當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 平行四邊形教案

平行四邊形教案

時(shí)間:2023-05-15 18:02:36 教案 我要投稿

平行四邊形教案模板合集6篇

  作為一位不辭辛勞的人民教師,通常需要用到教案來(lái)輔助教學(xué),教案有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。我們應(yīng)該怎么寫(xiě)教案呢?以下是小編為大家整理的平行四邊形教案6篇,僅供參考,希望能夠幫助到大家。

平行四邊形教案模板合集6篇

平行四邊形教案 篇1

  【學(xué)習(xí)目標(biāo)】

  1.能運(yùn)用勾股定理解決生活中與直角三角形有關(guān)的問(wèn)題;

  2.能從實(shí)際問(wèn)題中建立數(shù)學(xué)模型,將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,同時(shí)滲透方程、轉(zhuǎn)化等數(shù)學(xué)思想。

  3.進(jìn)一步發(fā)展有條理思考和有條理表達(dá)的能力,體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值

  【學(xué)習(xí)重、難點(diǎn)】

  重點(diǎn):勾股定理的應(yīng)用

  難點(diǎn):將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題

  【新知預(yù)習(xí)】

  1.如圖,單杠AC的高度為5m,若鋼索的底端B與單杠底端C的距離為12m,求鋼索AB的長(zhǎng).

  【導(dǎo)學(xué)過(guò)程】

  一、情境創(chuàng)設(shè)

  欣賞生活中含有直角三角形的圖片,如果知道斜拉橋上的索塔AB的高,如何計(jì)算各條拉索的長(zhǎng)?

  二、探索活動(dòng)

  活動(dòng)一 如圖,起重機(jī)吊運(yùn)物體,已知BC=6m,AC=10m,求AB的長(zhǎng).

  活動(dòng)二 在我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問(wèn)題,這個(gè)問(wèn)題的意思是:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形.在水池正中央有一根新生的蘆葦,它高出水面1尺.如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面.請(qǐng)問(wèn)這個(gè)水池的深度和這根蘆葦?shù)拈L(zhǎng)度各為多少?

  活動(dòng)三 一輛裝滿貨物的卡車(chē),其外形高2.5米,寬1.6米,要開(kāi)進(jìn)廠門(mén)形狀如圖所示的某工廠,問(wèn)這輛卡車(chē)能否通過(guò)該工廠的廠門(mén)?

  三、例題講解:

  1.《中華人民共和國(guó)道路交通安全法》規(guī)定:小汽車(chē)在城市道路上行駛速度不得超過(guò)70km/h,如圖一輛小汽車(chē)在一條城市中的直道上行駛,某一時(shí)刻剛好行駛到路對(duì)面車(chē)速檢測(cè)儀的正前方30m處,過(guò)了2s后,測(cè)得小汽車(chē)與車(chē)速檢測(cè)儀間的距離為50m,這輛小汽車(chē)超速了嗎?

  2.一種盛飲料的圓柱形杯(如圖),測(cè)得內(nèi)部地面半徑為2.5cm,高為12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,問(wèn)吸管需要多長(zhǎng)?

  【反饋練習(xí)】

  1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,則AB=______;若AB=4,BC=2,則AC=_____;

  (2)一個(gè)直角三角形的模具,量得其中兩邊的長(zhǎng)分別為5cm,3cm,則第三邊的長(zhǎng)是______;

  (3)甲乙兩人同時(shí)從同一地出發(fā),甲往東走4km,乙往南走6km,這時(shí)甲乙兩人相距____km.

  2.如圖,圓柱高為8cm,地面半徑為2cm ,一只螞蟻從點(diǎn)A爬到點(diǎn)B處吃食,要爬行的最短路程( 取3)是 ( )

  A.20cm B.10cm C.14cm D.無(wú)法確定

  3.如圖,筆直的公路上A、B兩點(diǎn)相距25km,C、D為兩村莊,DA⊥AB于點(diǎn)A,CB⊥AB于點(diǎn)B,已知DA=15km,CB=10km,現(xiàn)在要在公路的AB段上建一個(gè)土特產(chǎn)品收購(gòu)站E,使得C、D兩村到收購(gòu)站E的距離相等,則收購(gòu)站E應(yīng)建在離A點(diǎn)多遠(yuǎn)處?

  【課后作業(yè)】P67 習(xí)題2.7 1、4題

  八年級(jí)數(shù)學(xué)競(jìng)賽輔導(dǎo)教案:由中點(diǎn)想到什么

  第十八講 由中點(diǎn)想到什么

  線段的中點(diǎn)是幾何圖形中一個(gè)特殊的點(diǎn),它關(guān)聯(lián)著三角形中線、直角三角形斜邊中線、中心對(duì)稱圖形、三角形中位線、梯形中位線等豐富的知識(shí),恰當(dāng)?shù)乩弥悬c(diǎn),處理中點(diǎn)是解與中點(diǎn)有關(guān)問(wèn)題的關(guān)鍵,由中點(diǎn)想到什么?常見(jiàn)的聯(lián)想路徑是:

  1.中線倍長(zhǎng);

  2.作直角三角形斜邊中線;

  3.構(gòu)造中位線;

  4.構(gòu)造中心對(duì)稱全等三角形等.

  熟悉以下基本圖形,基本結(jié)論:

  例題求解

  【例1】 如圖,在△ABC中,∠B=2∠C,AD⊥BC于D,M為BC的中點(diǎn), AB=10cm,則MD的長(zhǎng)為 .

  (“希望杯”邀請(qǐng)賽試題)

  思路點(diǎn)撥 取AB中點(diǎn)N,為直角三角形斜邊中線定理、三角形中位線定理的運(yùn)用創(chuàng)造條件.

  注 證明線段倍分關(guān)系是幾何問(wèn)題中一種常見(jiàn)題型,利用中點(diǎn)是一個(gè)有效途徑,基本方法有:

  (1)利用直角三角斜邊中線定理;

  (2)運(yùn)用中位線定理;

  (3)倍長(zhǎng)(或折半)法.

  【例2】 如圖,在四邊形ABCD中,一組對(duì)邊AB=CD,另一組對(duì)邊AD≠BC,分別取AD、BC的中點(diǎn)M、N,連結(jié)MN.則AB與MN的關(guān)系是( )

  A.AB=MN B.AB>MN C.AB

  (20xx年河北省初中數(shù)學(xué)創(chuàng)新與知識(shí)應(yīng)用競(jìng)賽試題)

  思路點(diǎn)撥 中點(diǎn)M、N不能直接運(yùn)用,需增設(shè)中點(diǎn),常見(jiàn)的方法是作對(duì)角線的中點(diǎn).

  【例3】如圖,在△ABC中,AB=AC,延長(zhǎng)AB到D,使BD=AB,E為AB中點(diǎn),連結(jié)CE、CD,求證:C D=2EC.

  (浙江省寧波市中考題)

  思路點(diǎn)撥 聯(lián)想到與中位線相關(guān)的豐富知識(shí),將線段倍分關(guān)系的證明轉(zhuǎn)化為線段相等關(guān)系的證明,解題的關(guān)鍵是恰當(dāng)添輔助線.

  【例4】 已知:如圖l,BD、CE分別是△ABC的外角平分線,過(guò)點(diǎn)A作AF⊥BD,AG ⊥ CE,垂足分別為F、G,連結(jié)FG,延長(zhǎng)AF、AG,與直線BC相交,易證FG= (AB+BC+AC).

  若(1)BD、CF分別是△ABC的內(nèi)角平分線(如圖2);

  (2)BD為△ABC的內(nèi)角平分線,CE為△ABC的外角平分線(如圖3),則在圖2、圖3兩種情況下,線段FG與△ABC三邊又有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出你的猜想,并對(duì)其中的一種情況給予證明.

  (20xx年黑龍江省中考題)

  思路點(diǎn)撥 圖1中FG與△ABC三邊的數(shù)量關(guān)系的求法(關(guān)鍵是作輔助線),對(duì)尋求后兩個(gè)圖形中線段FG與△ABC三邊的數(shù)量關(guān)系起著重要作用,而由平分線、垂線發(fā)現(xiàn)中點(diǎn),這是解題的基礎(chǔ).

  注 三角形與梯形的中位線.在位置上涉及到平行,在數(shù)量上是上下底和的一半,它起著傳遞角的位置關(guān)系和線段長(zhǎng)度的功能,在證明線段倍分關(guān)系、兩直線位置關(guān)系、線段長(zhǎng)度的計(jì)算等方面有著廣泛的應(yīng)用.

  【例5】 如圖,任意五邊形ABCDE,M、N、P、Q分別為AB、CD、BC、DE的中點(diǎn),K、L分別為MN、PQ的中點(diǎn),求證:KL∥AE且KL= AE.

  (20xx年天津賽區(qū)試題)

  思路點(diǎn)撥 通過(guò)連線,將多邊形分割成三角形、四邊形,為多個(gè)中點(diǎn)的 利用創(chuàng)造條件,這是解本例的突破口.

  注 需要什么,構(gòu)造什么,構(gòu)造基本圖形、構(gòu)造線段的和差(倍分)關(guān)系、構(gòu)造角的關(guān)系等,這是作輔助線的有效思考方法之一.

  學(xué)歷訓(xùn)練

  1.BD、CE是△ABC的中線,G、H分別是BE、CD的中點(diǎn),BC=8,則GH= .

  (20xx年廣西中考題)

  2.如圖,△ABC中、BC=a,若D1、E1;分別是AB、AC的中點(diǎn),則 ;若 D2、E2分別是D1B、E1C的中點(diǎn),則 :若 D3、E3分別是D2B、E2C的中點(diǎn).則 ……若Dn、En分別是Dn-1B、En-1C的中點(diǎn),則DnEn= (n≥1且 n為整數(shù)).

  (200l年山東省濟(jì)南市中考題)

  3.如圖,△ABC邊長(zhǎng)分別為AD=14,BC=l6,AC=26,P為∠A的平分線AD上一點(diǎn),且BP⊥AD,M為BC的中點(diǎn),則PM的值是 .

  4.如圖, 梯形ABCD中,AD∥BC,對(duì)角線AC⊥BD,AC=5cm,BD=12cm,則該梯形的中位線的長(zhǎng)等于 cm.

  (20xx年天津市中考題)

  5.如圖,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,則EF+GH=( )

  A.40 B.48 C 50 D.56

  6.如圖,在梯形ABCD中,AD∥BC,E、F分別是對(duì)角線BD、AC的中點(diǎn),若AD=6cm,BC=18?,則EF的長(zhǎng)為( )

  A.8cm D.7cm C. 6cm D.5cm

  7.如圖,矩形紙片ABCD沿DF折疊后,點(diǎn)C落在AB上的'E點(diǎn),DE、DF三等分∠ADC,AB的長(zhǎng)為6,則梯形ABCD的中位線長(zhǎng)為( )

  A.不能確定 B.2 C. D. +1

  (20xx年浙江省寧波市中考題)

  8.已知四邊形ABCD和對(duì)角線AC、BD,順次連結(jié)各邊中點(diǎn)得四邊形MNPQ,給出以下6個(gè)命題:

 、偃羲盟倪呅蜯NPQ為矩形,則原四邊形ABCD為菱形;

 、谌羲盟倪呅蜯NPQ為菱形,則原四邊形ABCD為矩形;

 、廴羲盟倪呅蜯NPQ為矩形,則AC⊥BD;

  ④若所得四邊形MNPQ為菱形,則AC=BD;

 、萑羲盟倪呅蜯NPQ為矩形,則∠BAD=90°;

 、奕羲盟倪呅蜯NPQ為菱形,則AB=AD.

  以上命題中,正確的是( )

  A.①② B.③④ C.③④⑤⑥ D.①②③④

  (20xx年江蘇省蘇州市中考題)

  9.如圖,已知△ABC中,AD是 高,CE是中線,DC=BE,DG⊥CE,G為垂足.求證:(1)G 是CE的 中點(diǎn);(2)∠B=2∠BCE.

  (20xx年上海市中考題)

  10.如圖,已知在正方形ABCD中,E為DC上一點(diǎn),連結(jié)BE,作CF⊥BE于P,交AD于F點(diǎn),若恰好使得AP=AB,求證:E是DC的中點(diǎn).

  11.如圖,在梯形ABCD中,AB∥CD,以AC、AD為邊作平行四邊形ACED,DC的延長(zhǎng)線交BE于F.

  (1)求證:EF=FB;

  (2)S△BCE能否為S梯形ABCD的 ?若不能,說(shuō)明理由;若能,求出AB與CD的關(guān)系.

  12.如圖,已知AG⊥BD,AF⊥CE,BD、CF分別是∠ABC和∠ACB的角平分線,若BF=2,ED=3,GC=4,則△ABC的周長(zhǎng)為 .

  (20xx年四川省競(jìng)賽題)

  13.四邊形ADCD的對(duì)角線AC、BD相交于點(diǎn)F,M、N分別為AB、CD中點(diǎn),MN分別交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,則AC= .

  (重慶市競(jìng)賽題)

  1 4.四邊形ABCD中,AD>BC,C、F分別是AB、CD的中點(diǎn),AD、BC的延長(zhǎng)線分別與EF的延長(zhǎng)線交于H、G,則∠AHE ∠BGE(填“>”或“=”或“<”號(hào))

  15.如圖,在△ABC中,DC=4,BC邊上的中線AD=2,AB+AC=3+ ,則S△ABC等于( )

  A. B. C. D.

  16.如圖,正方形ABCD中,AB=8,Q是CD的中點(diǎn),設(shè)∠DAQ=α,在CD上取一點(diǎn)P,使∠BAP=2α,則CP的長(zhǎng)是( )

  A.1 D.2 C.3 D.

  17.如圖,已知A為DE的中點(diǎn),設(shè)△DBC、△ABC、△EBC的面積分別為S1,S2,S3,則S1、S2、S3之間的關(guān)系式是( )

  A. B. C. D.

  18.如圖,已知在△ABC中,D為AB的中點(diǎn),分別延長(zhǎng)CA、CB到E、F,使DE=DF,過(guò)E、F分別作CA、 CB的垂線,相交于點(diǎn)P.求證:∠PAE=∠PBF.

  (20xx年全國(guó)初中數(shù)學(xué)聯(lián)賽試題)

  19.如圖,梯形ABCD中,AD∥BC,AC⊥BD于O,試判斷AB+CD與AD+BC的大小,并證明你的結(jié)論.

  (山東省競(jìng)賽題)

  20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如圖甲,連結(jié)DE,設(shè)M為D正的中點(diǎn).

  (1)求證:MB=MC;

  (2)設(shè)∠BAD=∠CAE,固定△ABD, 讓Rt△ACE繞頂點(diǎn)A在平面內(nèi)旋轉(zhuǎn)到圖乙的位置,試問(wèn):MB;MC是否還能成立?并證明其結(jié)論.

  (江蘇省競(jìng)賽題)

  21.如圖甲,平行四邊形ABCD外有一條直線MN,過(guò)A、B、C、D4個(gè)頂點(diǎn)分別作MN的垂線AA1、BB1、CCl、DDl,垂足分別為Al、B1、Cl、D1.

  (1)求證AA1+ CCl = BB1 +DDl;

  (2)如圖乙,直線MN向上移動(dòng),使點(diǎn)A與點(diǎn)B、C、D位于直線MN兩側(cè),這時(shí)過(guò)A、B、C、D向直線MN引垂線,垂足分別為Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之間存在什么關(guān)系?

平行四邊形教案 篇2

  教學(xué)目標(biāo):

  1.知識(shí)與技能目標(biāo)

  (1)理解平行四邊形的定義及有關(guān)概念

  (2)能根據(jù)定義探索并掌握平行四邊形的對(duì)邊相等、對(duì)角相等的性質(zhì)

  (3)了解平行四邊形在實(shí)際生活中的應(yīng)用,能根據(jù)平行四邊形的性質(zhì)進(jìn)行簡(jiǎn)單的計(jì)算和證明

  2.過(guò)程與方法目標(biāo)

  (1)經(jīng)歷用平行四邊形描述、觀察世界的過(guò)程,發(fā)展學(xué)生的形象思維和抽象思維

  (2)在進(jìn)行性質(zhì)探索的活動(dòng)過(guò)程中,發(fā)展學(xué)生的探究能力.

  (3)在對(duì)性質(zhì)應(yīng)用的過(guò)程中,提高學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力,培養(yǎng)學(xué)生的推理能力和演繹能力

  3.情感、態(tài)度與價(jià)值觀目標(biāo)

  在探究討論中養(yǎng)成與他人合作交流的習(xí)慣;在性質(zhì)應(yīng)用過(guò)程中培養(yǎng)獨(dú)立思考的`習(xí)慣;在數(shù)學(xué)活動(dòng)中獲得成功的體驗(yàn),提高克服困難的勇氣和信心。

  教學(xué)重點(diǎn):

  (1)平行四邊形的性質(zhì)

  (2)平行四邊形的概念、性質(zhì)的應(yīng)用

  教學(xué)難點(diǎn):平行四邊形的性質(zhì)的探究

  教學(xué)過(guò)程:

  一、設(shè)置疑問(wèn),導(dǎo)入新課

  教師活動(dòng):介紹四邊形與我們生活的密切聯(lián)系,指出長(zhǎng)方形、正方形、梯形都是特殊的四邊形。提出問(wèn)題(1)四邊形與平行四邊形(教材91頁(yè)章前圖)(2)四邊形與平行四邊形有怎樣的從屬關(guān)系?

  學(xué)生活動(dòng):(1)利用章前圖尋找四邊形

  (2)說(shuō)說(shuō)四邊形與平行四邊形的關(guān)系

  【設(shè)計(jì)意圖】指明學(xué)習(xí)任務(wù),理清四邊形與特殊的四邊形之間的關(guān)系,引出課題

  二、問(wèn)題探究

  (1)教師活動(dòng):教師用多媒體展示圖片,庭院的竹籬笆,電動(dòng)伸縮門(mén),活動(dòng)衣架等

  學(xué)生活動(dòng):欣賞圖片并舉例結(jié)合小學(xué)已有的知識(shí)以及對(duì)圖片的觀察和思考,歸納:兩組對(duì)邊分別平行的四邊形是平行四邊形,再動(dòng)手根據(jù)定義畫(huà)出平行四邊形

  【設(shè)計(jì)意圖】由現(xiàn)實(shí)生活入手,使學(xué)生獲得平行四邊形的感性認(rèn)識(shí),同時(shí)能調(diào)動(dòng)學(xué)生的主觀能動(dòng)性,激發(fā)好奇心和求知欲,發(fā)展學(xué)生的抽象思維能力

  (2)教師活動(dòng):提出問(wèn)題根據(jù)定義畫(huà)一個(gè)平行四邊形,觀察這個(gè)四邊形,除了“兩組對(duì)邊分別平行以”外它的邊角之間還有其他的關(guān)系嗎?度量一下,是否和你的猜想一致?然后深入到小組中參與活動(dòng)與指導(dǎo)

  學(xué)生活動(dòng)動(dòng)手畫(huà)圖,猜想,度量,驗(yàn)證,得出

 、倨叫兴倪呅蔚膶(duì)邊相等

  ②平行四邊形的對(duì)角相等,鄰角互補(bǔ)

  (3)教師活動(dòng):你能證明你發(fā)現(xiàn)的結(jié)論嗎?

  學(xué)生活動(dòng):小組內(nèi)交流,并與前面所學(xué)知識(shí)聯(lián)系,證明線段和角相等的辦法是三角形全等,而四邊形問(wèn)題轉(zhuǎn)化成三角形問(wèn)題是作對(duì)角線

  學(xué)生活動(dòng):獨(dú)立完成證明,一名同學(xué)板演

  【設(shè)計(jì)意圖】經(jīng)歷猜想—實(shí)踐---驗(yàn)證的過(guò)程,從中體會(huì)親自動(dòng)手實(shí)踐學(xué)到知識(shí)的樂(lè)趣,獲得成功得體驗(yàn)在尋找證明線段和角相等的辦法---三角形全等,一方面體會(huì)知識(shí)的前后連貫性,另一方面意在培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣完成證明,培養(yǎng)學(xué)生的推理能力以及嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度

  三、講解例題,鞏固練習(xí)

  教師活動(dòng):例1.小明用一根36米長(zhǎng)的繩子圍成一個(gè)平行四邊形場(chǎng)地,其中一邊長(zhǎng)16米,其它三邊長(zhǎng)多少?引導(dǎo)學(xué)生審題

  學(xué)生活動(dòng):弄清題意,自己嘗試

  教師活動(dòng):示范解題過(guò)程

  強(qiáng)調(diào)平行四邊形性質(zhì)的幾何表達(dá)

  在中

 、貯B∥CD AD∥BC

 、贏B=CD AD=BC

  ③∠A=∠C ∠B=∠D

  學(xué)生活動(dòng):生練習(xí)課后習(xí)題

  【設(shè)計(jì)意圖】引導(dǎo)學(xué)生學(xué)會(huì)審題,這是解題的關(guān)鍵,同時(shí)體會(huì)生活中處處有數(shù)學(xué)訓(xùn)練學(xué)生能清晰有條理的表達(dá)自己的思考過(guò)程,做到“言之有理,落筆有據(jù)”

  四、小結(jié)

  教師提出問(wèn)題:

  1.通過(guò)學(xué)習(xí),本節(jié)課你學(xué)到了那些知識(shí)?

  2.在對(duì)平行四邊形性質(zhì)的探究過(guò)程中,你有那些認(rèn)識(shí)?

  3.在應(yīng)用平行四邊形性質(zhì)解題時(shí),應(yīng)注意哪些問(wèn)題?

  學(xué)生活動(dòng):交流獲得的知識(shí)和得到的感受

  【設(shè)計(jì)意圖】通過(guò)整理,一方面讓學(xué)生理清本節(jié)課的知識(shí)結(jié)構(gòu),另一方面感受探究過(guò)程的樂(lè)趣,體驗(yàn)克服困難的勇氣樹(shù)立自信心。

  布置作業(yè):教材99頁(yè)第1題,第2題,第6題

  板書(shū)設(shè)計(jì):

  1.平行四邊形的定義:兩組對(duì)邊分別平行的四邊形

  2.平行四邊形的表示: 3.平行四邊形的性質(zhì): ①平行四邊形的對(duì)邊相等

 、谄叫兴倪呅蔚膶(duì)角相等,鄰角互補(bǔ)

平行四邊形教案 篇3

  教材分析

  本節(jié)課既是七年級(jí)平行線的性質(zhì)、全等三角形等知識(shí)的延續(xù)和深化,也是后續(xù)學(xué)習(xí)矩形、菱形、正方形等知識(shí)的堅(jiān)實(shí)基礎(chǔ)。本節(jié)課是在學(xué)生掌握了平移等知識(shí)的基礎(chǔ)上探究平行四邊形的性質(zhì),能使學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、驗(yàn)證、推理、交流等數(shù)學(xué)活動(dòng),對(duì)于培養(yǎng)學(xué)生的推理能力、發(fā)散思維能力以及探索、體驗(yàn)數(shù)學(xué)思維規(guī)律等方面起著重要的作用。

  學(xué)情分析

  八年級(jí)學(xué)生有一定的自學(xué)、探索能力,求知欲強(qiáng)。并且,學(xué)生 在小學(xué)里已經(jīng)初步學(xué)習(xí)過(guò)平行四邊形,對(duì)平行四邊形有直觀的感知和認(rèn)識(shí)。在掌握平行線和相交線有關(guān)幾何事實(shí)的過(guò)程中,學(xué)生已經(jīng)初步經(jīng)歷過(guò)觀察、操作等活動(dòng)過(guò)程,獲得了一定的探索圖形性質(zhì)的活動(dòng)經(jīng)驗(yàn);同時(shí),在學(xué)習(xí)數(shù)學(xué)的過(guò)程中也經(jīng)歷了很多合作過(guò)程,具有了一定的學(xué)習(xí)經(jīng)驗(yàn),具備了一定的合作和交流能力。借助于遠(yuǎn)教資源的'優(yōu)勢(shì),能使腦、手充分動(dòng)起來(lái),學(xué)生間相互探討,積極性也被充分調(diào)動(dòng)起來(lái)。在此基礎(chǔ)上學(xué)習(xí)平行四邊形的性質(zhì),可以比較自然地得出平行四邊形的性質(zhì)。

  教學(xué)目標(biāo)

  ㈠、知識(shí)與技能:

  1、理解并掌握平行四邊形的定義;

  2、掌握平行四邊形的性質(zhì)定理;

  3、理解兩條平行線的距離的概念;

  4、培養(yǎng)學(xué)生綜合運(yùn)用知識(shí)的能力;

  ㈡、過(guò)程與方法:經(jīng)歷探索平行四邊形的有關(guān)概念和性質(zhì)的過(guò)程, 發(fā)展學(xué)生的探究意識(shí)和合情推理的能力。

 、、情感態(tài)度與價(jià)值觀:培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S和勇于探索的思想意識(shí),體會(huì)幾何知識(shí)的內(nèi)涵與實(shí)際應(yīng)用價(jià)值。

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):平行四邊形的定義,平行四邊形對(duì)角、對(duì)邊相等的性質(zhì)以及性質(zhì)的應(yīng)用。

  難點(diǎn):運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的論證和計(jì)算。

平行四邊形教案 篇4

  教學(xué)目標(biāo)

 。ㄒ唬┙虒W(xué)知識(shí)點(diǎn)

  1、能進(jìn)一步理解掌握矩形、菱形、正方形的性質(zhì)定理、判定定理。

  2、進(jìn)一步體會(huì)證明的必要性以及計(jì)算與證明在解決問(wèn)題中的作用。

  (二)能力訓(xùn)練要求

  1、經(jīng)歷探索、猜想、證明的過(guò)程,進(jìn)一步發(fā)展推理論證能力。

  2、進(jìn)一步體會(huì)證明的必要性以及計(jì)算與證明在解決問(wèn)題中的作用。

  3、體會(huì)證明過(guò)程中所運(yùn)用的歸納概括以及轉(zhuǎn)化等數(shù)學(xué)思想方法。

  (三)情感與價(jià)值觀要求

  1、通過(guò)知識(shí)的遷移、類(lèi)比、轉(zhuǎn)化,激發(fā)學(xué)生探索新知識(shí)的.積極性和主動(dòng)性。

  2、體會(huì)數(shù)學(xué)與生活的聯(lián)系。

  教學(xué)重點(diǎn):特殊四邊形——矩形、菱形、正方形的性質(zhì)定理和判定定理的靈活應(yīng)用。

  教學(xué)難點(diǎn):特殊四邊形——矩形、菱形、正方形的性質(zhì)定理和判定定理的靈活應(yīng)用。

  教學(xué)方法:啟問(wèn)——交流式教學(xué)法。

  教學(xué)過(guò)程

  1、巧設(shè)現(xiàn)實(shí)情境,引入新課

  [師]通過(guò)前幾節(jié)內(nèi)容的學(xué)習(xí),我們進(jìn)一步理解了平行四邊形及特殊平行四邊形的性質(zhì)定理和判定定理。

  這節(jié)課我們來(lái)應(yīng)用它們證明和計(jì)算一些題。

  2、講授新課

  [師]下面大家來(lái)猜一猜,想一想

  依次連接任意四邊形各邊的中點(diǎn)可以得到一個(gè)平行四邊形。那么,依次連接正方形各邊的中點(diǎn)。(如圖)能得到—個(gè)怎樣的圖形呢?先猜一猜,再證明。

平行四邊形教案 篇5

  教學(xué)目標(biāo)設(shè)計(jì):

  1、激發(fā)主動(dòng)探索數(shù)學(xué)問(wèn)題的興趣,經(jīng)歷平行四邊形面積計(jì)算公式的推導(dǎo)過(guò)程,會(huì)運(yùn)用公式求平行四邊形的面積。

  2、體會(huì)“等積變形”和“轉(zhuǎn)化”的數(shù)學(xué)思想和方法,發(fā)展空間觀念。

  3、培養(yǎng)初步的推理能力和合作意識(shí),以及解決實(shí)際問(wèn)題的能力。

  教學(xué)重點(diǎn):探究平行四邊形的面積公式

  教學(xué)難點(diǎn):理解平行四邊形的面積計(jì)算公式的推導(dǎo)過(guò)程

  教學(xué)過(guò)程設(shè)計(jì):

  一、創(chuàng)設(shè)情境,激發(fā)矛盾

  拿出一個(gè)長(zhǎng)方形框架,提問(wèn):這個(gè)框架所圍成圖形的面積你會(huì)求嗎?你是怎樣想的?根據(jù)學(xué)生的回答,適時(shí)板書(shū):長(zhǎng)方形面積=長(zhǎng)×寬

  教師捏住兩角輕微拉動(dòng)長(zhǎng)方形框架,使它稍微變形成一個(gè)平行四邊形。提問(wèn):它圍成的圖形面積你會(huì)求嗎?你是怎樣想的?根據(jù)學(xué)生的回答,適時(shí)板書(shū):平行四邊形面積=底邊長(zhǎng)×鄰邊長(zhǎng)

  學(xué)情預(yù)設(shè):學(xué)生充分發(fā)表自己的看法,大多數(shù)學(xué)生會(huì)受以前知識(shí)經(jīng)驗(yàn)和教師剛才設(shè)問(wèn)的影響,認(rèn)為平行四邊形的面積等于底邊長(zhǎng)×鄰邊長(zhǎng)。

  教師繼續(xù)拉動(dòng)平行四邊形框架,使變形后的平行四邊形越來(lái)越扁,到最后拉成一個(gè)很扁的平行四邊形,提問(wèn):這些平行四邊形的面積也等于底

  邊長(zhǎng)×鄰邊長(zhǎng)嗎?

  今天這節(jié)課我們就來(lái)研究“平行四邊形的面積”。教師板書(shū)課題。

  學(xué)情預(yù)設(shè):隨著教師繼續(xù)拉動(dòng)的平行四邊形越來(lái)越扁的變化,學(xué)生的原有知識(shí)經(jīng)驗(yàn)體系開(kāi)始坍塌。這種認(rèn)知平衡一旦被打破,學(xué)生的思維就想開(kāi)了閘的洪水一樣一發(fā)不可收拾:為什么用底邊長(zhǎng)乘鄰邊長(zhǎng)不能解決平行四邊形面積是多少問(wèn)題?問(wèn)題出在哪里呢?

  二、另辟蹊徑,探究新知

  1、尋找根源,另辟蹊徑

  教師邊演示長(zhǎng)方形漸變平行四邊形的過(guò)程,邊引導(dǎo)學(xué)生思考:平行四邊形為什么不能用長(zhǎng)方形的長(zhǎng)與寬演變而來(lái)的底邊長(zhǎng)與鄰邊長(zhǎng)相乘來(lái)求面積呢?

  引導(dǎo)學(xué)生思考:原來(lái)是平行四邊形的面積變得越來(lái)越小了,那平行四邊形的面積到底與什么有關(guān)呢?該怎樣來(lái)求平行四邊形的面積呢?

  學(xué)情預(yù)設(shè):學(xué)生在教師的引導(dǎo)下發(fā)現(xiàn),在教師的操作過(guò)程中,底邊與鄰邊的長(zhǎng)沒(méi)有發(fā)生變化,也就是說(shuō),底邊長(zhǎng)與鄰邊長(zhǎng)相乘的積應(yīng)該也是不變的,但明顯的事實(shí)是學(xué)生看到了平行四邊形在越拉越扁,平行四邊形的面積在越變?cè)叫?磥?lái)此路不通,那又該在哪里找出路呢?

  2、適時(shí)引導(dǎo),自主探索

  教師結(jié)合剛才的板書(shū)引導(dǎo)學(xué)生發(fā)現(xiàn),我們已經(jīng)會(huì)計(jì)算長(zhǎng)方形的面積了,是否能把平行四邊形轉(zhuǎn)化成長(zhǎng)方形來(lái)求面積呢?

  (1)學(xué)生操作

  學(xué)生動(dòng)手實(shí)踐,尋求方法。

  學(xué)情預(yù)設(shè):學(xué)生可能會(huì)有三種方法出現(xiàn)。

  第一種是沿著平行四邊形的頂點(diǎn)做的高剪開(kāi),通過(guò)平移,拼出長(zhǎng)方形。 第二種是沿著平行四邊形中間任意一高剪開(kāi)。

  第三種是沿平行四邊形兩端的兩個(gè)頂點(diǎn)做的高剪開(kāi),把剪下來(lái)的兩個(gè)小直角三角形拼成一個(gè)長(zhǎng)方形,再和剪后得出的長(zhǎng)方形拼成一個(gè)長(zhǎng)方形。

 。2)觀察比較

  剛才同學(xué)們把平行四邊形轉(zhuǎn)化成長(zhǎng)方形,在操作時(shí)有一個(gè)共同點(diǎn),是什么呢?為什么要這樣呢?

 。3)課件演示

  是不是任意一個(gè)平行四邊形都能轉(zhuǎn)化成一個(gè)長(zhǎng)方形呢?請(qǐng)同學(xué)們仔細(xì)觀察大屏幕,讓我們?cè)賮?lái)體會(huì)一下。

  3、公式推導(dǎo),形成模型

  既然我們可以把一個(gè)平行四邊形轉(zhuǎn)化成一個(gè)長(zhǎng)方形,那么轉(zhuǎn)化前的平行四邊形究竟和轉(zhuǎn)化后的長(zhǎng)方形有怎樣的聯(lián)系呢?怎樣能想出平行四邊形的'面積怎么計(jì)算呢?

  先獨(dú)立思考,后小組合作、討論,如小組有困難,可提供“思考提示”。

  A、拼成的長(zhǎng)方形和原來(lái)的平行四邊形比,什么變了?什么沒(méi)有改變?

  B、拼成的長(zhǎng)方形的長(zhǎng)和寬與原來(lái)的平行四邊形的底和高有什么關(guān)系?

  C、你能根據(jù)長(zhǎng)方形面積計(jì)算公式推導(dǎo)出平行四邊形的面積計(jì)算公式嗎?)

  學(xué)情預(yù)設(shè):學(xué)生通過(guò)討論很快就能得出拼成的長(zhǎng)方形和原來(lái)的平行四邊形之間的關(guān)系,并據(jù)此推導(dǎo)出平行四邊形的面積計(jì)算公式。在此環(huán)節(jié)中,教師要引導(dǎo)學(xué)生盡量用完整、條理的語(yǔ)言表達(dá)其推導(dǎo)思路:“把一個(gè)平行四邊形轉(zhuǎn)化成為一個(gè)長(zhǎng)方形,它的面積與原來(lái)的平行四邊形的面積相等。這個(gè)長(zhǎng)方形的長(zhǎng)與平行四邊形的底相等,這個(gè)長(zhǎng)方形的寬與平行四邊形的高相等,因?yàn)殚L(zhǎng)方形的面積等于長(zhǎng)乘寬,所以平行四邊形的面積等于底乘高!辈⒐桨鍟(shū)如下:

  長(zhǎng)方形的面積 = 長(zhǎng) × 寬

  平行四邊形的面積 = 底 × 高

  4、變化對(duì)比,加深理解

  引導(dǎo)學(xué)生比較前后兩種變化情況,思考:第一次的長(zhǎng)方形變成平行四邊形與第二次的平行四邊形變成長(zhǎng)方形,這兩種情況有什么不一樣?哪種變化能說(shuō)明平行四邊形的面積計(jì)算方法的來(lái)源呢?為什么?

  5、自學(xué)字母公式,體會(huì)作用

  請(qǐng)同學(xué)們打開(kāi)課本第81頁(yè),告訴老師,如果用字母表示平行四邊形的

  面積計(jì)算公式,應(yīng)該怎樣表示?你覺(jué)得用字母表達(dá)式比文字表達(dá)式好在哪里?

  三、實(shí)踐應(yīng)用

  1、出示課本第82頁(yè)題目,一個(gè)平行四邊形的停車(chē)位底邊長(zhǎng)5m,高2.5m,它的面積是多少?(學(xué)生獨(dú)立列式解答,并說(shuō)出列式的根據(jù))

  2、看圖口述平行四邊形的面積。

  3分米 2.5厘米

  3、這個(gè)平行四邊形的面積你會(huì)求嗎?你是怎樣想的?

  4、分別計(jì)算圖中每個(gè)平行四邊形的面積,你發(fā)現(xiàn)了什么?(單位:厘米)這樣的平行四邊形還能再畫(huà)多少個(gè)?

平行四邊形教案 篇6

  教學(xué)內(nèi)容:人教版第九冊(cè) 64 – 67頁(yè)

  說(shuō)教材: 教材先給出方格上的平行四邊形和長(zhǎng)方形,從數(shù)圖形中的方格引出平行四邊形的面積。利用數(shù)方格的方法來(lái)計(jì)算面積仍然是一種計(jì)算面積的方法。遇到圖形中邊與邊之間有不成直角的情況時(shí),該怎樣計(jì)算面積,學(xué)生還沒(méi)有學(xué)過(guò)。,教材通過(guò)數(shù)的方法,轉(zhuǎn)化的方法,可以把新知識(shí)轉(zhuǎn)化為舊知識(shí),從而使新問(wèn)題得到解決。

  教學(xué)重點(diǎn):平行四邊形面積的推導(dǎo)過(guò)程。

  本課采用的教法:自學(xué)法 、 轉(zhuǎn)化方法、小組合作法、實(shí)驗(yàn)法。

  學(xué)法:1、自主學(xué)習(xí)法

  2、小組合作探究學(xué)習(xí)法。

  教學(xué)程序:

  一、創(chuàng)設(shè)問(wèn)題情景, 為新課作鋪墊。

  請(qǐng)同學(xué)們幫李師傅的一個(gè)忙,

  求出下面的面積,你是怎樣想的?3厘米

  5厘米

  二、突出學(xué)生主體地位,發(fā)展學(xué)生的創(chuàng)新思維。

  首先采用自學(xué)課本64頁(yè)。師提出問(wèn)題,通過(guò)自學(xué),同學(xué)們發(fā)現(xiàn)了什么,想到了什么?你猜到了什么?

  有的同學(xué)說(shuō):長(zhǎng)方形面積與平行四邊形面積相等(數(shù)出來(lái)的)。 有的說(shuō):我用割補(bǔ)的方法把平形四邊形拼成一個(gè)長(zhǎng)方形,長(zhǎng)方形的面積與平行四邊形面積相等。還 有的說(shuō):我發(fā)現(xiàn)平行四邊形的底相當(dāng)與長(zhǎng)方形的'長(zhǎng),平行四邊形的高相當(dāng)長(zhǎng)方形的寬。 有的說(shuō):我猜想平行四邊形的面積等于底乘高。通過(guò)同學(xué)們發(fā)現(xiàn)與猜想

  三、小組合作,培養(yǎng)學(xué)生的合作精神。

  小組合作交流,動(dòng)手操作并說(shuō)出你的思考過(guò)程這樣使學(xué)生能人人參與,個(gè)個(gè)思考。匯報(bào)交流結(jié)果(小組派出代表到前邊演示操作過(guò)程邊述說(shuō))學(xué)生甲:我沿著平行四邊形的高剪下一個(gè)三角形補(bǔ)到平行四邊形的右邊,拼成一個(gè)長(zhǎng)方形。長(zhǎng)方形的長(zhǎng)相當(dāng)與平形四邊形的底,寬相當(dāng)與平行四邊形的高。長(zhǎng)方形面積與平行四邊形的面積相等。我想平行四邊形面積=底乘高

  學(xué)生乙(與前邊的內(nèi)容大概相同復(fù)述一遍,就是平行四邊形的高作在中間)

  學(xué)生丁我還有一種方法,我將平行四邊形沿著對(duì)角劃一條線,分成兩個(gè)面積相等三角形,雖然拼成還是一個(gè)原平行四邊形。但學(xué)生爭(zhēng)著說(shuō)出與別人不同的方法,把自己的想法盡量展現(xiàn)在同學(xué)面前,其中不乏有閃光的思維亮點(diǎn)。

  四例題獨(dú)立完成,體現(xiàn)學(xué)生自己解決問(wèn)題的能力。

  例題自己解決, 學(xué)生切實(shí)體驗(yàn)到數(shù)學(xué)的應(yīng)用價(jià)值,提高學(xué)生學(xué)習(xí)數(shù)學(xué)信心。

  板書(shū)設(shè)計(jì):

  長(zhǎng)方形面積==長(zhǎng)乘寬

  平行四邊形面積=底乘高

  s= a h

【平行四邊形教案】相關(guān)文章:

平行四邊形教案04-01

平行四邊形的面積教案04-07

《平行四邊形的認(rèn)識(shí)》教案03-15

《認(rèn)識(shí)平行四邊形》教案03-30

《平行四邊形的面積》教案06-01

《平行四邊形的判定》教案06-03

平行四邊形的特征教案02-27

平行四邊形面積教案02-09

特殊的平行四邊形教案07-29

認(rèn)識(shí)平行四邊形教案08-26