當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>說課稿> 《勾股定理》說課稿

《勾股定理》說課稿

時間:2023-01-04 19:42:02 說課稿 我要投稿

《勾股定理》說課稿集合15篇

  作為一位杰出的教職工,常常要寫一份優(yōu)秀的說課稿,說課稿有助于學(xué)生理解并掌握系統(tǒng)的知識。那么問題來了,說課稿應(yīng)該怎么寫?以下是小編幫大家整理的《勾股定理》說課稿,供大家參考借鑒,希望可以幫助到有需要的朋友。

《勾股定理》說課稿集合15篇

《勾股定理》說課稿1

  本節(jié)課設(shè)計力求讓學(xué)生參與知識的發(fā)現(xiàn)過程,體現(xiàn)以學(xué)生為主體,以促進學(xué)生發(fā)展為本的教學(xué)理念,變知識的傳授者為學(xué)生自主探求知識的引導(dǎo)者、指導(dǎo)者、合作者。并利用多媒體,直觀教具演示,營造一個聲像同步,能動能靜的教學(xué)情境,給學(xué)生提供一個探索的空間,促使學(xué)生主動參與,親身體驗勾股定理的探索證明過程,從而鍛煉思維、激發(fā)創(chuàng)造,優(yōu)化課堂教學(xué)。努力做到有傳統(tǒng)的教學(xué)課堂像實驗課堂轉(zhuǎn)變,使學(xué)生真正成為學(xué)習(xí)的主人,培養(yǎng)了學(xué)生的素質(zhì)能力,達到了良好的教學(xué)效果。

  (一)創(chuàng)設(shè)情境,引入新課

  課前首先讓學(xué)生閱讀趙爽的弦圖相關(guān)知識讓他們體會中國古代科學(xué)的發(fā)達。在課堂上緊密結(jié)合前面已學(xué)的知識進行導(dǎo)入。如提出問題:你見過這個圖案嗎?你聽說過勾股定理嗎?你還記得三角形的三邊遵循什么規(guī)律嗎?等等一系列的問題激起學(xué)生學(xué)生的熱情和求知欲,然后順利進入探究。本節(jié)我們就來學(xué)習(xí)一下直角三角形的三條邊除具備前面的性質(zhì)外還有什么新的特征。

  (二)引導(dǎo)學(xué)生,探究新知

  ①初步感知定理:這一環(huán)節(jié)我選擇了教材的圖片,講述畢達哥拉斯到朋友家做客時發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關(guān)系,創(chuàng)設(shè)感知情境,提出問題,現(xiàn)在請同學(xué)觀察,看看有什么發(fā)現(xiàn)?(學(xué)案出示)使問題更形象、具體。

 、谔岢霾孪耄涸诨顒1的.基礎(chǔ)上,學(xué)生已發(fā)現(xiàn)一些規(guī)律,進一步通過活動2進行看一看、填一填、想一想、議一議、做一做,讓學(xué)生感受不只是等腰直角三角形才具有這樣的性質(zhì),學(xué)生再由淺到深,由特殊到一般的提出問題,啟發(fā)學(xué)生得出猜想,直角三角形的兩直角邊的平分和等于斜邊的平方。

 、圩C明猜想:是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進行證明:通過活動3我充分引導(dǎo)學(xué)生利用直觀教具,進行拼圖實驗,在動手操中放手讓學(xué)生思考、討論、合作、交流、探究問題的多種方法。,并對學(xué)生的做法給予表揚,使學(xué)生在學(xué)習(xí)過程中,感受到自我創(chuàng)造的快樂,從而分散了教學(xué)難點,發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。

 、芸偨Y(jié)定理:讓學(xué)生自己總結(jié),不完善之處由教師補充,在前面探究活動的基礎(chǔ)上,學(xué)生容易得出直角三角形的三邊數(shù)量關(guān)系即勾股定理。

  (三)反饋訓(xùn)練,鞏固新知

  學(xué)生對所學(xué)的知識是否掌握了,達到了什么程度?為了檢測學(xué)生對本課的達成情況和加強對學(xué)生能力的培養(yǎng),我設(shè)計了一組坡有難度的練習(xí)題。

  (四)歸納總結(jié),深化新知

  本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進一步研究的問題是什么?……

  通過小結(jié),使學(xué)生進一步明確掌握教學(xué)目標(biāo),使知識成為體系。

  (五)布置作業(yè)。拓展新知

  讓學(xué)生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流。使本節(jié)知識得到拓展、延伸,培養(yǎng)了學(xué)生能力和思維的深刻性,讓學(xué)生感受數(shù)學(xué)深厚的文化底蘊。

  (六)板書設(shè)計,明確新知

《勾股定理》說課稿2

 說教材

  本課時是北師大版八年級(上)數(shù)學(xué)第14章第二節(jié)內(nèi)容,是在掌握勾股定理的基礎(chǔ)上對勾股定理的應(yīng)用之一。 勾股定理是我國古數(shù)學(xué)的一項偉大成就。勾股定理為我們提供了直角三角形的三邊間的數(shù)量關(guān)系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據(jù),也是判定兩條直線是否互相垂直的一個重要方法,這些成果被廣泛應(yīng)用于數(shù)學(xué)和實際生活的各個方面。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際分析,使學(xué)生獲得較為直觀的印象,通過聯(lián)系和比較,了解勾股定理在實際生活中的廣泛應(yīng)用。 據(jù)此,制定教學(xué)目標(biāo)如下:

  1。知識和方法目標(biāo):通過對一些典型題目的思考,練習(xí),能正確熟練地進行勾股定理有關(guān)計算,深入對勾股定理的理解。

  2。過程與方法目標(biāo):通過對一些題目的探討,以達到掌握知識的目的。 3。情感與態(tài)度目標(biāo):感受數(shù)學(xué)在生活中的應(yīng)用,感受數(shù)學(xué)定理的美。 教學(xué)重點:勾股定理的應(yīng)用。 教學(xué)難點:勾股定理的正確使用。 教學(xué)關(guān)鍵:在現(xiàn)實情境中捕抓直角三角形,確定好直角三角形之后,再應(yīng)用勾股定理。

  說教法和學(xué)法

  1。以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運用各種手段激發(fā)學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程。 2。切實體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察,分析,討論,操作,歸納理解定理,提高學(xué)生動手操作能力,以及分析問題和解決問題的能力。 3。通過演示實物,引導(dǎo)學(xué)生觀察,操作,分析,證明,使學(xué)生獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

  教學(xué)程序

  本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生的動手,動腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)置如下: 一;仡檰枺汗垂啥ɡ淼膬(nèi)容是什么? 勾股定理揭示了直角三角形三邊之間的關(guān)系,今天我們來學(xué)習(xí)這個定理在實際生活中的應(yīng)用。 二。新授課例1。如圖所示,有一個圓柱,它的.高AB等于4厘米,底面周長等于20厘米,在圓柱下底面的A點有一只螞蟻,它想吃到上底面與A點相對的C點處的食物,沿圓柱側(cè)面爬行的最短路線是多少?(課本P57圖14。2。1)

 、賹W(xué)生取出自制圓柱,,嘗試從A點到C點沿圓柱側(cè)面畫出幾條路線。思考:那條路線最短? ②如圖,將圓柱側(cè)面剪開展成一個長方形,從A點到C點的最短路線是什么?你畫得對嗎? ③螞蟻從A點出發(fā),想吃到C點處的食物,它沿圓柱側(cè)面爬行的最短路線是什么?

  思路點撥:引導(dǎo)學(xué)生在自制的圓柱側(cè)面上尋找最短路線;提醒學(xué)生將圓柱側(cè)面展開成長方形,引導(dǎo)學(xué)生觀察分析發(fā)現(xiàn)“兩點之間的所有線中,線段最短”。 學(xué)生在自主探索的基礎(chǔ)上興趣高漲,氣氛異常的活躍,他們發(fā)現(xiàn)螞蟻從A點往上爬到B點后順著直徑爬向C點爬行的路線是最短的!我也意外的發(fā)現(xiàn)了這種爬法是正確的,但是課本上是順著側(cè)面往上爬的,我就告訴學(xué)生:“課本中的圓柱體是沒有上蓋的”。只有這樣課本上的解答才算是完全正確的。例2。(課本P58圖14。2。3) 思路點撥:廠門的寬度是足夠的,這個問題的關(guān)鍵是觀察當(dāng)卡車位于廠門正中間時其高度是否小于CH,點D在離廠門中線0。8米處,且CD⊥AB, 與地面交于H,尋找出Rt△OCD,運用勾股定理求出CD= = =0。6,CH=0。6+2。3=2。9>2。5可見卡車能順利通過 。詳細(xì)解題過程看課本 引導(dǎo)學(xué)生完成P58做一做。 三。課堂小練 1。課本P58練習(xí)第1,2題。 2。探究: 一門框的尺寸如圖所示,一塊長3米,寬2。2米的薄木板是否能從門框內(nèi)通過?為什么?

  四。小結(jié)直角三角形在實際生活中有更為廣泛的應(yīng)用希望同學(xué)們能緊緊抓住直角三角形的性質(zhì),學(xué)透勾股定理的具體應(yīng)用,那樣就能很輕松的解決現(xiàn)實生活中的許多問題,達到事倍功半的效果。

《勾股定理》說課稿3

尊敬的各位領(lǐng)導(dǎo),各位老師:

  大家好!今天我說課的內(nèi)容是初中八年級數(shù)學(xué)人教版教材第十八章第一節(jié)《勾股定理》(第一課時),下面我分五部分來匯報我這節(jié)課的教學(xué)設(shè)計,這就是"教材分析"、"學(xué)情分析"、"教法選擇"、"學(xué)法指導(dǎo)"、"教學(xué)過程"。

  一、教材分析

 。ㄒ唬 教材地位和作用

  勾股定理是幾何中的重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系,將幾何圖形與數(shù)字聯(lián)系起來。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在生產(chǎn)生活中有著廣泛的應(yīng)用。而且它在其它自然學(xué)科中也常常用到。因此,這節(jié)課有著舉足輕重的地位。

 。ǘ┙虒W(xué)目標(biāo)

  根據(jù)新課程標(biāo)準(zhǔn)的要求和本課的特點,結(jié)合學(xué)生的實際情況,我確定了本課的教學(xué)目標(biāo):

  1、知識與技能方面

  了解勾股定理的文化背景,經(jīng)歷探索勾股定理的過程,掌握直角三角形三邊之間的數(shù)量關(guān)系, 并能簡單應(yīng)用。

  2、過程與方法方面

  經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,能感受到數(shù)學(xué)思考過程的條理性,發(fā)展數(shù)學(xué)的說理和簡單的推理的意識,和語言表達的能力,并體會數(shù)形結(jié)合和特殊到一般的思想方法。

  3、情感態(tài)度與價值觀方面

 。1)通過了解勾股定理的歷史,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想,激勵學(xué)生發(fā)奮學(xué)習(xí)。

 。2) 通過研究一系列富有探 究性的問題,培養(yǎng)學(xué)生與他人交流、合作的意識和品質(zhì)。

 。ㄈ┙虒W(xué)重點難點

  教學(xué)重點:掌握勾股定理,并能用它來解決一些簡單的問題。

  教學(xué)難點:勾股定理的證明。

  二、學(xué)情分析

  我們班日常經(jīng)常使用多媒體輔助教學(xué)。經(jīng)過一年多的幾何學(xué)習(xí),學(xué)生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學(xué)生解題思維能力比較高,能夠正確 歸納所學(xué)知識,通過學(xué)習(xí)小組討論交流,能夠形成解決問題的思路。 現(xiàn)在的學(xué)生已經(jīng)厭倦教師單獨的說教方式,希望教師設(shè)計便于他們進行觀察的幾何環(huán)境,給他們自己探索、發(fā)表自己見解和表現(xiàn)自己才華的機會;更希望教師滿足他 們的創(chuàng)造愿望。

  三、教法選擇

  根據(jù)本節(jié)課的教學(xué)目標(biāo)、教學(xué)內(nèi)容以及學(xué)生的認(rèn)知特點,結(jié)合我校的“當(dāng)堂達標(biāo)”教學(xué)模式,我在教法上采用引導(dǎo)發(fā)現(xiàn)法為主,并以分析法、討論法相結(jié)合。設(shè)計" 觀察——討論—歸納"的教學(xué)方法,意在幫助學(xué)生通過自己動手實驗和直觀情景觀察,從實踐中獲取知識,并通過討論來深化對知識的理解。本節(jié)課采用了多媒體輔 助教學(xué),能夠直觀、生動的反應(yīng)圖形,增加課堂的容量,同時有利于突出重點、分散難點,增強教學(xué)形象性,更好的提高課堂效率。

  四、學(xué)法指導(dǎo):

  為了充分體現(xiàn)《新課標(biāo)》的要求,培養(yǎng)學(xué)生的觀察分析能力,邏輯思維能力,積累豐富的數(shù)學(xué)學(xué)習(xí)經(jīng)驗,這節(jié)課主要采用觀察分析,自主探索與合作交流的學(xué)習(xí)方 法,使學(xué)生積極參與教學(xué)過程。在教學(xué)過程中展開思維,培養(yǎng)學(xué)生提出問題、分析問題、解決問題的能力,進一步體會觀察、類比、分析、從特殊到一般等數(shù)學(xué)思 想。借此培養(yǎng)學(xué)生動手、動腦、動口的能力,使學(xué)生真正成為學(xué)習(xí)的主人。

  五、教學(xué)過程

  根據(jù)《新課標(biāo)》中"要引導(dǎo)學(xué)生投入到探索與交流的學(xué)習(xí)活動中"的教學(xué)要求,本節(jié)課的教學(xué)過程我是這樣設(shè)計的:

 。ㄒ唬﹦(chuàng)設(shè)情境,引入新課

  一個設(shè)計合理的情境引入可以說在一定程度上決定著學(xué)生能否帶著興趣積極投入到本節(jié)課的學(xué)習(xí)中。為了體現(xiàn)數(shù)學(xué)源于生活,數(shù)學(xué)是從人的需要中產(chǎn)生的,學(xué)習(xí)數(shù)學(xué)的目的是為了用數(shù)學(xué)解決實際問題。我設(shè)計了以下題目:

  星期日老師帶領(lǐng)全班同學(xué)去某山風(fēng)景區(qū)游玩,同學(xué)們看到山勢險峻,查看景區(qū)示意圖得知:這座山主峰高約為900米,如圖:為了方便游人,此景區(qū)從主峰A處向地面B處架了一條纜車線路,已知山底端C處與地面B處相距1200米,

  ∠ACB=90° ,你能用所學(xué)知識算出纜車路線AB長應(yīng)為多少?

  答案是不能的。然后教師指出,通過這節(jié)課的學(xué)習(xí),問題將迎刃而解。

  設(shè)計意圖:以趣味性題目引入。從而設(shè)置懸念,激發(fā)學(xué)生的學(xué)習(xí)興趣。 教師引導(dǎo)學(xué)生把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,這其中滲透了一種數(shù)學(xué)思想,對于學(xué)生也是一種挑戰(zhàn),能激發(fā)學(xué)生探究的欲望,自然引出下面的環(huán)節(jié)。

  緊接著出示本節(jié)課的學(xué)習(xí)目標(biāo):

  1、了解勾股定理的文化背景,體驗勾股定理的探索過程。

  2、掌握勾股定理的內(nèi)容,并會簡單應(yīng)用。

 。ǘ┕垂啥ɡ淼奶剿

  1、猜想結(jié)論

  (1)探究一:等腰直角三角形三邊關(guān)系。

  由課本64頁畢達哥拉斯的故事,探究等腰直角三角形三邊關(guān)系。結(jié)合課件中格點圖形的面積,學(xué)生自主探究,通過計算、討論、總結(jié),得出結(jié)論:等腰直角三角形的斜邊的平方等于兩直角邊的平方和。

  在此過程中,給學(xué)生充分的時間、觀察、比較、交流,最后通過活動讓學(xué)生用語言概括總結(jié)。

  提問:等腰直角三角形有這樣的性質(zhì),其他的直角三角形也有這樣的性質(zhì)嗎?

 。2、)探究二:一般的直角三角形三邊關(guān)系。

  在課件中的格點圖形中,利用面積,再次探究直角三角形的三邊關(guān)系。學(xué)生自主探究,通過計算、討論、總結(jié),得出結(jié)論:在直角三角形中,兩直角邊的平方和等于斜邊的平方。

  設(shè) 計意圖:組織學(xué)生進行討論,在此基礎(chǔ)上教師引導(dǎo)學(xué)生從三邊的平方有何大小關(guān)系入手進行觀察。教師在多媒體課件上直觀地演示。通過學(xué)生自己探索、討論,由學(xué) 生自己得出結(jié)論。這樣,讓學(xué)生參與定理的再發(fā)現(xiàn)過程,他們通過自己觀察、計算所得出的定理,在心理產(chǎn)生自豪感,從而增強學(xué)生的學(xué)習(xí)數(shù)學(xué)的.自信心。

  2、證明猜想

  目前世界上證明該勾股定理的方法有很多種,而我國古代數(shù)學(xué)家利用拼接、割補圖形,計算面積的思路提供了很多種證明方法,下面我們通過古人趙爽的方法進行證 明。學(xué)生分組活動,根據(jù)圖形的面積進行計算,推導(dǎo)出勾股定理的一般形式:a + b = c。即直角三角形兩直角邊的平方和等于斜邊的平方、

  設(shè)計意圖:通過利用多媒體課件的演示,更直觀、形象的向?qū)W生介紹用拼接、割補圖形,計算面積的證明方法,使學(xué)生認(rèn)識到證明的必要性、結(jié)論的確定性,感受到前人的偉大和智慧。

  3、簡要介紹勾股定理命名的由來

  我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個直角,如果勾等于三,股等于四,那么弦就等于五,即 “勾三、股四、弦五”,它被記載于我國古代著名的數(shù)學(xué)著作《周髀算經(jīng)》中、我國稱這個結(jié)論為"勾股定理",西方畢達哥拉斯于公元前五世紀(jì)發(fā)現(xiàn)了勾股定理, 但他比商高晚出生五百多年。

  設(shè)計意圖:對比以上事實對學(xué)生進行愛國主義教育,激勵他們奮發(fā)向上。

 。ㄈ┕垂啥ɡ淼膽(yīng)用

  1、利用勾股定理,解決引入中的問題。體會數(shù)學(xué)在實際生活中的應(yīng)用。

  2、教學(xué)例1:課本66頁探究1

  師生討論、分析: 木板的寬2、2米大于1米,所以橫著不能從門框內(nèi)通過.

  木板的寬2、2米大于2米,所以豎著不能從門框內(nèi)通過.

  因為對角線AC的長度最大,所以只能試試斜著 能否通過.

  從而將實際問題轉(zhuǎn)化為數(shù)學(xué)問題.

  提示:

 。1)在圖中構(gòu)造出一個直角三角形。(連接AC)

  (2)知道直角△ABC的那條邊?

 。3)知道直角三角形兩條邊長求第三邊用什么方法呢?

  設(shè)計意圖:此題是將實際為題轉(zhuǎn)化為數(shù)學(xué)問題,從中抽象出Rt△ABC,并求出斜邊A C的長。本例意在滲透實際問題和勾股定理的知識聯(lián)系。通過系列問題的設(shè)置和解決,旨在降低難度,分散難點,使難點予以突破,讓學(xué)生掌握勾股定理在具體問題中的應(yīng)用,使學(xué)生獲得新知,體驗成功,從而增加學(xué)習(xí)興趣。

 。ㄋ模、課堂練習(xí) 習(xí)題18、1 1、5。 學(xué)生板演,師生點評。

  設(shè)計意圖:通過練習(xí)使學(xué)生加深對勾股定理的理解,讓學(xué)生比較練習(xí)題和例題中條件的異同,進一步讓學(xué)生理解勾股定理的運用。

 。ㄎ澹┱n堂小結(jié)

  對學(xué)生提問:"通過這節(jié)課的學(xué)習(xí)有什么收獲?"

  學(xué)生同桌間暢談自己的學(xué)習(xí)感受和體會,并請個別學(xué)生發(fā)言。

  設(shè)計意圖:讓學(xué)生自己小結(jié),活躍了氣氛,做到全員參與,理清了知識脈絡(luò),強化了重點,培養(yǎng)了學(xué)生口頭表達能力。

 。┻_標(biāo)訓(xùn)練與反饋

  設(shè)計意圖:必做題較為簡單,要求全體學(xué)生完成;選作題有一點的難度,基礎(chǔ)較好的學(xué)生能夠完成,體現(xiàn)分層教學(xué)。

  以上內(nèi)容,我僅從"說教材","說學(xué)情"、"說教法"、"說學(xué)法"、"說教學(xué)過程"五個方面來說明這堂課"教什么"和"怎么教",也闡述了"為什么這樣 教",讓學(xué)生人人參與,注重對學(xué)生活動的評價, 探索過程中,會為學(xué)生創(chuàng)設(shè)一個和諧、寬松的情境。希望得到各位專家領(lǐng)導(dǎo)的指導(dǎo)與指正,謝謝!

《勾股定理》說課稿4

尊敬的各位評委,各位老師,大家好:

  我今天說課的內(nèi)容是《勾股定理的逆定理》第一課時。下面我將從教材、目標(biāo)、重點難點、教法、教學(xué)流程等幾個方面向各位專家闡述我對本節(jié)課的教學(xué)設(shè)想。

  一、說教材。

  這節(jié)內(nèi)容選自《蘇科版》義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)八年級上冊第三章《勾股定理》中的第二節(jié)。勾股定理的逆定理是幾何中一個非常重要的定理,它是對直角三角形的再認(rèn)識,也是判斷一個三角形是不是直角三角形的一種重要方法。還是向?qū)W生滲透“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材。八年級正是學(xué)生由實驗幾何向推理幾何過渡的重要時期,通過對勾股定理逆定理的探究,培養(yǎng)學(xué)生的分析思維能力,發(fā)展推理能力。在教學(xué)中滲透類比、轉(zhuǎn)化,從特殊到一般的思想方法。

  二、說教學(xué)目標(biāo)。

  教學(xué)目標(biāo)支配著教學(xué)過程,教學(xué)目標(biāo)的制定和落實是實施課堂教學(xué)的關(guān)鍵?紤]到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及本班學(xué)生的實際情況,我制定了如下教學(xué)目標(biāo):

  1、知識與技能:探索并掌握直角三角形判別思想,會應(yīng)用勾股定理及逆定理解決實際問題。

  2、過程與方法:通過對勾股定理的逆定理的探索和證明,經(jīng)歷知識的發(fā)生,發(fā)展與形成的'過程,體驗“數(shù)形結(jié)合”方法的應(yīng)用。

  3、情感、態(tài)度、價值觀:培養(yǎng)數(shù)學(xué)思維以及合情推理意識,感悟勾股定理和逆定理的應(yīng)用價值。滲透與他人交流、合作的意識和探究精神,體驗數(shù)與形的內(nèi)在聯(lián)系。

  三、說教學(xué)重點、難點,關(guān)鍵。

  本著課程標(biāo)準(zhǔn),在吃透教材的基礎(chǔ)上,我確立了如下的教學(xué)重、難點及關(guān)鍵。

  重點:理解并掌握勾股定理的逆定理,并會應(yīng)用。

  難點:理解勾股定理的逆定理的推導(dǎo)。

  關(guān)鍵:動手驗證,體驗勾股定理的逆定理。

  四、說教法。

  在本節(jié)課中,我設(shè)計了以下幾種教法學(xué)法:

  情景教學(xué)法,啟發(fā)教學(xué)法,分層導(dǎo)學(xué)法。

  讓學(xué)生實踐活動,動手操作,看自己畫的三角形是否為一個直角三角形。體會觀察,作出合理的推測。同時通過引入,讓學(xué)生了解古代都用這種方法來確定直角的。對學(xué)生進行動手能力培養(yǎng)的同時,引導(dǎo)命題的形成過程,自然地得出勾股定理的逆定理。既鍛煉了學(xué)生的實踐、觀察能力,又滲透了人文和探究精神。

  五、說教學(xué)流程。

  1、動手實踐,檢測猜測。引導(dǎo)學(xué)生分別以3cm,4cm,5cm , 2.5cm,6cm,6.5cm和4cm, 7.5 cm, 8.5 cm , 2cm, 5cm, 6cm為邊畫出兩個三角形,觀察猜測三角形的形狀。再引導(dǎo)啟發(fā)學(xué)生從這兩個活動中歸納思考:如果三角形的三邊長a、b、c滿足,那么此三角形是什么三角形?在整個過程的活動中,盡量給學(xué)生充足的時間和空間,以平等的身份參與到學(xué)生活動中來,幫助指導(dǎo)學(xué)生的實踐活動。

  2、探索歸納,證明猜測。

  勾股定理逆定理的證明不同于以往的幾何圖形的證明,需要構(gòu)造直角三角形才能完成,構(gòu)造直角三角形就成為解決問題的關(guān)鍵。如果此時直接將問題拋給學(xué)生證明,學(xué)生定會覺得無從下手。我就采用分層導(dǎo)進的方法,讓學(xué)生從具體的例子中感受總結(jié),再歸納到中抽象中來。于是我就設(shè)計了這樣的兩個步驟:

  先補充一道例題:三邊長度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么聯(lián)系?你是怎么得到的?請簡單說明理由。

  然后再更改上面的例題,變?yōu)椤鰽BC三邊長為a、b、c,滿足,與以a、b為直角邊的直角三角形之間有什么聯(lián)系呢?你們又是如何想的?試說明理由。通過推理證明得出勾股定理的逆定理。

  在這個過程中,要努力引導(dǎo)學(xué)生聯(lián)想到“全等”,進而設(shè)法構(gòu)造直角三角形,讓學(xué)生在不斷的嘗試、探究的過程中,總結(jié)出勾股定理的逆定理。有效地突破本節(jié)的難點。同時提出原命題與逆命題及其關(guān)系。培養(yǎng)良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣對學(xué)生的可持續(xù)發(fā)展是非常重要的,歸納出定理后,與學(xué)生一起分析定理的題設(shè)與結(jié)論,并與勾股定理進行對比,明白兩定理是互逆定理。

  3、嘗試運用,熟悉定理。

  課本中的例題是讓學(xué)生進一步熟練掌握勾股定理的逆定理及其運用的步驟。

  4、分層訓(xùn)練,能力升級。有針對性有層次性地布置練習(xí),及時反饋教學(xué)效果,查缺被漏,并對有困難的學(xué)生給予指導(dǎo)。

  5、總結(jié)內(nèi)容,強化認(rèn)識。使學(xué)生再次感悟勾股定理的逆定理,體會定理的互逆性,加深對“數(shù)形結(jié)合”的理解,更深刻地理解數(shù)學(xué)思想方法在解題中的地位和作用,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  6、布置作業(yè)。有代表性地布置不同層次的作業(yè),尊重學(xué)生的個體差異,滿足多樣化學(xué)習(xí)的需要。

  結(jié)束語:我的說課完了,非常感謝各位領(lǐng)導(dǎo)和專家給了我這次學(xué)習(xí)、聆聽、參與、鍛煉的機會。謝謝大家!

《勾股定理》說課稿5

  一、說教材

  勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。

  據(jù)此,制定教學(xué)目標(biāo)如下:

  1、理解并掌握勾股定理及其證明。

  2、能夠靈活地運用勾股定理及其計算。

  3、培養(yǎng)學(xué)生觀察、比較、分析、推理的`能力。

  4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

  教學(xué)重點:勾股定理的證明和應(yīng)用。

  教學(xué)難點:勾股定理的證明。

  二、說教法和學(xué)法

  教法和學(xué)法是體現(xiàn)在整個教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點:

  1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓同學(xué)們主動參與學(xué)習(xí)全過程。

  2、切實體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動手操作能力,以及分析問題和解決問題的能力。

  3、通過演示實物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

  三、教學(xué)程序

  本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動手、動腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計如下:

 。ㄒ唬﹦(chuàng)設(shè)情境以古引新

  1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。

  2、是不是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學(xué)生進入樂學(xué)狀態(tài)。

  3、板書課題,出示學(xué)習(xí)目標(biāo)。

 。ǘ┏醪礁兄斫饨滩

  教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識,鍛煉學(xué)生主動探究知識,養(yǎng)成良好的自學(xué)習(xí)慣。

 。ㄈ┵|(zhì)疑解難討論歸納

  1、教師設(shè)疑或?qū)W生提疑。如:如何證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時能激發(fā)同學(xué)們的表現(xiàn)欲。

  2、教師引導(dǎo)學(xué)生按照要求進行拼圖,觀察并分析;

 。1)這兩個圖形有什么特點?

  (2)你能寫出這兩個圖形的面積嗎?

 。3)如何運用勾股定理?是否還有其他形式?

  這時教師組織學(xué)生分組討論,調(diào)動全體學(xué)生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

 。ㄋ模╈柟叹毩(xí)強化提高

  1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動靜結(jié)合,以免引起學(xué)生的疲勞。

  2、出示例1學(xué)生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習(xí),進一步提高學(xué)生運用知識的能力,對練習(xí)中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點。

  (五)歸納總結(jié)練習(xí)反饋

  引導(dǎo)同學(xué)們對知識要點進行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),同學(xué)們獨立完成。

  本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動活潑、積極主動地教學(xué)活動,在學(xué)習(xí)中創(chuàng)新精神和實踐能力得到培養(yǎng)。

《勾股定理》說課稿6

  一、 教材分析

 。ㄒ唬┙滩牡匚慌c作用

  勾股定理它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進一步的認(rèn)識和理解。

 。ǘ┙虒W(xué)目標(biāo) 知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。 過程與方法:經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學(xué)生的合情推理意識、主動探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。 情感態(tài)度與價值觀: 激發(fā)愛國熱情,體驗自己努力得到結(jié)論的成就感,體驗數(shù)學(xué)充滿探索和創(chuàng)造,體驗數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。

 。ㄈ┙虒W(xué)重點:經(jīng)歷探索及驗證勾股定理的.過程,并能用它來解決一些簡單的實際問題。

  教學(xué)難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點、突破難點的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動手實驗,讓學(xué)生在實驗中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。

  二、教法與學(xué)法分析:

  學(xué)情分析:七年級學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們在小學(xué)已學(xué)習(xí)了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

  教法分析:結(jié)合七年級學(xué)生和本節(jié)教材的特點,在教學(xué)中采用“問題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式, 選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。

  學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。

  三、 教學(xué)過程設(shè)計

  1、創(chuàng)設(shè)情境,提出問題 2、實驗操作,模型構(gòu)建 3、回歸生活,應(yīng)用新知 4、知識拓展,鞏固深化5、感悟收獲,布置作業(yè)

  (一)創(chuàng)設(shè)情境提出問題

  (1)圖片欣賞 勾股定理數(shù)形圖 1955年希臘發(fā)行 美麗的勾股樹20xx年國際數(shù)學(xué)的一枚紀(jì)念郵票 大會會標(biāo)

  設(shè)計意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價值。

  (2) 某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進入三樓滅火?

  設(shè)計意圖:以實際問題為切入點引入新課,反映了數(shù)學(xué)來源于實際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié)。

  二、實驗操作模型構(gòu)建

  1、等腰直角三角形(數(shù)格子)

  2、一般直角三角形(割補)

  問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系? 設(shè)計意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語言表達能力,體會數(shù)形結(jié)合的思想。

  問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關(guān)系嗎?(割補法是本節(jié)的難點,組織學(xué)生合作交流)

  設(shè)計意圖:不僅有利于突破難點,而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無形中得到提高。

  通過以上實驗歸納總結(jié)勾股定理。

  設(shè)計意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時發(fā)揮了學(xué)生的主體作用,體驗了從特殊—— 一般的認(rèn)知規(guī)律。

  三;貧w生活應(yīng)用新知

  讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,增加學(xué)以致用的樂趣和信心。

  四、知識拓展鞏固深化

  基礎(chǔ)題,情境題,探索題。

  設(shè)計意圖:給出一組題目,分三個梯度,由淺入深層層練習(xí),照顧學(xué)生的個體差異,關(guān)注學(xué)生的個性發(fā)展。知識的運用得到升華。

  基礎(chǔ)題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個數(shù)學(xué)問題?你能解決所提出的問題嗎?

  設(shè)計意圖:這道題立足于雙基.通過學(xué)生自己創(chuàng)設(shè)情境 ,鍛煉了發(fā)散思維.

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?

  設(shè)計意圖:增加學(xué)生的生活常識,也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

  探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識說明。

  設(shè)計意圖:探索題的難度相對大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。

  五、感悟收獲布置作業(yè): 這節(jié)課你的收獲是什么?

  作業(yè):1、課本習(xí)題2、1

  2、搜集有關(guān)勾股定理證明的資料。

  板書設(shè)計 探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2?b2?c2

  設(shè)計說明:1、探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個和諧、寬松的情境,讓學(xué)生體會數(shù)形結(jié)合及從特殊到一般的思想方法.

  2、讓學(xué)生人人參與,注重對學(xué)生活動的評價,一是學(xué)生在活動中的投入程度;二是學(xué)生在活動中表現(xiàn)出來的思維水平、表達水平。

《勾股定理》說課稿7

  一、說教材

  “勾股定理的逆定理”一節(jié)?是在上節(jié)“勾股定理”之后繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化。勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。

  二、說學(xué)情

  中學(xué)生心理學(xué)研究指出,初中階段是智力發(fā)展的關(guān)鍵年齡,學(xué)生邏輯思維從經(jīng)驗型逐步向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨著迅速發(fā)展。學(xué)生此前學(xué)習(xí)了三角形有關(guān)的知識,掌握了直角三角形的性質(zhì)和勾股定理,學(xué)生在此基礎(chǔ)上學(xué)習(xí)勾股定理的逆定理可以加深理解。

  三、說教學(xué)目標(biāo)

  根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容結(jié)合學(xué)生實際我確定了如下教學(xué)目標(biāo)。

  【知識與技能】

  理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。利用勾股定理的逆定理判定一個三角形是不是直角三角形。

  【過程與方法】

  通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關(guān)問題。

  【情感態(tài)度與價值觀】

  通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。

  四、說教學(xué)重難點

  重點:勾股定理逆定理的應(yīng)用;

  難點:探究勾股定理逆定理的證明過程。

  五、說教學(xué)方法

  科學(xué)合理的教學(xué)方法能使教學(xué)效果事半功倍,達到教與學(xué)的和諧完美統(tǒng)一;诖耍覝(zhǔn)備采用的教法是講練結(jié)合法,小組討論法。

  六、說教學(xué)過程

  (一)導(dǎo)入新課

  在導(dǎo)入新課環(huán)節(jié),我會采用溫故知新的導(dǎo)入方法,先讓學(xué)生回顧勾股定理有關(guān)知識,并引入本節(jié)課的課題——勾股定理逆定理。

  【設(shè)計意圖】通過復(fù)習(xí)回顧能很好地將新舊知識聯(lián)系起來,使學(xué)生形成對知識的系統(tǒng)的認(rèn)識。并且由舊知開始,能很好地幫助學(xué)生克服畏難情緒。

  (二)探究新知

  一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識可探索卻又解決不好的問題去提示本節(jié)課的探究宗旨,演示古代埃及人把一根長繩打上等距離的13個結(jié),然后便得到一個直角三角形這是為什么?這個問題一出現(xiàn),馬上激起學(xué)生已有知識與待研究知識的認(rèn)識沖突,引起了學(xué)生的重視激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來創(chuàng)造了我要學(xué)的氣氛,同時也說明了幾何知識來源于實踐不失時機地讓學(xué)生感到數(shù)學(xué)就在身邊。

  因為幾何來源于現(xiàn)實生活,對初二學(xué)生來說選擇適當(dāng)?shù)腵時機讓他們從個體實踐經(jīng)驗中開始學(xué)習(xí)可以提高學(xué)習(xí)的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。

  這樣設(shè)計是因為勾股定理逆定理的證明方法是學(xué)生第一次見,它要求按照已知條件作一個直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個難點,我讓學(xué)生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數(shù)學(xué)模型。

  接下來就是利用這個數(shù)學(xué)模型,從理論上證明這個定理。從動手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等順利作出了輔助直角三角形,整個證明過程自然無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學(xué)生親身體會了動手操作——觀察——猜測——探索——論證的全過程。這樣學(xué)生不是被動接受勾股定理的逆定理?因而使學(xué)生感到自然、親切。學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高,使學(xué)生確實在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。

  在同學(xué)們完成證明之后,可讓他們對照課本把證明過程嚴(yán)格的閱讀一遍充分發(fā)揮教科書的作用養(yǎng)成學(xué)生看書的習(xí)慣這也是在培養(yǎng)學(xué)生的自學(xué)能力。

  (三)鞏固提高

  本著由淺入深的原則安排了三個題目。演示第一題比較簡單(判斷下列三條線段組成的三角形是不是直角三角形,比如15、8、17;13、14、15等等)讓學(xué)生口答讓所有的學(xué)生都能完成。

  第二題則進了一層用字母代替了數(shù)字,繞了一個彎,既可以檢查本課知識又可以提高靈活運用以往知識的能力。

  思維提高了課堂教學(xué)的效果和利用率。在變式訓(xùn)練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學(xué)生的學(xué)習(xí)過程,隨時反饋調(diào)節(jié)教法同時注意加強有針對性的個別指導(dǎo)把發(fā)展學(xué)生的思維和隨時把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。

  (四)小結(jié)作業(yè)

  在小結(jié)環(huán)節(jié),我會隨機詢問學(xué)生勾股定理的逆定理是什么?如果判斷一個三角形是不是直角三角形,以及勾股定理的逆定理的應(yīng)用需要注意點什么等問題,先讓學(xué)生歸納本節(jié)知識和技能,然后教師作必要的補充,尤其是注意總結(jié)思想方法培養(yǎng)能力方面比如輔助線的添法。

  設(shè)計意圖:這樣設(shè)計可以幫助學(xué)生以反思的形式回憶本節(jié)課所學(xué)的知識,加深對知識的印象,有利于學(xué)生良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣的養(yǎng)成。

  由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。第一組是基礎(chǔ)題,我會用ppt出示關(guān)于勾股定理的逆定理的計算題目,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。第二組是開放性題目,讓學(xué)生課后思考總結(jié)一下判定一個三角形是直角三角形的方法。

《勾股定理》說課稿8

  一、 教材分析

  (一)教材地位

  這節(jié)課是九年制義務(wù)教育初級中學(xué)教材北師大版八年級第一章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進一步的認(rèn)識和理解。

  (二)教學(xué)目標(biāo)

  知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。

  過程與方法:經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學(xué)生的合情推理意識、主動探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。

  情感態(tài)度與價值觀:激發(fā)學(xué)生愛國熱情,讓學(xué)生體驗自己努力得到結(jié)論的成就感,體驗數(shù)學(xué)充滿探索和創(chuàng)造,體驗數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。

  (三)教學(xué)重點:

  經(jīng)歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

  教學(xué)難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點、突破難點的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動手實驗,讓學(xué)生在實驗中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。

  二、教法與學(xué)法分析:

  學(xué)情分析:八年級學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們在小學(xué)已學(xué)習(xí)了一些幾何圖形的'面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

  教法分析:結(jié)合八年級學(xué)生和本節(jié)教材的特點,在教學(xué)中采用“問題情境————建立模型————解釋應(yīng)用———拓展鞏固”的模式, 選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。

  學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。

  三、 教學(xué)過程設(shè)計

  1、創(chuàng)設(shè)情境,提出問題

  2、實驗操作,模型構(gòu)建

  3、回歸生活,應(yīng)用新知

  4、知識拓展,鞏固深化5。感悟收獲,布置作業(yè)

  (一)創(chuàng)設(shè)情境提出問題

  樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進入三樓滅火?

  設(shè)計意圖:以實際問題為切入點引入新課,反映了數(shù)學(xué)來源于實際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié)。

  實驗操作模型構(gòu)建

  1、等腰直角三角形(數(shù)格子)

  2、一般直角三角形(割補)

  問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?

  設(shè)計意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語言表達能力,體會數(shù)形結(jié)合的思想。

  問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關(guān)系嗎?(割補法是本節(jié)的難點,組織學(xué)生合作交流)

  設(shè)計意圖:不僅有利于突破難點,而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無形中得到提高。

  通過以上實驗歸納總結(jié)勾股定理。

  設(shè)計意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時發(fā)揮了學(xué)生的主體作用,體驗了從特殊—— 一般的認(rèn)知規(guī)律。

  回歸生活應(yīng)用新知

  讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,增加學(xué)以致用的樂趣和信心。

  四、知識拓展鞏固深化

  基礎(chǔ)題,情境題,探索題。

  設(shè)計意圖:給出一組題目,分三個梯度,由淺入深層層練習(xí),照顧學(xué)生的個體差異,關(guān)注學(xué)生的個性發(fā)展。知識的運用得到升華。

  基礎(chǔ)題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個數(shù)學(xué)問題?你能解決所提出的問題嗎?

  設(shè)計意圖:這道題立足于雙基.通過學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維.

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?

  設(shè)計意圖:增加學(xué)生的生活常識,也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

  探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識說明。

  設(shè)計意圖:探索題的難度相對大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。

  五、感悟收獲布置作業(yè):

  這節(jié)課你的收獲是什么?

  1、課本習(xí)題2。1

  2、搜集有關(guān)勾股定理證明的資料。

  板書設(shè)計 探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  李景萍《探索勾股定理》第一課時說課稿

  設(shè)計說明:

  1、探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個和諧、寬松的情境,讓學(xué)生體會數(shù)形結(jié)合及從特殊到一般的思想方法.

  2、讓學(xué)生人人參與,注重對學(xué)生活動的評價,一是學(xué)生在活動中的投入程度;二是學(xué)生在活動中表現(xiàn)出來的思維水平、表達水平。

《勾股定理》說課稿9

  (一)創(chuàng)設(shè)問題情境,引入新課:

  在這一環(huán)節(jié)中,我設(shè)計了這樣一個情境,多媒體動畫展示,米老鼠來到了數(shù)學(xué)王國里的三角形城堡,要求只利用一根繩子,構(gòu)造一個直角三角形,方可入城,這可難壞了米老鼠,你能幫它想辦法嗎?預(yù)測大多數(shù)同學(xué)會無從下手,這樣引出課題。只有學(xué)習(xí)了勾股定理的逆定理后,大家都能幫助米老鼠進入城堡,我認(rèn)為:“大疑而大進”這樣做,充分調(diào)動學(xué)習(xí)內(nèi)容,激發(fā)求知欲望,動漫演示,又有了很強的趣味性,做到課之初,趣已生,疑已質(zhì)。

  (二)實踐猜想

  本環(huán)節(jié)要圍繞以下幾個活動展開:

  1、算一算:求以線段a,b為直角邊的直角三角形的斜邊c長。

  1a=3b=42a=5b=123a=2.5b=64a=6b=8

  2、猜一猜,以下列線段長為三邊的三角形形狀

  13cm4cm5cm25cm12cm13cm

  32.5cm6cm6.5cm46cm8cm10cm

  3、擺一擺利用方便筷來操作問題2,利用量角器來度量,驗證問題2的發(fā)現(xiàn)。

  4、用恰當(dāng)?shù)恼Z言敘述你的結(jié)論

  在算一算中學(xué)生復(fù)習(xí)了勾股定理,猜一猜和擺一擺中學(xué)生小組合作動手實踐,在問題1的基礎(chǔ)上做出合理的推測和猜想,這樣分層遞進找到了學(xué)生思維的最近發(fā)展區(qū),面向不同層次的每一名學(xué)生,每一名學(xué)生都有參與數(shù)學(xué)活動的機會,最后運用恰當(dāng)?shù)恼Z言表述,得到了勾股定理的逆定理。在整個過程的活動中,教師給學(xué)生充分的時間和空間,教師以平等的身份參與小組活動中,傾聽意見,幫助指導(dǎo)學(xué)生的實踐活動。學(xué)生的擺一擺的過程利用實物投影儀展示,在活動中教師關(guān)注;

  1)學(xué)生的參與意識與動手能力。

  2)是否清楚三角形三邊長度的平方關(guān)系是因,直角三角形是果。既先有數(shù),后有形。

  3)數(shù)形結(jié)合的思想方法及歸納能力。

  (三)推理證明

  八年級正是學(xué)生由實驗幾何向推理幾何過渡的重要時期,多數(shù)學(xué)生難以由直觀到抽象這一思維的飛躍,而勾股定理的逆定理的證明又不同于以往的幾何圖形的證明,需要構(gòu)造直角三角形才能完成,而構(gòu)造直角三角形就成為解決問題的關(guān)鍵,直接拋給學(xué)生證明,無疑會石沉大海,所以,我采用分層導(dǎo)進的方法,以求一石激起千層浪。

  1.三邊長度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的.直角三角形之間有什么關(guān)系?你是怎樣得到的?請簡要說明理由?

  2.△ABC三邊長a,b,c滿足a2+b2=c2與a,b為直角三角形之間有何關(guān)系?試說明理由?

  為了較好完成教師的誘導(dǎo),教師要給學(xué)生獨立思考的時間,要給學(xué)生在組內(nèi)交流個別意見的時間,教師要深入小組指導(dǎo)與幫助,并利用實物投影儀展示小組成果,取得階段性成果再探究問題2.這樣由特殊到一般,凸顯了構(gòu)造直角三角形這一解決問題的關(guān)鍵,讓他們在不斷的探究過程中,親自體驗參與發(fā)現(xiàn)創(chuàng)造的愉悅,有效的突破了難點。

《勾股定理》說課稿10

  一、教材分析

 。ㄒ唬、本節(jié)課在教材中的地位作用

  “勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。

 。ǘ⒔虒W(xué)目標(biāo)

  1、知識技能:1理解并會證明勾股定理的逆定理;

  2會應(yīng)用勾股定理的逆定理判定一個三角形是否為直角三角形; 3知道什么叫勾股數(shù),記住一些覺見的勾股數(shù).

  2、過程與方法:通過對勾股定理的逆定理的探索和證明,經(jīng)歷知識的發(fā)生,發(fā)展與形成的過程,體驗“數(shù)形結(jié)合”方法的應(yīng)用。

  3、情感、態(tài)度價值觀 培養(yǎng)數(shù)學(xué)思維以及合情推理意識,感悟勾股定理和逆定理的應(yīng)用價值。滲透與他人交流、合作的意識和探究精神,體驗數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系。

  (三)、學(xué)情分析:

  盡管已到初二下學(xué)期學(xué)生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見到,它要求根據(jù)已知條件構(gòu)造一個直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點,這樣就確定了本節(jié)課的重點、難點。 教學(xué)重點:勾股定理逆定理的應(yīng)用

  教學(xué)難點:勾股定理逆定理的證明

  二、教學(xué)過程

  本節(jié)課的設(shè)計原則是:使學(xué)生在動手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認(rèn)識結(jié)構(gòu)與幾何知識結(jié)構(gòu)之間筑了一個信息流通渠道,進而達到完善學(xué)生的數(shù)學(xué)認(rèn)識結(jié)構(gòu)的目的。

 。ㄒ唬⿵(fù)習(xí)回顧

  復(fù)習(xí)回顧與直角三角形、勾股定理有關(guān)的內(nèi)容,建立新舊知識之間的聯(lián)系。

  (二)創(chuàng)設(shè)問題情境

  一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結(jié),然后用樁釘如圖那樣的`三角形,便得到一個直角三角形。這是為什么?。這個問題一出現(xiàn)馬上激起學(xué)生已有知識與待研究知識的認(rèn)識沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來,創(chuàng)

  造了我要學(xué)的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學(xué)生感到數(shù)學(xué)就在身邊。

 。ㄈ⿲W(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點突破)

  因為幾何來源于現(xiàn)實生活,對初二學(xué)生來說選擇適當(dāng)?shù)臅r機,讓他們從個體實踐經(jīng)驗中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動手畫圖在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。

  這樣設(shè)計是因為勾股定理逆定理的證明方法是學(xué)生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個難點,我讓學(xué)生動手畫出了一個兩直角邊與所給三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數(shù)學(xué)模型。

  接下來就是利用這個數(shù)學(xué)模型,從理論上證明這個定理。從動手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學(xué)生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學(xué)生不是被動接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。

  在同學(xué)們完成證明之后,同時讓學(xué)生總結(jié)互逆命題、互逆定理的關(guān)系,并舉例指出哪些為互逆定理。然后讓他們對照課本把證明過程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。

 。ㄋ模┙M織變式訓(xùn)練

  本著由淺入深的原則,安排了兩個例題。(演示)第一題比較簡單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進了一層,不僅判斷是否為直接三角形,還繞了一個彎,指出哪一個角是直角。這樣既可以檢查本課知識,又可以提高靈活運用以往知識的能力。例題講解后安排了三個練習(xí),循序漸進,由淺入深。培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。讓學(xué)生知道勾股逆定理的用途,激發(fā)學(xué)生的學(xué)習(xí)興趣。我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學(xué)生的學(xué)習(xí)過程,隨時反饋,調(diào)節(jié)教法,同時注意加強有針對性的個別指導(dǎo),把發(fā)展學(xué)生的思維和隨時把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。

 。ㄎ澹w納小結(jié),納入知識體系

  本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識和技能,然后教師作必要的補充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并

  告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過自己親手實踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認(rèn)識問題的好方法,希望同學(xué)在課外練習(xí)時注意用這種方法,這都是教給學(xué)習(xí)方法。

  (六)作業(yè)布置

  由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩題作業(yè)。第一題是基本的思維訓(xùn)練項目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。第二題適當(dāng)加大難度,拓寬知識,供有能力又有興趣的學(xué)生做,日積月累,對訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個性有積極作用。

  三、說教法學(xué)法與教學(xué)手段

  為貫徹實施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動發(fā)展的精神和培養(yǎng)創(chuàng)新活動的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動手、觀察、分析、猜想、驗證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識上升到理性認(rèn)識,加深對所學(xué)知識的理解和掌握;有利于突破難點和突出重點。

  此外,本節(jié)課我還采用了理論聯(lián)系實際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗和感性認(rèn)識,由最鄰近的知識去向本節(jié)課遷移,通過動手操作讓學(xué)生獨立探討、主動獲取知識。

  總之,本節(jié)課遵循從生動直觀到抽象思維的認(rèn)識規(guī)律,力爭最大限度地調(diào)動學(xué)生學(xué)習(xí)的積極性;力爭把教師教的過程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識的過程;力爭使學(xué)生在獲得知識的過程中得到能力的培養(yǎng)。

《勾股定理》說課稿11

  一、教材分析

 。ㄒ唬┙滩牡匚

  這節(jié)課是九年制義務(wù)教育初級中學(xué)教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進一步的認(rèn)識和理解。

 。ǘ┙虒W(xué)目標(biāo)

  1、知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。

  2、過程與方法:經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學(xué)生的合情推理意識、主動探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。

  3、情感態(tài)度與價值觀: 激發(fā)學(xué)生愛國熱情,讓學(xué)生體驗自己努力得到結(jié)論的成就感,體驗數(shù)學(xué)充滿探索和創(chuàng)造,體驗數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。

  (三)教學(xué)重點

  經(jīng)歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

  教學(xué)難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點、突破難點的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動手實驗,讓學(xué)生在實驗中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。

  二、教法與學(xué)法分析

  學(xué)情分析:

  七年級學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們在小學(xué)已學(xué)習(xí)了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。

  另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

  教法分析:

  結(jié)合七年級學(xué)生和本節(jié)教材的特點,在教學(xué)中采用“問題情境————建立模型————解釋應(yīng)用———拓展鞏固”的模式, 選擇引導(dǎo)探索法。

  把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。

  學(xué)法分析:在教師的'組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。

  三、教學(xué)過程設(shè)計

  (一)創(chuàng)設(shè)情境,提出問題

 。1)圖片欣賞勾股定理數(shù)形圖

  1955年希臘發(fā)行美麗的勾股樹

  20xx年國際數(shù)學(xué)的一枚紀(jì)念郵票

  大會會標(biāo)

  設(shè)計意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價值。

 。2)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進入三樓滅火?

  設(shè)計意圖:以實際問題為切入點引入新課,反映了數(shù)學(xué)來源于實際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié)。

 。ǘ⿲嶒灢僮髂P蜆(gòu)建

  1、等腰直角三角形(數(shù)格子)

  2、一般直角三角形(割補)

  問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?

  設(shè)計意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語言表達能力,體會數(shù)形結(jié)合的思想。

  問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關(guān)系嗎?(割補法是本節(jié)的難點,組織學(xué)生合作交流)

  設(shè)計意圖:不僅有利于突破難點,而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無形中得到提高。

  通過以上實驗歸納總結(jié)勾股定理。

  設(shè)計意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時發(fā)揮了學(xué)生的主體作用,體驗了從特殊—— 一般的認(rèn)知規(guī)律。

 。ㄈ┗貧w生活應(yīng)用新知

  讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,增加學(xué)以致用的樂趣和信心。

 。ㄋ模┲R拓展鞏固深化

  基礎(chǔ)題,情境題,探索題。

  設(shè)計意圖:給出一組題目,分三個梯度,由淺入深層層練習(xí),照顧學(xué)生的個體差異,關(guān)注學(xué)生的個性發(fā)展。知識的運用得到升華。

  基礎(chǔ)題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個數(shù)學(xué)問題?你能解決所提出的問題嗎?

  設(shè)計意圖:這道題立足于雙基.通過學(xué)生自己創(chuàng)設(shè)情境 ,鍛煉了發(fā)散思維。

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?

  設(shè)計意圖:增加學(xué)生的生活常識,也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

  探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識說明。

  設(shè)計意圖:探索題的難度相對大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。

  (五)感悟收獲布置作業(yè)

  這節(jié)課你的收獲是什么?

  作業(yè):

  1、課本習(xí)題2.1

  2、搜集有關(guān)勾股定理證明的資料。

  四、板書設(shè)計

  探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  設(shè)計說明:

  1、探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個和諧、寬松的情境,讓學(xué)生體會數(shù)形結(jié)合及從特殊到一般的思想方法。

  2、讓學(xué)生人人參與,注重對學(xué)生活動的評價,一是學(xué)生在活動中的投入程度;二是學(xué)生在活動中表現(xiàn)出來的思維水平、表達水平。

  圖文搜集自網(wǎng)絡(luò),如有侵權(quán),請聯(lián)系刪除。

  鐵樹老師面試輔導(dǎo),喜馬拉雅app—主播—教師面試大雜燴

《勾股定理》說課稿12

  說課,就是教師備課之后講課之前(或者在講課之后)把教材、教法、學(xué)法、授課程序等方面的思路、教學(xué)設(shè)計、|板書設(shè)計及其依據(jù)面對面地對同行(同學(xué)科教師)或其他聽眾作全面講述的一項教研活動或交流活動。以下是小編整理的初中數(shù)學(xué)《勾股定理的逆定理》說課稿,歡迎大家閱讀參考。

  一、教材分析:

 。ㄒ唬、本節(jié)課在教材中的地位作用

  “勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。

 。ǘ⒔虒W(xué)目標(biāo):

  根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實際我確定了本節(jié)課的教學(xué)目標(biāo)。

  知識技能:

  1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。

  2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形

  過程與方法:

  1、通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成的過程

  2、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)與形結(jié)合方法的應(yīng)用

  3、通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關(guān)問題。

  情感態(tài)度:

  1、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系

  2、在探究勾股定理的逆定理的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神

  (三)、學(xué)情分析:

  盡管已到初二下學(xué)期學(xué)生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見到,它要求根據(jù)已知條件構(gòu)造一個直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點,這樣如何添輔助線就是解決它的關(guān)鍵,這樣就確定了本節(jié)課的重點、難點和關(guān)鍵。

  重點:勾股定理逆定理的應(yīng)用

  難點:勾股定理逆定理的證明

  關(guān)鍵:輔助線的添法探索

  二、教學(xué)過程:

  本節(jié)課的設(shè)計原則是:使學(xué)生在動手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認(rèn)識結(jié)構(gòu)與幾何知識結(jié)構(gòu)之間筑了一個信息流通渠道,進而達到完善學(xué)生的數(shù)學(xué)認(rèn)識結(jié)構(gòu)的目的。

 。ㄒ唬(fù)習(xí)回顧:復(fù)習(xí)回顧與勾股定理有關(guān)的內(nèi)容,建立新舊知識之間的聯(lián)系。

 。ǘ(chuàng)設(shè)問題情境

  一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結(jié),然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?……。這個問題一出現(xiàn)馬上激起學(xué)生已有知識與待研究知識的認(rèn)識沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來,創(chuàng)造了我要學(xué)的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學(xué)生感到數(shù)學(xué)就在身邊。

 。ㄈ、學(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點突破)

  因為幾何來源于現(xiàn)實生活,對初二學(xué)生來說選擇適當(dāng)?shù)臅r機,讓他們從個體實踐經(jīng)驗中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。

  這樣設(shè)計是因為勾股定理逆定理的證明方法是學(xué)生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個難點,我讓學(xué)生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數(shù)學(xué)模型。

  接下來就是利用這個數(shù)學(xué)模型,從理論上證明這個定理。從動手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學(xué)生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學(xué)生不是被動接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。

  在同學(xué)們完成證明之后,可讓他們對照課本把證明過程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。

 。ㄋ模、組織變式訓(xùn)練

  本著由淺入深的原則,安排了三個題目。(演示)第一題比較簡單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進了一層,字母代替了數(shù)字,繞了一個彎,既可以檢查本課知識,又可以提高靈活運用以往知識的能力。第三題則要求更高,要求學(xué)生能夠推出可能的結(jié)論,這些作法培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。在變式訓(xùn)練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學(xué)生的學(xué)習(xí)過程,隨時反饋,調(diào)節(jié)教法,同時注意加強有針對性的個別指導(dǎo),把發(fā)展學(xué)生的思維和隨時把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。

  (五)、歸納小結(jié),納入知識體系

  本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識和技能,然后教師作必要的補充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的'添法,數(shù)形結(jié)合的思想,并告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過自己親手實踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認(rèn)識問題的好方法,希望同學(xué)在課外練習(xí)時注意用這種方法,這都是教給學(xué)習(xí)方法。

  (六)、作業(yè)布置

  由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。A組是基本的思維訓(xùn)練項目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。B組題適當(dāng)加大難度,拓寬知識,供有能力又有興趣的學(xué)生做,日積月累,對訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個性有積極作用。

  三、說教法、學(xué)法與教學(xué)手段

  為貫徹實施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動發(fā)展的精神和培養(yǎng)創(chuàng)新活動的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動手、觀察、分析、猜想、驗證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識上升到理性認(rèn)識,加深對所學(xué)知識的理解和掌握;有利于突破難點和突出重點。

  此外,本節(jié)課我還采用了理論聯(lián)系實際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗和感性認(rèn)識,由最鄰近的知識去向本節(jié)課遷移,通過動手操作讓學(xué)生獨立探討、主動獲取知識。

  總之,本節(jié)課遵循從生動直觀到抽象思維的認(rèn)識規(guī)律,力爭最大限度地調(diào)動學(xué)生學(xué)習(xí)的積極性;力爭把教師教的過程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識的過程;力爭使學(xué)生在獲得知識的過程中得到能力的培養(yǎng)。

《勾股定理》說課稿13

  一、說教材

  (一)教材分析

  本節(jié)內(nèi)容選自人教版八年級數(shù)學(xué)下冊第17章第二節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個直角三角形的判定定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計算的方法來證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆。

 。ǘ┙虒W(xué)目標(biāo)

  根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實際我確定了本節(jié)課的教學(xué)目標(biāo)。

  知識技能:

  理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。

  掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形。

  了解逆命題的概念,以及原命題為真時,它的逆命題不一定為真。

  過程方法:

  1、通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成的過程

  2、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)形結(jié)合方法的應(yīng)用

  3、通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關(guān)問題。

  情感態(tài)度:

  在探究勾股定理的逆定理的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神

 。ㄈ⿲W(xué)情分析

  盡管已到初二下學(xué)期的學(xué)生知識增多,能力增強,但思維的局限性還很大,能力之間也有差距,而利用“構(gòu)造法”證明勾股定理的逆定理學(xué)生第一次見到,它要求根據(jù)已知條件構(gòu)造一個直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的'逆定理的證明又是本節(jié)的難點,而勾股定理逆定理的應(yīng)用是本節(jié)重點

  重點:勾股定理逆定理的應(yīng)用

  難點:勾股定理逆定理的證明

  二、說教法學(xué)法

  數(shù)學(xué)課程不僅注重知識、技能,以及情感意識和創(chuàng)造力的培養(yǎng),同樣注重社會實踐和體驗,教學(xué)要遵循以教師為主導(dǎo),學(xué)生為主體的原則,因此我采用的教法學(xué)法如下:

  在教學(xué)中以小組合作,自主探索為形式,采用“提問引導(dǎo)法”,通過“提出疑問”來啟發(fā)誘導(dǎo)學(xué)生,讓學(xué)生自覺主動地去分析問題、解決問題,學(xué)生在操作過程中不斷“發(fā)現(xiàn)問題——解決問題”,變學(xué)生“學(xué)會”為“會學(xué)”.這樣不僅使學(xué)生學(xué)習(xí)目標(biāo)明確,而且能夠培養(yǎng)他們的合作精神和自主學(xué)習(xí)的能力。根據(jù)學(xué)法指導(dǎo)自主性和差異性原則,本節(jié)我主要采用自主探究學(xué)習(xí)法,通過設(shè)計一系列問題,引導(dǎo)學(xué)生主動探究新知,體現(xiàn)學(xué)習(xí)自主性,從不同層面發(fā)掘不同學(xué)生的不同能力。

  三、說教學(xué)準(zhǔn)備

  1、多媒體教學(xué)課件

  2、紙片、直尺、圓規(guī)等

  3、對學(xué)生事先分組

  四、說教學(xué)過程

  根據(jù)本課教學(xué)內(nèi)容以及數(shù)學(xué)課程學(xué)科特點,結(jié)合八年級學(xué)生的實際認(rèn)知水平,我設(shè)計了如下六個教學(xué)環(huán)節(jié):

 。ㄒ唬⿵(fù)習(xí)提問、引入新課

  問題1:前面我們學(xué)習(xí)了勾股定理,你能說出它的題設(shè)和結(jié)論嗎?

  問題2:若一個三角形三邊具有a2+b2=c2,能否確定這個三角形是直角三角形?

 。ǘ﹦邮植僮鳌⒂^察猜想

  探究一:分組做實驗

  第一組同學(xué)每人畫一個邊長為3cm、4 cm、5 cm的三角形;

  第二組同學(xué)每人畫一個邊長為2.5 cm、6 cm、7.5 cm的三角形;

  第三組同學(xué)每人畫一個邊長為4 cm、7.5 cm、8.5 cm的三角形;

  第四組同學(xué)每人畫一個邊長為2 cm、5 cm、6 cm的三角形。

  問題1:觀察這些三角形,它們分別是什么形狀呢?并測量驗證

  問題2:前三個三角形三邊具有怎樣的關(guān)系呢?

  問題3: 結(jié)合三角形三邊長度的平方關(guān)系,你能猜一猜三角形的三邊長度與三角形的形狀之間有怎樣的關(guān)系嗎?

  學(xué)生活動:動手、觀察、測量、思考、猜想

  設(shè)計意圖:由特殊到一般,歸納猜想得出勾股定理的逆命題,既培養(yǎng)學(xué)生動手操作能力和尋求解決數(shù)學(xué)問題的一般方法,又體驗了數(shù)與形的內(nèi)在聯(lián)系。

  (三)實踐驗證,歸納證明

  教師出示問題

  問題1:對于一個真命題,它的逆命題是否也為真?學(xué)生舉例說明。

  勾股定理的逆命題是否也正確?怎么證明?

  問題2:三邊長度分別3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關(guān)系,你是怎樣得到的?(出示紙片)

  問題3:你能否借鑒問題2的方法來證明勾股定理的逆命題呢?

  學(xué)生活動:觀察思考,動手操作,分組討論,交流合作(教師引導(dǎo)學(xué)生主動探索,在師生互動中完成證明,得到勾股定理的逆定理)

  設(shè)計意圖:把“構(gòu)造直角三角形”這一方法的獲取過程交給學(xué)生,讓他們在不斷的嘗試、探究的過程中,親身體驗參與發(fā)現(xiàn)的愉悅,有效地突破本節(jié)的難點。

《勾股定理》說課稿14

  一、教材分析

  (一)教材所處的地位

  這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書八年級第十八章第一節(jié)勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進一步的認(rèn)識和理解。

  (二)根據(jù)課程標(biāo)準(zhǔn),本課的教學(xué)目標(biāo)是:

  1、知識技能:了解勾股定理的文化背景,體驗勾股定理的探索過程。

  2、數(shù)學(xué)思考:在勾股定理的探索過程中,發(fā)展合情推理能力,體會數(shù)形結(jié)合的.思想。

  3、解決問題:①通過拼圖活動,體驗數(shù)學(xué)思維的嚴(yán)謹(jǐn)性,發(fā)展形象思維。

 、谠谔骄窟^程中,學(xué)會與人合作并能與他人交流思維的過程和探究的結(jié)果。

  4、情感態(tài)度:①通過介紹勾股定理在中國古代的研究,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想,激發(fā)學(xué)生發(fā)奮學(xué)習(xí)。

 、谠谔骄窟^程中,體驗解決問題方法的多樣性,培養(yǎng)學(xué)生的合作交流意識和探索精神。

  (三)本課的教學(xué)重點:探索和證明勾股定理

  本課的教學(xué)難點:用拼圖的方法證明勾股定理

  二、教法與學(xué)法分析:

  教法分析:針對八年級學(xué)生的知識結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問題實驗操作歸納驗證問題解決鞏固練習(xí)課堂小結(jié) 布置作業(yè)七部分。

  學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識,掌握方法,借此培養(yǎng)學(xué)生動手、動腦、動口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。

  三、教學(xué)過程設(shè)計

  (一)提出問題:

  首先提出問題1:你知道下圖所表示的意義嗎?創(chuàng)設(shè)問題情境,2002年在北京召開了第24屆國際數(shù)學(xué)家大會,它是最高水平的全球性數(shù)學(xué)科學(xué)學(xué)術(shù)會議,被譽為數(shù)學(xué)界的奧運會,這就是本屆大會會徽的圖案,你聽說過勾股定理嗎?通過提出問題,從而激發(fā)學(xué)生的求知欲。

  其次提出問題2:你知道勾三、股四、弦五的意義嗎?此問題由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的求知欲。

《勾股定理》說課稿15

  一、 教材分析

 。ㄒ唬┙滩牡匚

  這節(jié)課是九年制義務(wù)教育初級中學(xué)教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進一步的認(rèn)識和理解。

 。ǘ┙虒W(xué)目標(biāo) 知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。 過程與方法:經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學(xué)生的合情推理意識、主動探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。 情感態(tài)度與價值觀: 激發(fā)學(xué)生愛國熱情,讓學(xué)生體驗自己努力得到結(jié)論的成就感,體驗數(shù)學(xué)充滿探索和創(chuàng)造,體驗數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。

 。ㄈ┙虒W(xué)重點:經(jīng)歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

  教學(xué)難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點、突破難點的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動手實驗,讓學(xué)生在實驗中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。

  二、教法與學(xué)法分析:

  學(xué)情分析:七年級學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們在小學(xué)已學(xué)習(xí)了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

  教法分析:結(jié)合七年級學(xué)生和本節(jié)教材的特點,在教學(xué)中采用“問題情境————建立模型————解釋應(yīng)用———拓展鞏固”的模式, 選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。

  學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。

  三、 教學(xué)過程設(shè)計

  1、創(chuàng)設(shè)情境,提出問題

  2、實驗操作,模型構(gòu)建

  3、回歸生活,應(yīng)用新知

  4、知識拓展,鞏固深化

  5、感悟收獲,布置作業(yè)

 。ㄒ唬﹦(chuàng)設(shè)情境提出問題

  (1)圖片欣賞 勾股定理數(shù)形圖 1955年希臘發(fā)行 美麗的勾股樹20xx年國際數(shù)學(xué) 的一枚紀(jì)念郵票 大會會標(biāo) 設(shè)計意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價值。

 。2) 某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進入三樓滅火

  設(shè)計意圖:以實際問題為切入點引入新課,反映了數(shù)學(xué)來源于實際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的.過程也是一個“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié)。

  二、實驗操作模型構(gòu)建

  1、等腰直角三角形(數(shù)格子)

  2、一般直角三角形(割補)

  問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系

  設(shè)計意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語言表達能力,體會數(shù)形結(jié)合的思想。

  問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關(guān)系嗎 (割補法是本節(jié)的難點,組織學(xué)生合作交流)

  設(shè)計意圖:不僅有利于突破難點,而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無形中得到提高。

  通過以上實驗歸納總結(jié)勾股定理。

  設(shè)計意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時發(fā)揮了學(xué)生的主體作用,體驗了從特殊—— 一般的認(rèn)知規(guī)律。

  三;貧w生活應(yīng)用新知

  讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,增加學(xué)以致用的樂趣和信心。

  四、知識拓展鞏固深化

  基礎(chǔ)題,情境題,探索題。

  設(shè)計意圖:給出一組題目,分三個梯度,由淺入深層層練習(xí),照顧學(xué)生的個體差異,關(guān)注學(xué)生的個性發(fā)展。知識的運用得到升華。

  基礎(chǔ)題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個數(shù)學(xué)問題 你能解決所提出的問題嗎

  設(shè)計意圖:這道題立足于雙基.通過學(xué)生自己創(chuàng)設(shè)情境 ,鍛煉了發(fā)散思維. 情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎

  設(shè)計意圖:增加學(xué)生的生活常識,也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。 探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么 試用今天學(xué)過的知識說明。

  設(shè)計意圖:探索題的難度相對大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。

  五、感悟收獲布置作業(yè): 這節(jié)課你的收獲是什么

  作業(yè):1、課本習(xí)題

  2、1 2、搜集有關(guān)勾股定理證明的資料。

  板書設(shè)計 探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  a2 b2 c2

  設(shè)計說明::1。探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個和諧、寬松的情境,讓學(xué)生體會數(shù)形結(jié)合及從特殊到一般的思想方法.

  2、讓學(xué)生人人參與,注重對學(xué)生活動的評價,一是學(xué)生在活動中的投入程度;二是學(xué)生在活動中表現(xiàn)出來的思維水平、表達水平。

【《勾股定理》說課稿】相關(guān)文章:

勾股定理說課稿02-11

勾股定理說課稿07-05

《勾股定理》的說課稿06-08

《勾股定理》說課稿12-16

探索勾股定理說課稿11-04

《勾股定理》優(yōu)秀說課稿01-21

探索《勾股定理》說課稿01-04

探索勾股定理說課稿12-06

勾股定理說課稿(15篇)02-04

勾股定理說課稿五篇04-25