當前位置:育文網(wǎng)>教學文檔>說課稿> 八年級數(shù)學上冊《11.2三角形內(nèi)角和》說課稿

八年級數(shù)學上冊《11.2三角形內(nèi)角和》說課稿

時間:2022-06-18 13:12:36 說課稿 我要投稿
  • 相關推薦

八年級數(shù)學上冊《11.2三角形內(nèi)角和》說課稿

  作為一位杰出的教職工,常常要根據(jù)教學需要編寫說課稿,說課稿有助于提高教師的語言表達能力。優(yōu)秀的說課稿都具備一些什么特點呢?以下是小編為大家整理的八年級數(shù)學上冊《11.2三角形內(nèi)角和》說課稿,歡迎閱讀與收藏。

八年級數(shù)學上冊《11.2三角形內(nèi)角和》說課稿

  八年級數(shù)學上冊《11.2三角形內(nèi)角和》說課稿1

  大家好!今天我說課的題目是《三角形的內(nèi)角》,我將從如下方面作出說明。

  一、教材分析

  (一)教學內(nèi)容的地位

  本節(jié)課是在研究了三角形的有關概念和學生在對“三角形的內(nèi)角和等于1800”有感性認識的基礎上,對該定理進行推理論證。它是進一步研究三角形及其它圖形的重要基礎,更是研究多邊形問題轉(zhuǎn)化的關鍵點;此外,在它的證明中第一次引入了輔助線,而輔助線又是解決幾何問題的一種重要工具,因此本節(jié)是本章的一個重點。

  (二)教學重點、難點:

  三角形內(nèi)角和等于180度,是三角形的一條重要性質(zhì),有著廣泛的應用。雖然學生在小學已經(jīng)知道這一結(jié)論,但沒有從理論的角度進行推理論證,因此三角形內(nèi)角和等于180度的證明及應用是本節(jié)課的重點。

  另外,由于學生還沒有正式學習幾何證明,而三角形內(nèi)角和等于180度的證明難度又較大,因此證明三角形內(nèi)角和等于180度也是本節(jié)課的難點。

  突破難點的關鍵:讓學生通過動手實踐獲得感性認識,將實物圖形抽象轉(zhuǎn)化為幾何圖形得出所需輔助線。

  二、教學目標

  基于以上分析和數(shù)學課程標準的要求,我制定了本節(jié)課的教學目標,下面我從以下三個方面進行說明。

 。ㄒ唬┲R與技能目標:

  會用平行線的性質(zhì)與平角的定義證明三角形的內(nèi)角和等于1800,能用三角形內(nèi)角和等于180度進行角度計算和簡單推理,并初步學會利用輔助線解決問題,體會轉(zhuǎn)化思想在解決問題中的應用。

  (二)過程與方法目標:

  經(jīng)歷拼圖試驗、合作交流、推理論證的過程,體現(xiàn)在“做中學”,發(fā)展學生的合情推理能力和邏輯思維能力。

 。ㄈ┣楦、態(tài)度價值觀目標:

  通過操作、交流、探究、表述、推理等活動培養(yǎng)學生的合作精神,體會數(shù)學知識內(nèi)在的聯(lián)系與嚴謹性,鼓勵學生大膽質(zhì)疑,敢于提出不同見解,培養(yǎng)學生良好的學習習慣。

  三、學情分析

  七年級學生的特點是模仿力強,喜歡動手,思維活躍,但思維往往依賴于直觀具體的形象,而學生在小學已通過量、拼、折等實驗的方法得出了三角形內(nèi)角和等于180度這一結(jié)論,只是沒有從理論的角度去研究它,學生現(xiàn)在已具備了簡單說理的能力,同時已學習了平行線的性質(zhì)和判定及平角的定義,這就為學生自主探究,動手實驗,討論交流、嘗試證明做好了準備。

  四、教學方法與學法指導:

  根據(jù)新課程標準的要求,學習活動應體現(xiàn)學生身心發(fā)展特點,應有利于引導學生主動探索和發(fā)現(xiàn),因此,我采用了動手操作—觀察實驗—猜想論證的探究式教學方法,整個探究學習的過程充滿了師生之間,生生之間的交流和互動,體現(xiàn)了教師是教學活動的組織者、引導者、合作者,學生才是學習的主體。并教給學生通過動手實驗、觀察思考、抽象概括從而獲得知識的學習方法,培養(yǎng)他們利用舊知識獲取新知識的能力。

  五、教學活動程序:

  我結(jié)合七年級學生的年齡特點,采用了“1、情景激趣引出課題”的環(huán)節(jié)引入課題,這樣可以激發(fā)學生學習興趣和求知欲,為探索新知識創(chuàng)造一個最佳的心理和認知環(huán)境。讓學生說明三角形內(nèi)角和是180度,是本節(jié)課的重點、難點,為此我設計了“2、自主探索動手實驗”“3、討論交流嘗試證明”以下兩個環(huán)節(jié)。定理的掌握必須要有訓練作為依托,因此我設計了“4、應用新知鞏固提高。為了培養(yǎng)學生學習數(shù)學的興趣,在競爭中體驗成功的快樂。我設計了“5.‘漁技’大比拼”這4道習題既含蓋了方程的思想又包括了整體的思想,還讓學生提前感受到了反證法的方法,有利于學生掌握重要的數(shù)學思想方法;仡櫴谷擞洃浬羁,反思促人進步。在“6、暢談體會課外延伸”這一環(huán)節(jié)我選擇從三個方面,讓學生進行回顧反思和作業(yè)補充。我認為學生要從一堂課中得到收獲不僅僅是知識上的,更重要的是讓他們通過這種方式,獲取比知識本身更重要的東西,那就是數(shù)學方法,數(shù)學能力以及對數(shù)學的積極情感。

  六、設計說明與教學反思

  本節(jié)課的設計從學生已有的知識經(jīng)驗出發(fā),遵循學生的認知規(guī)律,將實物拼圖與說理論證有機結(jié)合,在動手操作,合情推理的基礎上進行嚴密的推理論證,使學生對知識的認識從感性逐步上升到理性。以問題為載體,在探究解決問題策略的過程中學會知識、感悟方法、訓練思維、發(fā)展能力,練習的設計起點低、范圍廣、有梯度,以滿足不同程度學生的'需要。樹立大數(shù)學觀,把課堂探究活動延伸到課外,在課與課之間,新舊知識之間,數(shù)學與生活之間搭建橋梁,為學生長遠的發(fā)展奠基。

  本節(jié)課的教學在一種輕松愉快的氛圍中完成,大部分學生能參與活動中,突出了重點,突破了難點。完成了教學任務。取得了較好的教學效果。練習除注重基礎外并進行了延伸。拓寬了學生思維的空間。美中不足的是,還有少部分學習基礎較差的學生可能沒有在參與活動中去思考,收獲不大。

  新課程的教學評價對老師和學生都提出了新的要求:因此整個教學過程中我對學生的如下方面作出了多元化的關注:

  1、關注學生探索結(jié)論、分析思路和方法的過程。

  2、關注學生說理的能力和水平。

  3、關注學生參與教學活動的程度。以期待人人都能學有所得,不同的學生在課堂上得到不同的發(fā)展。

  以上是我對這節(jié)課的初淺認識,希望得能到各位專家、各位老師的指導,謝謝大家!

  八年級數(shù)學上冊《11.2三角形內(nèi)角和》說課稿2

  一、說教材

  “三角形的內(nèi)角和”是九年義務教育六年制小學四年級下冊第六單元第3節(jié)的內(nèi)容!叭切蔚膬(nèi)角和”是三角形的一個重要性質(zhì),是“空間與圖形”領域的重要內(nèi)容之一,學好它有助于學生理解三角形內(nèi)角之間的關系,也是進一步學習幾何的基礎。經(jīng)過第一學段以及本單元的學習,學生已經(jīng)具備一定的關于三角形的認識的直接經(jīng)驗,已具備了一些相應的三角形知識和技能,這為感受、理解、抽象“三角形的內(nèi)角和”的概念,打下了堅實的基礎。

  為方便教師領會教材編寫的意圖與理念,開展有效的教學,更好的發(fā)展學生的空間觀念,培養(yǎng)學生的各種能力,教材在呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識形成的過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活的組織教學提供了清晰的思路。主要體現(xiàn)在:概念的形成不直接給出結(jié)論,而是提供豐富的動手實踐的素材,設計思考性較強的問題,讓學生通過探索、實驗、發(fā)現(xiàn)、討論、交流獲得。從而讓學生在動手操作,積極探索的活動過程中掌握知識,積累數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力,不斷提高自己的思維水平。基于對教材以上的認識及課程標準的要求,我擬定本節(jié)課的教學目標為:

  1、知識目標:知道三角形內(nèi)角和是180°。

  2、能力目標:

 、偻ㄟ^學生猜、測、拼、折、觀察等活動,培養(yǎng)學生探索、發(fā)現(xiàn)能力、觀察能力和動手操作能力。

 、谀苓\用三角形內(nèi)角和是180°這一規(guī)律解決實際問題。

  3、情感目標:

 、僮寣W生在探索活動中產(chǎn)生對數(shù)學的好奇心,發(fā)展學生的空間觀念;

 、隗w驗探索的樂趣和成功的快樂,增強學好數(shù)學的信心。

  教學重點:三角形內(nèi)角和是180°的實際應用。

  教學難點:探索三角形的內(nèi)角和是180°

  二、說教法

  新課程標準的基本理念就是要讓學生“人人學有價值的數(shù)學”。強調(diào)“教學要從學生已有的經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋與應用的過程。要激發(fā)學生的學習積極性,向?qū)W生提供充分從事數(shù)學活動的機會,讓他們積極主動地探索,解決數(shù)學問題,發(fā)現(xiàn)數(shù)學規(guī)律,獲得數(shù)學經(jīng)驗;而教師只是學生學習的組織者、引導者和合作者,在全面參與和了解學生的學習過程中起著對學生進行積極的評價,關注他們的學習方法、學習水平和情感態(tài)度,促使學生向著預定的目標發(fā)展的作用”。因此,我運用“猜一猜——量一量——拼—拼——折一折——看一看……”的教學法,讓學生知道身邊的數(shù)學問題隨處可見,能用自己所學的知識解決生活當中的事情,培養(yǎng)學生的發(fā)散思維,進一步激發(fā)學生學習數(shù)學的熱情。

  三、說學法

  學法是學生再生知識的法寶。為了使在整節(jié)課的探索活動中,我的設計有獨立活動、二人活動及分小組活動。在具體活動中,我讓學生大膽猜想,自主探索三角形的內(nèi)角和是多少度?再通過測量、拼折、驗證等方式讓學生確定三角形內(nèi)角的度數(shù)和。這樣,既培養(yǎng)了學生的觀察能力和歸納概括能力,又體現(xiàn)了學生動手實踐、合作交流,自主探索的學習方式,同時也培養(yǎng)了學生探索能力和創(chuàng)新精神。

  “將課堂還給學生,讓課堂煥發(fā)生命的活力”,“努力營造學生在教學活動中獨立自主學習的時間和空間,使他們成為課堂教學中重要的'參與者與創(chuàng)造者,落實學生的主體地位,促進學生的自主學習和探究!北@樣的指導思想,在整個教學設計上力求充分體現(xiàn)“以學生發(fā)展為本”教育理念,將教學思路擬定為“談話激趣設疑導入——猜想——驗證{自主探究}——鞏固內(nèi)化——拓展延伸”,努力構(gòu)建探索型的課堂教學模式。

  四、說教學程序

  1、談話激趣設疑導入:教學的藝術(shù)不在于傳授知識,而在于喚醒、激發(fā)和鼓勵。剛開始上課,我就以兩個三角形的爭論為的知識“三為切入點,讓學生來評理,當一回公正的法官{激趣},你認為哪一個三角形的內(nèi)角和大呢?用什么方法知道誰大誰小呢{設疑}?這樣,我在很短的時間內(nèi)最大限度的激發(fā)學生探究數(shù)學的愿望和興趣,為學生進一步學習打好基礎。

  2、猜想:學生有了探索的愿望和興趣,可是不能沒有目標的去探索,那樣只會事倍功半,甚至沒有結(jié)果,這時我讓學生大膽猜想,形成統(tǒng)一的認識,使后邊的探索和驗證活動有了明確的目標。

  3、驗證:學生形成統(tǒng)一的猜想{即三角形的內(nèi)角和等于180度}后,我就把課堂大量的時間和空間留給學生,讓他們開展有針對性的數(shù)學探究活動,在活動中,我既不像過去那樣告訴學生怎么動手去驗證,讓學生做機械的操作員,不是隨意放開讓學生盲目的操作,而是把放和引有機的結(jié)合,鼓勵學生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓每個學生自主參與驗證活動,而且使學生在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量一量——拼一拼——折一折——看一看。

  4、鞏固內(nèi)化:俗話說的好:“熟能生巧”。數(shù)學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。養(yǎng)成良好的思維品質(zhì)也要通過一定的思考練習,課程標準提倡練習的有效性。對此,我非常注意將數(shù)學的思考融入不同層次的練習之中,很好的發(fā)揮練習的作用,如:設計讓學生用所學的知識說一說三角形內(nèi)角和與三角形的大小有關系嗎,又如:師說兩個角度,學生求第三個角,從中培養(yǎng)學生應用意識和解決問題的能力;讓學生判斷有兩個直角三角形拼成的三角形的內(nèi)角和的度數(shù),使學生在圖形變化的過程中掌握知識,培養(yǎng)思維的靈活性,從中發(fā)展學生的空間觀念和空間想象能力。這些練習設計目的明確,針對性強,使學生不但鞏固了知識,更重要的是數(shù)學思維得到不斷的發(fā)展。

  5、拓展創(chuàng)新:數(shù)學具有嚴密的邏輯性和抽象性。而學生學習內(nèi)容的呈現(xiàn)是從簡單到復雜,思維方式是從具體到抽象的一個循序漸進的過程,前面學習的知識往往是后面進一步學習的基礎。要培養(yǎng)學生思維的靈活性,可以先讓學生學會對知識的遷移。本課最后,我設計了這樣一道題目:學了三角形的內(nèi)角和后,你知道五邊形、六邊形的內(nèi)角和是多少度嗎?請小組合作選擇一個圖形求內(nèi)角和。這道題通過對本節(jié)課所學知識的遷移就可以完成,既能對學生進行思維訓練,又能培養(yǎng)學生應用知識的能力,更能培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新精神。

  總之,本節(jié)課教學活動中我力求充分體現(xiàn)以下特點:以學生發(fā)展為本,以學生為主體,思維為主線的思想;充分關注學生的自主探究與合作交流;練習體現(xiàn)了層次性,知識技能得于落實和發(fā)展。教師是學生學習的組織者、引導者、合作者,而非知識的灌輸者,因而對一個問題的解決不是要教師將現(xiàn)成的方法傳授給學生,而是教給學生解決問題的策略,給學生一把在知識的海洋中行舟的槳,讓學生在積極思考,大膽嘗試,主動探索中,獲取成功并體驗成功的喜悅。

  八年級數(shù)學上冊《11.2三角形內(nèi)角和》說課稿3

  一、說教學理念:

  數(shù)學是人與人之間精神層面上進行的交往。課堂教學中的交往主要是教師與學生、學生與學生之間的交往。它需要運用“對話式”的學習方式,采取多種教學策略,使學生在合作、探索、交流中發(fā)展能力。新課程中對學生的情感、體驗、價值觀,以及獲取知識的渠道都有悖于傳統(tǒng)的教學模式,這正是教師在新課程中尋找新的教學方式的著眼點。應該說,新的教學方式將伴隨著教師對新課程的逐漸透視而形成新的路徑。要破除原有教學活動的框架,建立適應師生相互交流的教學活動體系;滿足學生的心理需求,實現(xiàn)教者與學者感情上的融洽和情感上的共鳴;給學生體驗成功的機會,把“要我學”變成“我要學”。

  我認為教師角色的轉(zhuǎn)變一定會促進學生的發(fā)展、促進教育的長足發(fā)展,在未來的教學過程里,教師要做的是:幫助學生決定適當?shù)膶W習目標,并確認和協(xié)調(diào)達到目標的最佳途徑;指導學生形成良好的學習習慣,掌握學習策略;創(chuàng)造豐富的教學情境,培養(yǎng)學生的學習興趣,充分調(diào)動學生的學習積極性;為學生提供各種便利,為學生的學習服務;建立一個接納的、支持性的、寬容的課堂氣氛;作為學習的參與者,與學生分享自己的感情和想法;和學生一道尋找真理,能夠承認自己的過失和錯誤。教學情境的營造是教師走進新課程中所面臨的挑戰(zhàn),適應新一輪基礎教育課程改革的教學情境不是文本中的約定,也不是現(xiàn)成的拿來就能用的,需要我們在教學活動的全過程中去探索、研究、發(fā)現(xiàn)、形成。

  二、說教材分析與處理:

  三角形的內(nèi)角和定理揭示了組成三角形的三個角的數(shù)量關系,此外,它的證明中引入了輔助線,這些都為后繼學習奠定了基礎,三角形的內(nèi)角和定理也是幾何問題代數(shù)化的體現(xiàn)。

  三、說學生分析:

  處于這個年齡階段的學生有能力自己動手,在自己的視野范圍內(nèi)因地制宜地收集、編制、改造適合自身使用,貼近生活實際的數(shù)學建模問題,他們樂于嘗試、探索、思考、交流與合作,具有分析、歸納、總結(jié)的能力,他們渴望體驗成功感和自豪感。因而老師有必要給學生充分的自由和空間,同時注意問題的開放性與可擴展性。

  四、說教學目標:

  1.知識目標:在情境教學中,通過探索與交流,逐步發(fā)現(xiàn)“三角形內(nèi)角和定理”,使學生親身經(jīng)歷知識的發(fā)生過程,并能進行簡單應用。能夠探索具體問題中的數(shù)量關系和變化規(guī)律,體會方程的思想。通過開放式命題,嘗試從不同角度尋求解決問題的方法。教學中,通過有效措施讓學生在對解決問題過程的反思中,獲得解決問題的經(jīng)驗,進行富有個性的學習。

  2.能力目標:通過拼圖實踐、問題思考、合作探索、組內(nèi)及組間交流,培養(yǎng)學生的的邏輯推理、大膽猜想、動手實踐等能力。

  3.德育目標:通過添置輔助線教學,滲透美的思想和方法教育。

  4.情感、態(tài)度、價值觀:在良好的師生關系下,建立輕松的學習氛圍,使學生樂于學數(shù)學,遇到困難不避讓,在數(shù)學活動中獲得成功的體驗,增強自信心,在合作學習中增強集體責任感。

  五、說重難點:

  1.重點:三角形的內(nèi)角和定理探究與證明。

  2.難點:三角形的內(nèi)角和定理的證明方法(添加輔助線)的討論

  六、說教法、學法和教學手段

  采用“問題情境-建立模型-解釋、應用與拓展”的模式展開教學。

  采用對話式、嘗試教學、問題教學、分層教學等多種教學方法,以達到教學目的。

  教學過程設計:

  (一)創(chuàng)設情境,懸念引入

  一堂新課的引入是老師與學生交往活動的開始,是學生學習新知識的心理鋪墊,是拉近師生之間的距離,破除疑難心理、乏味心理的關鍵。一個成功的引入,是讓學生感覺到他熟知的'生活,可使學生迅速投入到課堂中來,對知識在最短的時間內(nèi)產(chǎn)生極大的興趣和求知欲,接下來教學活動將成為他們樂此不疲的快事了。

  具體做法:拋出問題:“學校后勤部折疊長梯(電腦顯示圖形)打開時頂端的角是多少度呢?一名學生測出了兩個梯腿與地面的成角后,立即說出了答案,你知道其中的道理嗎?”待學生思考片刻后,我因勢利導,指出學習了本節(jié)課你便能夠回答這個問題了。從而引入新課。

  (二)探索新知

  1.動手實踐,嘗試發(fā)現(xiàn):要求學生將事先準備好的三角形紙板按線剪開,然后用剪下的∠A、∠B與完整的三角形紙板中的∠C拼圖,使三者頂點重合,問能發(fā)現(xiàn)怎樣的現(xiàn)象?有的學生會發(fā)現(xiàn),三者拼成一個平角。此時讓學生互相觀察拼圖,驗證結(jié)果。從觀察交流中,互學方法,達到生生互動。待交流充分,分小組張貼所拼圖形,教師點評,總結(jié)分類,將所拼圖形分為∠A、∠B分別在∠C同側(cè)和兩側(cè)兩種情況。對有合作精神的小組給與表揚。

  (將拼圖展示在黑板上)

  2.嘗試猜想:教師提問,從活動中你有怎樣的發(fā)現(xiàn)?采取組內(nèi)交流的方式,產(chǎn)生思維碰撞。此時我走到學生中去,對有困難的小組給與適當?shù)囊龑。之后由學生匯報組內(nèi)的發(fā)現(xiàn)。即三角形三個內(nèi)角的和等于180度。

  3.證明猜想:先幫助學生回憶命題證明的基本步驟,然后讓學生獨立完成畫圖、寫出已知、求證的步驟,其他同學補充完善。下面讓學生對照剛才的動手實踐,分小組探求證明方法。此環(huán)節(jié)應留給學生充分的思考、討論、發(fā)現(xiàn)、體驗的時間,讓學生在交流中互取所長,合作探索,找到證明的切入點,體驗成功。對有困難的學生要多加關注和指導,不放棄任何一個學生,借此增進教師與學有困難學生之間的關系,為繼續(xù)學習奠定基礎。合作探究后,匯報證明方法,注意規(guī)范證明格式。此處自然的引入輔助線的概念。但要說明,添加輔助線不是盲目的,而是為了證明某一結(jié)論,需要引用某個定義、公理、定理,但原圖形不具備直接使用它們的條件,這時就需要添輔助線創(chuàng)造條件,以達到證明的目的。

  4.學以致用,反饋練習

  (1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度數(shù)?

  解:∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理)

  ∴∠B+∠C=100°在△ABC中,

  (2)已知:∠A=80°,∠B=52°,則∠C=?

  解:∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理)

  又∵∠A=80°∠B=52°(已知)

  ∴∠C=48°

  (3)在△ABC中,已知∠A=80°,∠B-∠C=40°,則∠C=?

  (4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度數(shù)?

  (5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度數(shù)?

  解:設∠A=x°,則∠B=3x°,∠C=5x°

  由三角形內(nèi)角和定理得,x+3x+5x=180

  解得,x=20

  ∴∠A=20°∠B=60°∠C=100°

  (6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度數(shù)?(2)若BD是AC邊上的高,∠DBC的度數(shù)?

  第(6)題是書中例題的改用,此題由輔助線輔助課件打出,給學生以圖形由簡單到繁的直觀演示。

  通過這組練習滲透把圖形簡單化的思想,繼續(xù)滲透統(tǒng)一思想,用代數(shù)方法解決幾何問題。

  5.鞏固提高,以生為本

  (1)如圖:B、C、D在一條直線上,∠ACD=105°,且∠A=∠ACB,則∠B=——度。

  (2)如圖AD是△ABC的角平分線,且∠B=70°,∠C=25°,則∠ADB=——度,∠ADC=——度。

  本組練習是三角形內(nèi)角和定理與平角定義及角平分線等知識的綜合應用.能較好的培養(yǎng)學生的分析問題、解決問題的能力,有助于獲得一些經(jīng)驗。

  6.思維拓展,開放發(fā)散

  如圖,已知△PAD中,∠APD=120°,B、C為AD上的點,△PBC為等邊三角形。試盡可能多地找出各幾何量之間的相互關系。

  本題旨在激發(fā)學生獨立思考和創(chuàng)新意識,培養(yǎng)創(chuàng)新精神和實踐能力,發(fā)展個性思維。

  (三)歸納總結(jié),同化順應

  1.學生談體會

  2.教師總結(jié),出示本節(jié)知識要點

  3.教師點評,對學生在課堂上的積極合作,大膽思考給與肯定,提出希望。

  (四)作業(yè)

  1.必做題:習題3.1第10、11、12題

  2.選做題:習題3.1第13、14題

  (五)板書設計

  三角形內(nèi)角和

  學生拼圖展示已知:求證:

  證明:開放題:

【八年級數(shù)學上冊《11.2三角形內(nèi)角和》說課稿】相關文章:

三角形內(nèi)角和說課稿06-27

《三角形內(nèi)角和》說課稿07-12

《三角形的內(nèi)角和》說課稿05-21

三角形的內(nèi)角和說課稿05-22

三角形的內(nèi)角和說課稿02-09

《三角形內(nèi)角和》說課稿(15篇)11-27

《三角形內(nèi)角和》優(yōu)秀說課稿范文02-08

三角形的內(nèi)角和說課稿14篇07-29

《三角形內(nèi)角和》說課稿15篇07-13

三角形內(nèi)角和說課稿15篇07-13