- 《圓柱的體積》教案 推薦度:
- 《圓柱的體積》教案 推薦度:
- 《圓柱的體積》教案 推薦度:
- 相關(guān)推薦
【精選】《圓柱的體積》教案四篇
作為一名教學(xué)工作者,通常需要用到教案來(lái)輔助教學(xué),教案是教學(xué)活動(dòng)的依據(jù),有著重要的地位。那么優(yōu)秀的教案是什么樣的呢?以下是小編為大家整理的《圓柱的體積》教案4篇,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
《圓柱的體積》教案 篇1
教學(xué)內(nèi)容:
人教版小學(xué)數(shù)學(xué)六年級(jí)下冊(cè)《圓柱的體積》P25-26。
教學(xué)目標(biāo):
1.經(jīng)歷探究和推導(dǎo)圓柱的體積公式的過(guò)程。
2.知道并能記住圓柱的體積公式,并能運(yùn)用公式進(jìn)行計(jì)算。
3.在自主探究圓柱的體積公式的過(guò)程中,體驗(yàn)、感悟數(shù)學(xué)規(guī)律的來(lái)龍去脈,知道長(zhǎng)方體與圓柱體底面和高各部分間的對(duì)應(yīng)關(guān)系。發(fā)展學(xué)生的觀(guān)察能力和分析、綜合、歸納推理能力。
4.激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生體驗(yàn)成功的快樂(lè)。
5.培養(yǎng)學(xué)生的轉(zhuǎn)化思想,滲透辯證法和極限的思想。
教學(xué)重點(diǎn):掌握和運(yùn)用圓柱體積計(jì)算公式
教學(xué)難點(diǎn):圓柱體積公式的推導(dǎo)過(guò)程
教具學(xué)具準(zhǔn)備:教學(xué)課件、圓柱體。
教學(xué)過(guò)程:
一、復(fù)習(xí)導(dǎo)入
1.同學(xué)們想一想,我們已經(jīng)學(xué)習(xí)了哪些立體圖形的體積?怎樣計(jì)算長(zhǎng)方體和正方體的體積?長(zhǎng)方體的體積和正方體的體積的通用公式是什么呢?用字母怎樣表示?
2.回憶一下圓面積的計(jì)算公式是如何推導(dǎo)出來(lái)的?
。ńY(jié)合課件演示)這是一個(gè)圓,我們把它平均分割,再拼合就變成了一個(gè)近似的平行四邊形。我們還可以往下繼續(xù)分割,無(wú)限分割就變成了一個(gè)長(zhǎng)方形。長(zhǎng)方形的長(zhǎng)相當(dāng)于圓周長(zhǎng)的一半,可以用πR表示,長(zhǎng)方形的寬就當(dāng)于圓的半徑,用R表示。所以用周長(zhǎng)的'一半×半徑就可以求出圓的面積,所以推導(dǎo)出圓的面積公式是S=πR。
3.課件出示一個(gè)圓柱體
我們把圓轉(zhuǎn)化成了近似的長(zhǎng)方形,同學(xué)們猜想一下圓柱可以轉(zhuǎn)化成什么圖形呢?
二、探索體驗(yàn)
1.學(xué)生猜想可以把圓柱轉(zhuǎn)化成什么圖形?
2.課件演示:把圓柱體轉(zhuǎn)化成長(zhǎng)方體
、偈窃鯓悠闯傻模
、谟^(guān)察是不是標(biāo)準(zhǔn)的長(zhǎng)方體?
、垩菔32等份、64等份拼成的長(zhǎng)方體,比較一下發(fā)現(xiàn)了什么?引出課題并板書(shū)。
3.借鑒圓的面積公式的推導(dǎo)過(guò)程試著推導(dǎo)圓柱的體積公式。
課件出示要求:
、倨闯傻拈L(zhǎng)方體與原來(lái)的圓柱體比較什么變了?什么沒(méi)變?
②推導(dǎo)出圓柱體的體積公式。
學(xué)生結(jié)合老師提出的問(wèn)題自己試著推導(dǎo)。
4.交流展示
小組討論,交流匯報(bào)。
生匯報(bào)師結(jié)合講解板書(shū)。
圓柱體積=底面積×高
‖ ‖ ‖
長(zhǎng)方體體積=底面積×高
用字母公式怎樣表示呢? v、s、h各表示什么?
5.知道哪些條件可以求出圓柱的體積?
6.計(jì)算下面圓柱的體積。
①底面積24平方厘米,高12厘米
②底面半徑2厘米,高5厘米
③直徑10厘米,高4厘米
④周長(zhǎng)18.84厘米,高12厘米
三、課堂檢測(cè)
1.判斷
、賵A柱體、長(zhǎng)方體和正方體的體積都可以用底面積乘高的方法來(lái)計(jì)算。( )
、趫A柱的底面積擴(kuò)大3倍,體積也擴(kuò)大3倍。( )
、垡粋(gè)長(zhǎng)方體與一個(gè)圓柱體底面積相等,高也相等,那么它們的體積也相等。( )
、軋A柱體的底面直徑和高可以相等。( )
、輧蓚(gè)圓柱體的底面積相等,體積也一定相等。( )
、抟粋(gè)圓柱形的水桶能裝水15升,我們就說(shuō)水桶的體積是15立方分米。( )
2.聯(lián)系生活實(shí)際解決實(shí)際問(wèn)題。
下面的這個(gè)杯子能不能裝下這袋奶?
。ū拥臄(shù)據(jù)從里面量得到直徑8cm,高10cm;牛奶498ml)
學(xué)生獨(dú)立思考回答后自己做在練習(xí)本上。
3.一個(gè)壓路機(jī)的前輪是圓柱形,輪寬2米,半徑1米,它的體積是多少立方米?
4.生活中的數(shù)學(xué)
一個(gè)用塑料薄膜蓋的蔬菜大棚,長(zhǎng)15米,橫截面是一個(gè)半徑2米的半圓。
、俑采w在這個(gè)大棚上的塑料薄膜約有多少平方米?
②大棚內(nèi)的空間大約有多大?
獨(dú)立思考后小組討論,兩生板演。
四、全課總結(jié)
這節(jié)課你有什么收獲?
五、課后延伸
如果要測(cè)量圓柱形柱子的體積,測(cè)量哪些數(shù)據(jù)比較方便?試一試吧?
六、板書(shū)設(shè)計(jì)
圓柱體積= 底面積×高
長(zhǎng)方體體積=底面積×高
《圓柱的體積》教案 篇2
教學(xué)目標(biāo):
1、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識(shí)。
2、初步學(xué)會(huì)用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實(shí)際問(wèn)題的能力
3、通過(guò)用切割拼合的方法借助長(zhǎng)方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運(yùn)用公式正確地計(jì)算圓柱的體積和容積。
教學(xué)重點(diǎn):
掌握?qǐng)A柱體積的計(jì)算公式。
教學(xué)難點(diǎn):
圓柱體積的計(jì)算公式的推導(dǎo)。
教學(xué)準(zhǔn)備:主題圖、圓柱形物體
教學(xué)過(guò)程:
一、復(fù)習(xí):
1、長(zhǎng)方體的體積公式是什么?
。ㄩL(zhǎng)方體的體積=長(zhǎng)×寬×高,長(zhǎng)方體和正方體體積的統(tǒng)一公式“底面積×高”,即長(zhǎng)方體的體積=底面積×高)
2、拿出一個(gè)圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。
3、復(fù)習(xí)圓面積計(jì)算公式的推導(dǎo)過(guò)程:把圓等分切割,拼成一個(gè)近似的長(zhǎng)方形,找出圓和所拼成的長(zhǎng)方形之間的關(guān)系,再利用求長(zhǎng)方形面積的計(jì)算公式導(dǎo)出求圓面積的計(jì)算公式。
二、新課:
1、圓柱體積計(jì)算公式的推導(dǎo):
(1)用將圓轉(zhuǎn)化成長(zhǎng)方形來(lái)求出圓的面積的方法來(lái)推導(dǎo)圓柱的.體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開(kāi),可以得到大小相等的16塊,把它們拼成一個(gè)近似長(zhǎng)方體的立體圖形——課件演示)
。2)由于我們分的不夠細(xì),所以看起來(lái)還不太像長(zhǎng)方體;如果分成的扇形越多,拼成的立體圖形就越接近于長(zhǎng)方體了。
。ㄕn件演示將圓柱細(xì)分,拼成一個(gè)長(zhǎng)方體)
。3)通過(guò)觀(guān)察,使學(xué)生明確:長(zhǎng)方體的底面積等于圓柱的底面積,長(zhǎng)方體的高就是圓柱的高。
(長(zhǎng)方體的體積=底面積×高,所以圓柱的體積=底面積×高,V=Sh)
2、教學(xué)補(bǔ)充例題:
。1)出示補(bǔ)充例題:一根圓柱形鋼材,底面積是50平方厘米,高是2.1米。它的體積是多少?
。2)指名學(xué)生分別回答下面的問(wèn)題:
、 這道題已知什么?求什么?
、 能不能根據(jù)公式直接計(jì)算?
、 計(jì)算之前要注意什么?
(計(jì)算時(shí)既要分析已知條件和問(wèn)題,還要注意要先統(tǒng)一計(jì)量單位)
。3)出示下面幾種解答方案,讓學(xué)生判斷哪個(gè)是正確的.
①V=Sh
50×2.1=105(立方厘米)
答:它的體積是105立方厘米。
、2.1米=210厘米
V=Sh
50×210=10500(立方厘米)
答:它的體積是10500立方厘米。
③50平方厘米=0.5平方米
V=Sh
0.5×2.1=1.05(立方米)
答:它的體積是1.05立方米。
、50平方厘米=0.005平方米
V=Sh
0.005×2.1=0.0105(立方米)
答:它的體積是0.0105立方米。
先讓學(xué)生思考,然后指名學(xué)生回答哪個(gè)是正確的解答,并比較一下哪一種解答更簡(jiǎn)單.對(duì)不正確的第①、③種解答要說(shuō)說(shuō)錯(cuò)在什么地方.
(4)做第20頁(yè)的“做一做”。
學(xué)生獨(dú)立做在練習(xí)本上,做完后集體訂正。
3、引導(dǎo)思考:如果已知圓柱底面半徑r和高h(yuǎn),圓柱體積的計(jì)算公式是怎樣的?(V=πr2h)
4、教學(xué)例6:
。1)出示例6,并讓學(xué)生思考:要知道杯子能不能裝下這袋牛奶,得先知道什么?(應(yīng)先知道杯子的容積)
(2)學(xué)生嘗試完成例6。
① 杯子的底面積:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
、 杯子的容積:50.24×10=502.4(cm3)=502.4(ml)
5、比較一下補(bǔ)充例題、例6有哪些相同的地方和不同的地方?
。ㄏ嗤氖嵌家脠A柱的體積計(jì)算公式進(jìn)行計(jì)算;不同的是補(bǔ)充例題已給出底面積,可直接應(yīng)用公式計(jì)算;例6只知道底面直徑,要先求底面積,再求體積。)
三、鞏固練習(xí):
1、做第26頁(yè)的第1題:
2、練習(xí)五的第2題:
這兩道題分別是已知底面半徑(或直徑)和高,求圓柱體積的習(xí)題.要求學(xué)生審題后,知道要先求出底面積,再求圓柱的體積。
四、全課總結(jié):
《圓柱的體積》教案 篇3
教學(xué)內(nèi)容:P19-20頁(yè)例5、例6及補(bǔ)充例題,完成“做一做”及練習(xí)三第1~4題。
教學(xué)目標(biāo):
1、通過(guò)用切割拼合的方法借助長(zhǎng)方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運(yùn)用公式正確地計(jì)算圓柱的體積和容積。
2、初步學(xué)會(huì)用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實(shí)際問(wèn)題的能力
滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識(shí)。
教學(xué)重點(diǎn):掌握?qǐng)A柱體積的計(jì)算公式。
教學(xué)難點(diǎn):圓柱體積的計(jì)算公式的推導(dǎo)。
教學(xué)過(guò)程:
一、復(fù)習(xí)
1、長(zhǎng)方體的體積公式是什么?(長(zhǎng)方體的體積=長(zhǎng)×寬×高,長(zhǎng)方體和正方體體積的統(tǒng)一公式“底面積×高”,即長(zhǎng)方體的體積=底面積×高)
2、拿出一個(gè)圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。
3、復(fù)習(xí)圓面積計(jì)算公式的推導(dǎo)過(guò)程:把圓等分切割,拼成一個(gè)近似的長(zhǎng)方形,找出圓和所拼成的長(zhǎng)方形之間的關(guān)系,再利用求長(zhǎng)方形面積的計(jì)算公式導(dǎo)出求圓面積的.計(jì)算公式。
二、新課
1、圓柱體積計(jì)算公式的推導(dǎo)。
。1)用將圓轉(zhuǎn)化成長(zhǎng)方形來(lái)求出圓的面積的方法來(lái)推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開(kāi),可以得到大小相等的16塊,把它們拼成一個(gè)近似長(zhǎng)方體的立體圖形。
《圓柱的體積》教案 篇4
教學(xué)內(nèi)容:
P19-20頁(yè)例5、例6及補(bǔ)充例題,完成做一做及練習(xí)三第1~4題。
教學(xué)目標(biāo):
1、通過(guò)用切割拼合的方法借助長(zhǎng)方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運(yùn)用公式正確地計(jì)算圓柱的體積和容積。
2、初步學(xué)會(huì)用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實(shí)際問(wèn)題的能力
3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識(shí)。
教學(xué)重點(diǎn):
掌握?qǐng)A柱體積的計(jì)算公式。
教學(xué)難點(diǎn):
圓柱體積的計(jì)算公式的推導(dǎo)。
教學(xué)過(guò)程:
一、復(fù)習(xí)
1、長(zhǎng)方體的體積公式是什么?正方體呢?(長(zhǎng)方體的體積=長(zhǎng)寬高,長(zhǎng)方體和正方體體積的統(tǒng)一公式底面積高,即長(zhǎng)方體的體積=底面積高)
2、拿出一個(gè)圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。(刪掉)
3、復(fù)習(xí)圓面積計(jì)算公式的推導(dǎo)過(guò)程:把圓等分切割,拼成一個(gè)近似的長(zhǎng)方形,找出圓和所拼成的長(zhǎng)方形之間的關(guān)系,再利用求長(zhǎng)方形面積的計(jì)算公式導(dǎo)出求圓面積的計(jì)算公式。
師小結(jié):圓的面積公式的推導(dǎo)是利用轉(zhuǎn)化的思想把一個(gè)曲面圖形轉(zhuǎn)化成以前學(xué)的長(zhǎng)方形,今天我們學(xué)習(xí)圓柱體體積公式的推導(dǎo)也要運(yùn)用轉(zhuǎn)化的思想同學(xué)們猜猜會(huì)轉(zhuǎn)化成什么圖形?
二、新課
1、圓柱體積計(jì)算公式的推導(dǎo)。
。1)用將圓轉(zhuǎn)化成長(zhǎng)方形來(lái)求出圓的面積的.方法來(lái)推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開(kāi),可以得到大小相等的16塊,把它們拼成一個(gè)近似長(zhǎng)方體的立體圖形課件演示)
。2)由于我們分的不夠細(xì),所以看起來(lái)還不太像長(zhǎng)方體;如果分成的扇形越多,拼成的立體圖形就越接近于長(zhǎng)方體了。(課件演示將圓柱細(xì)分,拼成一個(gè)長(zhǎng)方體)
反復(fù)播放這個(gè)過(guò)程,引導(dǎo)學(xué)生觀(guān)察思考,討論:在變化的過(guò)程中,什么變了什么沒(méi)變?
長(zhǎng)方體和圓柱體的底面積和體積有怎樣的關(guān)系?
學(xué)生說(shuō)演示過(guò)程,總結(jié)推倒公式。
。3)通過(guò)觀(guān)察,使學(xué)生明確:長(zhǎng)方體的底面積等于圓柱的底面積,長(zhǎng)方體的高就是圓柱的高。(長(zhǎng)方體的體積=底面積高,所以圓柱的體積=底面積高,V=Sh)
【《圓柱的體積》教案】相關(guān)文章:
《圓柱的體積》教案09-01
圓柱的體積教案11-18
圓柱的體積教案及反思03-09
圓柱和圓錐的體積教案08-26
《圓柱的體積》教案4篇02-09
精選《圓柱的體積》教案四篇02-17
《圓柱的體積》教案15篇01-02
《圓柱的體積》教案(15篇)03-13