍數(shù)的概念時(shí),讓學(xué)生經(jīng)歷操作、思考的過程,認(rèn)識公倍數(shù)。如例1安排了用長3厘米、寬2厘米的長方形紙片分別鋪邊長是6厘米和8厘米的正方形的操作活動,通過學(xué)生的操作,引導(dǎo)學(xué)生觀察正方形的邊長與長方形的長、寬之間的關(guān)系,讓學(xué)生看看正方形每條邊各鋪了幾次?怎樣用算式表示?,來說明為什么長3厘米,寬2厘米的長方形能鋪滿邊長6厘米的正方形,不能鋪滿邊長8厘米的正方形,接下來讓學(xué)生思考這樣的長方形紙片還能鋪滿邊長是多少厘米的正方形?學(xué)生思考后,回答12厘米、18厘米、24厘米,從而引出公倍數(shù)的概念,再強(qiáng)調(diào)因?yàn)橐粋(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無限的,所以兩個(gè)數(shù)的公倍數(shù)的個(gè)數(shù)也是無限的,用省略號表示,最后讓學(xué)生說明8是2和3的公倍數(shù)嗎?為什么?讓學(xué)生在自主參與、發(fā)現(xiàn)、歸納的基礎(chǔ)上認(rèn)識并建立公倍數(shù)的概念的過程。

  學(xué)生在已經(jīng)掌握公倍數(shù)的概念的基礎(chǔ)上,讓學(xué)生學(xué)習(xí)怎樣找兩個(gè)數(shù)的公倍數(shù),學(xué)以致用。教學(xué)例2時(shí),讓學(xué)生獨(dú)立思考,自主探索解決問題的方法,然后小組交流。通過具體的運(yùn)用,鞏固公倍數(shù)的概念。讓學(xué)生說說怎樣找6和9的公倍數(shù),學(xué)生說了三種方法,一是先找9的倍數(shù),從9的倍數(shù)中找6的倍數(shù);二是分別找出6和9的倍數(shù),再從中找出公有的倍數(shù);三是先找6的倍數(shù),再從中找出9的倍數(shù),通過比較三種方法,讓學(xué)生感受哪種方法比較簡捷。在此基礎(chǔ)上,揭示最小公倍數(shù)的含義,并介紹用集合圈的形式來表示6和9的倍數(shù)和公倍數(shù),通過學(xué)生自主學(xué)習(xí),弄清怎樣用集合圖來表示兩個(gè)數(shù)的公倍數(shù)。幫助學(xué)生更加直觀地理解概念,感受數(shù)學(xué)方法的嚴(yán)謹(jǐn)性。

  一、說教材

 。ㄒ唬┙滩姆治觯

  1、教學(xué)內(nèi)容:

  最小公倍數(shù)第一課時(shí)。是引導(dǎo)學(xué)生在自主參與、發(fā)現(xiàn)、歸納的基礎(chǔ)上認(rèn)識并建立并理解最小公倍數(shù)的概念的過程。

  2、結(jié)合學(xué)情與新課程標(biāo)準(zhǔn)對本環(huán)節(jié)的.要求,分析教材編寫意圖:

  五年級學(xué)生的生活經(jīng)驗(yàn)和知識背景更為豐富,新課程標(biāo)準(zhǔn)要求教材選擇具有現(xiàn)實(shí)性和趣味性的素材,采取螺旋上升的方式,由淺入深地促使學(xué)生在探索與交流中建立公倍數(shù)與最小公倍數(shù)的概念。

  在此之前,學(xué)生已經(jīng)了解了整除、倍數(shù)、因數(shù)以及公因數(shù)和最大公因數(shù)。通過寫出幾個(gè)數(shù)的倍數(shù),找出公有的倍數(shù),再從公有的倍數(shù)中找出最小的一個(gè),從而引出公倍數(shù)與最小公倍數(shù)的概念。接著用集合圖形象地表示出4和6的倍數(shù),以及這兩個(gè)數(shù)公有的倍數(shù),這一內(nèi)容的學(xué)習(xí)也為今后的通分、約分學(xué)習(xí)打下的基礎(chǔ),具有科學(xué)的、嚴(yán)密的邏輯性。

  (二)對教材的處理意見

  1、教材中鋪磚對于理解公倍數(shù)與最小公倍數(shù)的意義,比較抽象,不利于建立對概念的理解。所以把“原來鋪墻磚”的題目改為“找兩人的共同休息日”來建立概念。原因有三:首先,學(xué)生的學(xué)習(xí)內(nèi)容應(yīng)該是現(xiàn)實(shí)的、有意義的、富有挑戰(zhàn)性的;其次,有效的數(shù)學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識經(jīng)驗(yàn)基礎(chǔ)之上;再者,課堂中最有效的時(shí)間是前15鐘,做好這段時(shí)間的教學(xué),有利于提高學(xué)習(xí)效率。從而把這一比較難理解的環(huán)節(jié)放在后面。

  2、新授課中補(bǔ)充生活實(shí)例,引導(dǎo)學(xué)生從意義的理解來,解決實(shí)際問題,通過解決問題來理解意義。理由是:數(shù)學(xué)教學(xué)應(yīng)密切聯(lián)系學(xué)生的現(xiàn)實(shí)生活,使學(xué)生感到數(shù)學(xué)就在自己身邊。

  3、課堂習(xí)題進(jìn)行了有明確針對性與目的性的改變。(后述)

 。ㄈ┙虒W(xué)目標(biāo)及教學(xué)重、難點(diǎn)

  1、教學(xué)目標(biāo)

  (1)理解兩個(gè)數(shù)的公倍數(shù)和最小公倍數(shù)的意義。

  (2)通過解決實(shí)際問題,初步了解兩個(gè)數(shù)的公倍數(shù)和最小公倍數(shù)在現(xiàn)實(shí)生活中的某些應(yīng)用,體驗(yàn)解決問題策略的多樣化。

 。3)滲透集合思想,培養(yǎng)學(xué)生的抽象概括能力。

  2、教學(xué)重點(diǎn)

  公倍數(shù)與最小公倍數(shù)的概念建立。理由是:《標(biāo)準(zhǔn)》中要求4—6年級的學(xué)生能找出10以內(nèi)任意兩個(gè)自然數(shù)的公倍數(shù)與最小公倍數(shù),因此,本節(jié)課的重點(diǎn)應(yīng)放在學(xué)生對數(shù)的概念的認(rèn)識上。

  3、教學(xué)難點(diǎn)

  運(yùn)用“公倍數(shù)與最小公倍數(shù)”的知識解決簡單的生活實(shí)際問題。理由是:《標(biāo)準(zhǔn)》中指出人人學(xué)有價(jià)值的數(shù)學(xué),讓學(xué)生通過觀察、操作、反思等活動獲得基本的數(shù)學(xué)技能。但小學(xué)生的生活實(shí)際問題的解決能力普遍較低,所以要達(dá)到《標(biāo)準(zhǔn)》中的要求這無疑是重點(diǎn)中的難點(diǎn)。

  二、說學(xué)法

  1、學(xué)情分析

  小學(xué)生的動手欲較強(qiáng),學(xué)生認(rèn)識數(shù)的概念時(shí)更愿意自主參與,自己發(fā)現(xiàn)。再者,學(xué)生個(gè)人的解題能力有限,而小組合作則能更好地激發(fā)他們的數(shù)學(xué)思維,通過交流獲得數(shù)學(xué)信息。

  2、學(xué)法指導(dǎo)

  通過動手,讓學(xué)生在月歷紙的上動手找一找,圈一圈;通過動口,在概念揭示前,學(xué)生動口說一說。給學(xué)生機(jī)會說動手之后的感悟,還可以在個(gè)人表達(dá)的同時(shí)傾聽他人的說法。

  三、說教法

  為了實(shí)現(xiàn)教學(xué)目標(biāo),達(dá)到《標(biāo)準(zhǔn)》中的要求,也為了更好的解決教學(xué)重、難點(diǎn),我將本節(jié)課設(shè)計(jì)成寓教于樂的形式,將教學(xué)內(nèi)容融入一環(huán)環(huán)的學(xué)生自主探索發(fā)現(xiàn)的過程中。

  1、利用情境引入新課,通過月歷探索新知。

  學(xué)生在月歷上找日期,清楚形象的看到兩個(gè)數(shù)的倍數(shù)關(guān)系

  2、順其自然地滲透概念,初步理解公倍數(shù)和最小公倍數(shù)。

  學(xué)生探索后,用自己的語言梳理新知,學(xué)生便能在環(huán)環(huán)相扣的教學(xué)進(jìn)程中順理成章的理解概念,溝通二者之間的聯(lián)系。

  3、創(chuàng)設(shè)問題情境,嘗試應(yīng)用,方法提煉。

  結(jié)合教學(xué)內(nèi)容特征,創(chuàng)設(shè)富有生活情趣的問題情境,利用學(xué)生的生活經(jīng)驗(yàn)與知識背景,鼓勵學(xué)生解決簡單的實(shí)際問題,激活學(xué)生的數(shù)學(xué)思維,提高解題技能。

  4、鞏固練習(xí)、不斷刺激,不斷鞏固提升。

  四、教學(xué)具準(zhǔn)備:印有月歷紙、多媒體。

  五、具體的教學(xué)過程:

  我設(shè)計(jì)的總體理念:讓學(xué)生在自主參與的基礎(chǔ)上感悟、理解、應(yīng)用、鞏固。將直觀演示與抽象思維相結(jié)合。我的教學(xué)流程如下:

 。ㄒ唬、利用學(xué)具,導(dǎo)入新課(本環(huán)節(jié)為解決教學(xué)重點(diǎn))

  1、 學(xué)生在預(yù)先發(fā)放的月歷紙上按照老師的要求,在上面找出4和6的倍數(shù)的日期。

  2、引導(dǎo)學(xué)生觀察所找出的日期數(shù),有意識地引導(dǎo)學(xué)生發(fā)現(xiàn)日歷上的有特征的數(shù),從而引出公倍數(shù)與最小公倍數(shù)。

  3、把生活問題提煉為數(shù)學(xué)問題,學(xué)生用自己的語言概括公倍數(shù)與最小公倍數(shù)的概念。

 。ǘ、創(chuàng)設(shè)情境,應(yīng)用知識:(本環(huán)節(jié)為解決教學(xué)難點(diǎn))

  1、出示同學(xué)排隊(duì)的題目。理由是:用富有生活問題的情境,激發(fā)學(xué)習(xí)興趣,再次打通生活與數(shù)學(xué)的屏障。

  2、合作交流解決問題,方法提煉。

 。ㄈ、練習(xí)鞏固(講清練習(xí)的層次)

  1、學(xué)會用最基本的方法求兩個(gè)數(shù)的最小公倍數(shù)。

  2、用這樣的知識解決生活中的問題。

  (1)找生日。基本——拓展

 。2)鋪墻磚。用數(shù)學(xué)方法來解釋生活現(xiàn)象,隱含著求公因數(shù)與求公倍數(shù)的聯(lián)系。

 。ㄋ模、課堂小結(jié)

  學(xué)生回憶整堂課所學(xué)知識。學(xué)生通過這一環(huán)節(jié)可以將整個(gè)學(xué)習(xí)過程進(jìn)行回顧、按一定的線索梳理新知,形成整體印象,便于知識的理解記憶。

最小公倍數(shù)說課稿7

各位評委老師:

  大家好!今天我執(zhí)教的五年級下冊《最小公倍數(shù)》一課,下面開始上課。

  同學(xué)們,你們喜歡做游戲嗎?今天我們一起做一個(gè)非常有趣的找位置游戲,好不好?請聽游戲規(guī)則:老師會請7位同學(xué)參與,每人發(fā)一個(gè)號碼代表自己,然后聽老師的口令快速找到自己的位置,找對位置的同學(xué)繼續(xù)參與游戲,找錯(cuò)位置的同學(xué)則被淘汰,另換一名同學(xué)參加。聽明白了嗎?好,這個(gè)游戲考驗(yàn)大家的反應(yīng)能力,誰愿意參加?我會把這7張卡片分給7位同學(xué)。

  現(xiàn)在開始游戲。其他學(xué)生來做裁判。第一次找位置,請奇數(shù)號碼的同學(xué)站這邊,偶數(shù)號碼的同學(xué)站這邊。站對了嗎?請歸位。第二次找位置開始,請是2的倍數(shù)的同學(xué)站這邊,是3的倍數(shù)的同學(xué)站這邊。這時(shí)候號碼是6的同學(xué)會站到一邊或不知道往哪邊站。我會問:他站的位置對嗎?他應(yīng)該往哪邊站?其他同學(xué)會說:他即應(yīng)該往左邊站,也應(yīng)該往右邊站。為什么呀?因?yàn)?6既是3的倍數(shù),又是2的倍數(shù)。

  6既是3的倍數(shù),又是2的倍數(shù),也就是說6是3和2公有的倍數(shù)。那你還知道哪個(gè)數(shù)是3和2公有的倍數(shù)?

  學(xué)生會答出12、18、24,還有嗎?能數(shù)完嗎?那后面用“…”號表示。這些數(shù)都是3和2公有的倍數(shù),就叫做3和2的公倍數(shù)。(板書:公倍數(shù))誰來說說:什么叫做3和2的公倍數(shù)?說的不錯(cuò),還有誰?說的很完整,還有嗎?同桌也互相說說。

  剛才我們知道了什么是公倍數(shù),它在生活中幫助我們解決什么問題呢?我們一起來看。(出示生活情境,課件顯示。)張老師家正在裝修新房,我想把電視后面的這塊正方形墻壁鋪上漂亮的墻磚。這塊正方形墻壁的邊長是12分米,我想整塊整塊的鋪滿,不能切割墻磚。到了商店,店家說:我們有兩種墻磚,1號墻磚長3分米、寬2分米,2號墻磚長5分米、寬3分米。你選哪一種合適呢?

  同學(xué)們,愿意幫助老師解決這個(gè)問題嗎?

  為了方便大家操作,請每個(gè)小組打開1號學(xué)具袋,里面有模擬的長方形墻磚和正方形墻壁平面圖。大家可以拼一拼,擺一擺,看能得到什么結(jié)果?下面分小組活動,進(jìn)行動手操作。

  誰來展示一下:你們小組選擇的是長幾分米,寬幾分米的墻磚,能正好鋪滿嗎?

  1號小組:我們小組選擇的是長3分米、寬2分米的墻磚,整塊整塊的鋪,正好能鋪滿。

  2號小組:我們小組選擇的是長5分米、寬3分米的墻磚,整塊整塊的鋪,不能正好鋪滿。

  那選哪一種磚合適呢?為什么選1號磚?因?yàn)?號磚整塊整塊的鋪,正好能鋪滿。為什么不選2號磚?因?yàn)?號磚整塊整塊的鋪,不能正好鋪滿。

  1號磚為什么能正好鋪滿?這位同學(xué):因?yàn)閴Φ倪呴L12是3的倍數(shù),也是2的倍數(shù),也就是3和2的公倍數(shù),所以,能正好鋪滿。是這樣嗎?還有誰來說說?抽3至4人回答。

  為什么2號磚不能正好鋪滿?因?yàn)?2不是5和3的公倍數(shù)。

  分析的很正確。我們一起看一下,1號磚鋪上去,漂亮嗎?(課件出示)

  課堂小結(jié):“看來所鋪正方形墻壁的邊長必須是長方形墻磚長3分米,寬2分米的公倍數(shù)! 大家通過動手操作,幫助老師解決了鋪墻磚的問題,謝謝你們!在這個(gè)過程中,我們還獲得了很有價(jià)值的發(fā)現(xiàn)。你們真了不起。ㄕn件出示情境)如果用這種長3分米寬2分米的長方形墻磚,整塊整塊的鋪,還可以鋪成邊長是多少分米的正方形?”

  大家先猜一猜?6分米、15分米、18分米…

  同學(xué)們,合理的猜想是成功的一半,大家的猜想是否正確呢?請大家從2號學(xué)具袋中拿出表格,可以再次利用學(xué)具拼一拼、擺一擺,進(jìn)行驗(yàn)證,把得到的結(jié)果填寫到表格中。填寫完畢后我會有代表性的展示表格。

  你發(fā)現(xiàn)了什么?我們發(fā)現(xiàn)這些正方形的邊長就是所鋪長方形墻磚長和寬的公倍數(shù)。 “你能用今天所學(xué)的公倍數(shù)知識解決問題,真了不起!”

  其他組的發(fā)現(xiàn)一樣嗎?誰再來說說?3和2的公倍數(shù)都是6的倍數(shù)(貼板書);3和2最小的公倍數(shù)是6(貼板書);3和2公倍數(shù)是有很多個(gè)…,大家真善于思考,把這些發(fā)現(xiàn)給你的同桌說一說。

  剛才我們發(fā)現(xiàn)了6是3和2最小的公倍數(shù),叫做3和2的最小公倍數(shù)(貼板書)。(板書:最。

  誰來說說6是3和2的什么數(shù)?說的不錯(cuò),還有誰?

  我們剛才找出了3和2的公倍數(shù)和最小公倍數(shù),在數(shù)學(xué)上我們還可以用集合圈來表示。(課件出示兩個(gè)空白的集合圈)。

  3的倍數(shù)有?2的倍數(shù)有?學(xué)生齊說,課件出示答案。3和2的公倍數(shù)有?

  如果這兩個(gè)集合圈這樣放在一起,該怎樣填呢?(課件出示空白的交叉的集合圈)

  同桌互相交流一下,各部分應(yīng)該填什么?怎樣填?

  誰來說說?這位同學(xué):中間的部分填3和2的公倍數(shù),左邊的部分只是3的倍數(shù),右邊的部分只是2的倍數(shù)。

  明白了嗎?大家從2號學(xué)具袋中拿出作業(yè)紙獨(dú)立完成。

  完成后隨著學(xué)生匯報(bào)出示答案。(課件出示答案)

  那給你兩個(gè)數(shù)你會求它們的最小公倍數(shù)嗎?相信你一定行。(課件出示:怎樣求6和8的最小公倍數(shù)。)

  大家先想一想,然后拿出作業(yè)紙,把過程寫出來。誰來給大家展示一下你的方法?可能會出現(xiàn)這幾種方法,分別進(jìn)行展示。這幾種方法都求出了6和8的最小公倍數(shù)是24。誰用的是第一種方法?你們分別寫出了6和8的倍數(shù),然后圈出了6和8的公倍數(shù),第一個(gè)公倍數(shù)就是6和8的最小公倍數(shù)。這種方法是把6和8的倍數(shù)都列了出來,就是列舉法。

  誰用的是第二種?誰用的是第三種?那這兩種方法有什么聯(lián)系和區(qū)別?這兩種方法都是先列出了其中一個(gè)數(shù)的倍數(shù),再從中找出另一個(gè)數(shù)的倍數(shù),也就是兩個(gè)數(shù)的公倍數(shù)。區(qū)別是第二種是列出了較小數(shù)的倍數(shù),第三種是列出了較大數(shù)的'倍數(shù)。那哪一種找的更快?誰用的是第四種?

  我們用這么多方法求出了6和8的最小公倍數(shù),從中選出你喜歡的方法給同桌說一說。

  會求兩個(gè)數(shù)的最小公倍數(shù)了嗎?好,我們試一試,看你能做對嗎?(課件出示練習(xí)題前2題)學(xué)生獨(dú)立完成,完成后隨著學(xué)生回答出示答案。大家完成的非常好,我們再來看幾道。(接著出示后4題)隨著學(xué)生回答出示答案。完畢后問:你發(fā)現(xiàn)了什么?

  這位同學(xué):當(dāng)兩個(gè)數(shù)成倍數(shù)關(guān)系時(shí),這兩個(gè)數(shù)的最小公倍數(shù)就是較大的數(shù)。當(dāng)兩個(gè)數(shù)成互質(zhì)關(guān)系時(shí),它們的最小公倍數(shù)是它倆的乘積。說的太好了!同桌互相說說。

  大家通過自己的努力,認(rèn)識了公倍數(shù)和最小公倍數(shù) ,掌握了求兩個(gè)數(shù)的最小公倍數(shù)的方法。這些內(nèi)容在我們的數(shù)學(xué)書88—90頁,請大家打開書,認(rèn)真看一遍。

  還有問題嗎?相信大家一定有很大的收獲,讓我們帶著收獲進(jìn)行下面的練習(xí)。相信你一定沒有問題!

  課件出示練習(xí)題一,下面的說法對嗎?說一說你的理由。第一道,你來說:錯(cuò),比如說4和8,8就是它們的最小公倍數(shù),但并不比8大。同意嗎?第二道,這位同學(xué):我認(rèn)為這道題是對的。同意嗎?那這兩個(gè)數(shù)的積一定是這兩個(gè)數(shù)的最小公倍數(shù)嗎?不一定。

  課件出示練習(xí)題二,請大家認(rèn)真讀題,獨(dú)立完成。都誰完成了?這位同學(xué):幾月幾日再次給這兩種花同時(shí)澆水,其實(shí)是求4和6的最小公倍數(shù),應(yīng)該是至少12天后再次給這兩種花同時(shí)澆水,也就是4月12日。同意嗎?

  大家對今天所學(xué)的知識掌握的非常扎實(shí),其實(shí)在天文學(xué)中也有最小公倍數(shù)的知識,請看:

  朗誦:這顆美麗的慧星是著名的哈雷彗星,哈雷彗星是最著名的短周期彗星,每隔75或76年才能從地球上看見一次,它上一次回歸是在20xx年,而下一次回歸將在20xx年。它回歸的時(shí)間就和它的公轉(zhuǎn)周期與地球公轉(zhuǎn)周期的最小公倍數(shù)有關(guān)。

  “奇妙吧!如果大家還想繼續(xù)了解,回去可以上網(wǎng)查找一下相關(guān)的資料。讓我們帶著收獲,下課!”

  板書:

  最小公倍數(shù)

  6、12、18…是2和3公有的倍數(shù),叫它們的公倍數(shù)。6是2和3的最小公倍數(shù)。

最小公倍數(shù)說課稿8

  一、教學(xué)設(shè)想

  “最小公倍數(shù)”這部分內(nèi)容是在學(xué)生掌握了倍數(shù)的概念和分解質(zhì)因數(shù)的基礎(chǔ)上進(jìn)行教學(xué)的。本節(jié)課的教學(xué)設(shè)想如下:

  1、尊重教材并創(chuàng)造性地使用。

  教材是知識的載體,是教與學(xué)的中介,但教材不是一成不變的,我們在深挖教材后,可以結(jié)合教學(xué)和學(xué)生實(shí)際創(chuàng)造性地使用教材,充分發(fā)揮教材的指導(dǎo)作用。所以在充分分析教材上最小公倍數(shù)這部分內(nèi)容后,我抓住倍數(shù)這個(gè)生長點(diǎn)發(fā)現(xiàn)公倍數(shù)和最小公倍數(shù),抓住分解質(zhì)因數(shù)這個(gè)生長點(diǎn)研究最小公倍數(shù)的算理,大膽地把最小公倍數(shù)的意義和多種計(jì)算方法進(jìn)行了有機(jī)的整合,力求學(xué)生知識體系的有機(jī)地自然地生長。

  2、讓學(xué)生親歷知識的形成過程。

  現(xiàn)代教育觀點(diǎn)認(rèn)為:學(xué)習(xí)不是為了占有知識,而是為了生長知識。因此教學(xué)中,我們不要教給學(xué)生現(xiàn)成的數(shù)學(xué),而是讓學(xué)生自己觀察、思考、探索研究出來的數(shù)學(xué)。因此在研究最小公倍數(shù)的意義時(shí),我讓學(xué)生親歷知識的形成過程。設(shè)計(jì)看到這列數(shù)你想說些什么,看到這兩列數(shù)你想說些什么?等開放的數(shù)學(xué)問題,讓學(xué)生在高度的思維狀態(tài)下,調(diào)動大量的原有知識參與新知識的構(gòu)建。

  3、讓情境作為課堂教學(xué)的主線。

  《新課程標(biāo)準(zhǔn)》指出數(shù)學(xué)教學(xué)要緊密聯(lián)系學(xué)生的生活環(huán)境,從學(xué)生的經(jīng)驗(yàn)和已有的知識出發(fā),創(chuàng)設(shè)有助于學(xué)生自主學(xué)習(xí)、合作交流的情境,使學(xué)生通過觀察、操作、歸納等活動,獲得基本的數(shù)學(xué)知識和技能,進(jìn)一步發(fā)展思維能力,激發(fā)學(xué)生的學(xué)習(xí)興趣,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的.信心。因此,課伊始從學(xué)生熟知的駟驅(qū)車引出倍數(shù)這一前衛(wèi)知識。課中又再次利用兩輛駟驅(qū)車同時(shí)從起點(diǎn)出發(fā)至少多少分鐘再次同時(shí)經(jīng)過起點(diǎn)這個(gè)問題情境,使學(xué)生體會到最小公倍數(shù)在實(shí)際生活中的運(yùn)用。課后又利用駟驅(qū)車賽這個(gè)情境進(jìn)行延伸為求三個(gè)數(shù)的最小公倍數(shù)設(shè)為伏筆。

  4、算理的教學(xué)是課堂教學(xué)的主旨。

  求兩個(gè)數(shù)的最小公倍數(shù)的算理是教學(xué)的重點(diǎn)和難點(diǎn),因此教學(xué)中我一直把算理的教學(xué)作為課堂教學(xué)最小公倍數(shù)方法的線索,同時(shí),把算法的多樣化作為教學(xué)中的另外一個(gè)目標(biāo)。從自然生長起來的列舉法到發(fā)現(xiàn)特殊關(guān)系的兩個(gè)數(shù)的最小公倍數(shù)的規(guī)律,又從特殊關(guān)系的兩個(gè)數(shù)的最小公倍數(shù)的規(guī)律研究到一般的算法,走一條從一般到特殊,又從特殊到一般的思路,且抓根本的最小公倍數(shù)與兩個(gè)數(shù)質(zhì)因數(shù)的關(guān)系為方向。從而深入研究分解質(zhì)因數(shù)的方法,并使短除法成為學(xué)生又一次知識的升華。

  二 、課后反思

  從教學(xué)的實(shí)踐過程來看,學(xué)生學(xué)習(xí)的積極性較高,知識的掌握也較為自然而扎實(shí),學(xué)生的思維也在呈螺旋式上升趨勢,取得了良好的教學(xué)效果。通過本節(jié)課的教學(xué),有以下兩點(diǎn)感悟最深刻。

  1、 情境的創(chuàng)設(shè)有效地激發(fā)了學(xué)生的學(xué)習(xí)興趣,提高了課堂效率。

  課伊始,趣亦生。學(xué)生的注意力被駟驅(qū)車吸引,圍繞駟驅(qū)車展開了知識的聯(lián)想,為最小公倍數(shù)的理解鋪墊了很好的基礎(chǔ)。課中的再利用不僅使知識與生活加以聯(lián)系,而且使學(xué)生的思維能有的放矢。課后的情境延伸更使知識體系更完善。

  2、抓住學(xué)生思維的生長點(diǎn),重視算理的教學(xué),使算法多樣化。

  教學(xué)中,教師以“學(xué)生的思維發(fā)展為中心”研究不同的環(huán)節(jié)如何使學(xué)生的思維自然生長。從概念倍數(shù)為基礎(chǔ)而生長的公倍數(shù)和最小公倍數(shù)的意義,從列舉法而生長的規(guī)律,從分解質(zhì)因數(shù)的方法而生長的短除法,幾次的生長都很自然。同時(shí)輕結(jié)論重算理體現(xiàn)的較為突出,成為了算法的多樣化的前提。

  2、 需要進(jìn)一步研究的問題。

 。1)學(xué)生的數(shù)學(xué)學(xué)習(xí)活動應(yīng)當(dāng)是一個(gè)生動活潑的、主動的富有個(gè)性的過程。而且激發(fā)學(xué)生的興趣不止是一時(shí)之效,如何從學(xué)生的角度出發(fā)進(jìn)行預(yù)案的設(shè)計(jì),課堂中順學(xué)而導(dǎo)保持學(xué)生的學(xué)習(xí)積極性是一個(gè)值得思考的問題。

 。2)教師有意識讓學(xué)生體會親歷知識的研究過程,如:看到數(shù)列給學(xué)生發(fā)散的空間進(jìn)行思維,但如何恢復(fù)最原始的研究狀態(tài)在課堂中再現(xiàn),怎樣引導(dǎo)學(xué)生觀察、研究、發(fā)現(xiàn),如:獨(dú)有倍數(shù)的出示時(shí)機(jī),最小公倍數(shù)與質(zhì)因數(shù)的關(guān)系,更需要再深入的研究。真正使數(shù)學(xué)課堂成為為探究的課堂。

最小公倍數(shù)說課稿9

尊敬的各位領(lǐng)導(dǎo)、評委:

  大家好!今天我所說課的內(nèi)容是人教版五年級《最小公倍數(shù)》。

  (一)教材分析

  “最小公倍數(shù)”是通分和異分母分?jǐn)?shù)加減法的基礎(chǔ)。本節(jié)課主要是讓學(xué)生在生活中體驗(yàn)公倍數(shù)和最小公倍數(shù)的意義,采用“找”的方法求出兩個(gè)數(shù)的最小公倍數(shù),通過信息技術(shù)教育手段為學(xué)生營造一個(gè)寬松,有趣的學(xué)習(xí)環(huán)境。

 。ǘ⿲W(xué)情分析

  這部分知識是學(xué)生在掌握了倍數(shù)和公因數(shù)、最大公因數(shù)的基礎(chǔ)上,進(jìn)行教學(xué)的。所以在教學(xué)中,我創(chuàng)設(shè)了教學(xué)情境,讓學(xué)生在阿凡提的故事中,體會、探索、理解公倍數(shù)和最小公倍數(shù)的方法。

  最小公倍數(shù)一課是數(shù)學(xué)的基礎(chǔ)課,根據(jù)教材特點(diǎn),結(jié)合學(xué)生情況,我設(shè)計(jì)了如下教學(xué)目標(biāo):

  教學(xué)目標(biāo):

  知識與技能目標(biāo):

  1、理解兩個(gè)數(shù)的公倍數(shù)和最小公倍數(shù)的意義。

  2、通過解決實(shí)際問題,初步了解兩個(gè)數(shù)的公倍數(shù)和最小公倍數(shù)在現(xiàn)實(shí)生活中的某些應(yīng)用。

  3、培養(yǎng)學(xué)生的抽象、概括能力。

  過程與方法目標(biāo):

  通過探索找公倍數(shù)的方法,使學(xué)生學(xué)會利用列舉等方法找出兩個(gè)數(shù)的公倍數(shù)和最小公倍數(shù)。

  情感態(tài)度與價(jià)值觀目標(biāo):

  在探索知識的過程中,培養(yǎng)學(xué)生的合作意識,激發(fā)學(xué)生的學(xué)習(xí)興趣。

  突出教學(xué)重點(diǎn)與難點(diǎn)

  教學(xué)重點(diǎn):

  會求兩個(gè)數(shù)的最小公倍數(shù)

  教學(xué)難點(diǎn):

  公倍數(shù)和最小公倍數(shù)的意義

  信息技術(shù)與學(xué)科整合的整合點(diǎn):

  通過信息技術(shù)的`使用,使學(xué)生直觀形象地理解公倍數(shù)和最小公倍數(shù)的意義,掌握求他們的方法。作為農(nóng)村遠(yuǎn)程教育項(xiàng)目學(xué)校,信息技術(shù)的的應(yīng)用,使我們的課堂更加生動,形象,把大容量的信息呈現(xiàn)給我們的孩子!

  為了達(dá)成上述教學(xué)目標(biāo),我設(shè)計(jì)如下五個(gè)教學(xué)環(huán)節(jié)。

 。ㄒ唬┮匀ぜひ伞⒁稣n題

  通過體育課上報(bào)數(shù)的形式,感知有些數(shù)既是2的倍數(shù),又是3的倍數(shù),初步感知公倍數(shù)的存在,引出課題。

  (二)創(chuàng)設(shè)情境、探索交流

  通過四個(gè)步驟達(dá)到探索交流的目的。

  1、體驗(yàn)公倍數(shù)和最小公倍數(shù)的概念。突出教學(xué)重點(diǎn),突破教學(xué)難點(diǎn)。

  我首先對教材的情境圖進(jìn)行了加工,從學(xué)生喜愛佩服的阿凡提幫工人討工資的故事引入,目的是通過富有生活問題的情境,激發(fā)學(xué)生學(xué)習(xí)的興趣。通過自己的思考和生活常識,采用日歷上圈一圈,本子上寫一寫、畫一畫等方法找到阿凡提取錢的日子,突出教學(xué)重點(diǎn)。通過探索,匯報(bào),發(fā)現(xiàn)巴依老爺?shù)男菹⑷諏?shí)際上就是4的倍數(shù),賬房先生的休息日就是6的倍數(shù),他們共同的休息日就是4和6的公倍數(shù)。因?yàn)橐粋(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無限的,所以要在集合圈里用省略號表示出來。除此以外,還可以用線段圖的方式表示。形象直觀的演示,一方面突出了教學(xué)重點(diǎn),另一方面也突破了教學(xué)難點(diǎn)。

  2、合作交流解決問題,加深對公倍數(shù)和最小公倍數(shù)的理解。

  然后,我又把教材中的情境教學(xué)作為動手實(shí)踐的內(nèi)容出示,讓學(xué)生在動手實(shí)踐、合作交流,解決實(shí)際問題中,進(jìn)一步掌握最小公倍數(shù)的方法,同時(shí)體會公倍數(shù)和最小公倍數(shù)的關(guān)系。

  3、歸納求最小公倍數(shù)的方法。

  學(xué)生親身經(jīng)歷了探索的過程,經(jīng)歷獨(dú)立思考,動手實(shí)踐,合作交流的過程,感知了公倍數(shù)和最小公倍數(shù)的意義,歸納總結(jié)求最小公倍數(shù)的方法。既培養(yǎng)了學(xué)生的抽象概括能力,多角度思維能力和解決實(shí)際問題的能力,又培養(yǎng)了學(xué)生學(xué)習(xí)的合作意識和交流意識。

  4、看書質(zhì)疑。讓學(xué)生學(xué)會讀書,學(xué)會質(zhì)疑。

  (三)解決問題、深化理解

  首先出示書P90頁的做一做,獨(dú)立完成并總結(jié)規(guī)律。使學(xué)生知道倍數(shù)關(guān)系和互質(zhì)數(shù)關(guān)系的最小公倍數(shù)的特點(diǎn),從而明白實(shí)際情況是解決問題的最好依據(jù)。

  然后是打電話游戲。

  這個(gè)環(huán)節(jié)的設(shè)計(jì)力圖體現(xiàn)“數(shù)學(xué)知識的教學(xué)要與學(xué)生現(xiàn)實(shí)密切聯(lián)系”的理念。引導(dǎo)學(xué)生在生活情境中進(jìn)行“再創(chuàng)造”,既有利于學(xué)生憑借生活經(jīng)驗(yàn)主動探索,實(shí)現(xiàn)生活經(jīng)驗(yàn)數(shù)學(xué)化,又有利于讓學(xué)生感受到數(shù)學(xué)就在身邊,對數(shù)學(xué)產(chǎn)生濃厚的興趣和親切感。

  (四)、課堂小結(jié)、總結(jié)歸納

  請同學(xué)們說一說,今天都學(xué)到了什么?談?wù)勥@堂課的感受。

 。ㄎ澹⒄n后作業(yè)、拓展延伸

  運(yùn)用這單元學(xué)習(xí)的知識,也給你的朋友編一個(gè)謎語,讓他們猜猜你們家的電話號碼。

  這個(gè)環(huán)節(jié)通過新知的運(yùn)用,讓學(xué)生在興趣盎然中放松學(xué)生的心理,鞏固基礎(chǔ)知識,發(fā)展思維,充分體現(xiàn)“玩中學(xué),做中學(xué),學(xué)中悟”的理念,讓學(xué)生學(xué)得輕松愉快。真正實(shí)現(xiàn)人人參與、人人學(xué)會。

  教學(xué)反思

  最小公倍數(shù)在五年級的數(shù)學(xué)學(xué)習(xí)中,是比較枯燥的內(nèi)容。本節(jié)課通過有效利用信息技術(shù),突出了教學(xué)重點(diǎn),突破了教學(xué)難點(diǎn)。使學(xué)生在有效的課堂教學(xué)時(shí)間里獲取了豐富的知識。

  謝謝!

【最小公倍數(shù)說課稿】相關(guān)文章:

最小公倍數(shù)的說課稿11-26

《最小公倍數(shù)》說課稿12-27

最小公倍數(shù)說課稿12-29

《最小公倍數(shù)》說課稿10篇12-27

最小公倍數(shù)說課稿9篇11-08

小學(xué)數(shù)學(xué)說課稿《最小公倍數(shù)》06-26

《公倍數(shù)和最小公倍數(shù)》說課稿07-06

五年級數(shù)學(xué)《最小公倍數(shù)》說課稿03-12

《最小公倍數(shù)》教案03-03