當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>說課稿> 高中數(shù)學(xué)說課稿

高中數(shù)學(xué)說課稿

時間:2023-02-07 13:44:50 說課稿 我要投稿

關(guān)于高中數(shù)學(xué)說課稿6篇

  作為一名人民教師,通常需要用到說課稿來輔助教學(xué),說課稿有助于提高教師理論素養(yǎng)和駕馭教材的能力。說課稿應(yīng)該怎么寫呢?以下是小編收集整理的關(guān)于高中數(shù)學(xué)說課稿,僅供參考,希望能夠幫助到大家。

關(guān)于高中數(shù)學(xué)說課稿6篇

關(guān)于高中數(shù)學(xué)說課稿1

  說課內(nèi)容:普通高中課程標(biāo)準(zhǔn)實驗教科書(人教A版)《數(shù)學(xué)必修4》第二章第四節(jié)“平面向量的數(shù)量積”的第一課時---平面向量數(shù)量積的物理背景及其含義。

  下面,我從背景分析、教學(xué)目標(biāo)設(shè)計、課堂結(jié)構(gòu)設(shè)計、教學(xué)過程設(shè)計、教學(xué)媒體設(shè)計及教學(xué)評價設(shè)計六個方面對本節(jié)課的思考進(jìn)行說明。

  一、 背景分析

  1、學(xué)習(xí)任務(wù)分析

  平面向量的數(shù)量積是繼向量的線性運(yùn)算之后的又一重要運(yùn)算,也是高中數(shù)學(xué)的一個重要概念,在數(shù)學(xué)、物理等學(xué)科中應(yīng)用十分廣泛。本節(jié)內(nèi)容教材共安排兩課時,其中第一課時主要研究數(shù)量積的概念,第二課時主要研究數(shù)量積的坐標(biāo)運(yùn)算,本節(jié)課是第一課時。

  本節(jié)課的主要學(xué)習(xí)任務(wù)是通過物理中“功”的事例抽象出平面向量數(shù)量積的概念,在此基礎(chǔ)上探究數(shù)量積的性質(zhì)與運(yùn)算律,使學(xué)生體會類比的思想方法,進(jìn)一步培養(yǎng)學(xué)生的抽象概括和推理論證的能力。其中數(shù)量積的概念既是對物理背景的抽象,又是研究性質(zhì)和運(yùn)算律的基礎(chǔ)。同時也因為在這個概念中,既有長度又有角度,既有形又有數(shù),是代數(shù)、幾何與三角的最佳結(jié)合點,不僅應(yīng)用廣泛,而且很好的體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,使得數(shù)量積的概念成為本節(jié)課的核心概念,自然也是本節(jié)課教學(xué)的重點。

  2、學(xué)生情況分析

  學(xué)生在學(xué)習(xí)本節(jié)內(nèi)容之前,已熟知了實數(shù)的運(yùn)算體系,掌握了向量的概念及其線性運(yùn)算,具備了功等物理知識,并且初步體會了研究向量運(yùn)算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再從概念出發(fā),在與實數(shù)運(yùn)算類比的基礎(chǔ)上研究性質(zhì)和運(yùn)算律。這為學(xué)生學(xué)習(xí)數(shù)量積做了很好的鋪墊,使學(xué)生倍感親切。但也正是這些干擾了學(xué)生對數(shù)量積概念的理解,一方面,相對于線性運(yùn)算而言,數(shù)量積的結(jié)果發(fā)生了本質(zhì)的變化,兩個有形有數(shù)的向量經(jīng)過數(shù)量積運(yùn)算后,形卻消失了,學(xué)生對這一點是很難接受的;另一方面,由于受實數(shù)乘法運(yùn)算的影響,也會造成學(xué)生對數(shù)量積理解上的偏差,特別是對性質(zhì)和運(yùn)算律的理解。因而本節(jié)課教學(xué)的難點數(shù)量積的概念。

  二、 教學(xué)目標(biāo)設(shè)計

  《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實驗)》 對本節(jié)課的要求有以下三條:

  (1)通過物理中“功”等事例,理解平面向量數(shù)量積的含義及其物理意義。

  (2)體會平面向量的數(shù)量積與向量投影的關(guān)系。

  (3)能用運(yùn)數(shù)量積表示兩個向量的夾角,會用數(shù)量積判斷兩個平面向量的垂直關(guān)系。

  從以上的背景分析可以看出,數(shù)量積的概念既是本節(jié)課的重點,也是難點。為了突破這一難點,首先無論是在概念的引入還是應(yīng)用過程中,物理中“功”的實例都發(fā)揮了重要作用。其次,作為數(shù)量積概念延伸的性質(zhì)和運(yùn)算律,不僅能夠使學(xué)生更加全面深刻地理解概念,同時也是進(jìn)行相關(guān)計算和判斷的理論依據(jù)。最后,無論是數(shù)量積的性質(zhì)還是運(yùn)算律,都希望學(xué)生在類比的基礎(chǔ)上,通過主動探究來發(fā)現(xiàn),因而對培養(yǎng)學(xué)生的抽象概括能力、推理論證能力和類比思想都無疑是很好的載體。

  綜上所述,結(jié)合“課標(biāo)”要求和學(xué)生實際,我將本節(jié)課的教學(xué)目標(biāo)定為:

  1、了解平面向量數(shù)量積的物理背景,理解數(shù)量積的含義及其物理意義;

  2、體會平面向量的數(shù)量積與向量投影的關(guān)系,掌握數(shù)量積的性質(zhì)和運(yùn)算律,

  并能運(yùn)用性質(zhì)和運(yùn)算律進(jìn)行相關(guān)的運(yùn)算和判斷;

  3、體會類比的數(shù)學(xué)思想和方法,進(jìn)一步培養(yǎng)學(xué)生抽象概括、推理論證的能力。

  三、課堂結(jié)構(gòu)設(shè)計

  本節(jié)課從總體上講是一節(jié)概念教學(xué),依據(jù)數(shù)學(xué)課程改革應(yīng)關(guān)注知識的發(fā)生和發(fā)展過程的理念,結(jié)合本節(jié)課的知識的邏輯關(guān)系,我按照以下順序安排本節(jié)課的教學(xué):

  即先從數(shù)學(xué)和物理兩個角度創(chuàng)設(shè)問題情景,通過歸納和抽象得到數(shù)量積的概念,在此基礎(chǔ)上研究數(shù)量積的性質(zhì)和運(yùn)算律,使學(xué)生進(jìn)一步加深對概念的理解,然后通過例題和練習(xí)使學(xué)生鞏固概念,加深印象,最后通過課堂小結(jié)提高學(xué)生認(rèn)識,形成知識體系。

  四、 教學(xué)媒體設(shè)計

  和“大綱”教材相比,“課標(biāo)”教材在本節(jié)課的內(nèi)容安排上,雖然將向量的夾角在“平面向量基本定理”一節(jié)提前做了介紹,但卻將原來分兩節(jié)課完成的內(nèi)容合并成一節(jié),相比較而言本節(jié)課的教學(xué)任務(wù)加重了許多。為了保證教學(xué)任務(wù)的完成,順利實現(xiàn)本節(jié)課的教學(xué)目標(biāo),考慮到本節(jié)課的實際特點,在教學(xué)媒體的使用上,我的設(shè)想主要有以下兩點:

  1、制作高效實用的電腦多媒體課件,主要作用是改變相關(guān)內(nèi)容的呈現(xiàn)方式,以此來節(jié)約課時,增加課堂容量。

  2、設(shè)計科學(xué)合理的板書(見下),一方面使學(xué)生加深對主要知識的印象,另一方面使學(xué)生清楚本節(jié)內(nèi)容知識間的邏輯關(guān)系,形成知識網(wǎng)絡(luò)。

  平面向量數(shù)量積的物理背景及其含義

  一、 數(shù)量積的概念 二、數(shù)量積的性質(zhì) 四、應(yīng)用與提高

  1、 概念: 例1:

  2、 概念強(qiáng)調(diào) (1)記法 例2:

  (2)“規(guī)定” 三、數(shù)量積的運(yùn)算律 例3:

  3、幾何意義:

  4、物理意義:

  五、 教學(xué)過程設(shè)計

  課標(biāo)指出:數(shù)學(xué)教學(xué)過程是教師引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)活動的過程,是教師和學(xué)生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進(jìn)行教學(xué),本節(jié)課我主要安排以下六個活動:

  活動一:創(chuàng)設(shè)問題情景,激發(fā)學(xué)習(xí)興趣

  正如教材主編寄語所言,數(shù)學(xué)是自然的,而不是強(qiáng)加于人的。平面向量的數(shù)量積這一重要概念,和向量的線性運(yùn)算一樣,也有其數(shù)學(xué)背景和物理背景,為了體現(xiàn)這一點,我設(shè)計以下幾個問題:

  問題1:我們已經(jīng)研究了向量的哪些運(yùn)算?這些運(yùn)算的結(jié)果是什么?

  問題2:我們是怎么引入向量的加法運(yùn)算的?我們又是按照怎樣的順序研究了這種運(yùn)算的?

  期望學(xué)生回答:物理模型→概念→性質(zhì)→運(yùn)算律→應(yīng)用

  問題3:如圖所示,一物體在力F的作用下產(chǎn)生位移S,

  (1)力F所做的功W= 。

  (2)請同學(xué)們分析這個公式的特點:

  W(功)是 量,

  F(力)是 量,

  S(位移)是 量,

  α是 。

  問題1的設(shè)計意圖在于使學(xué)生了解數(shù)量積的數(shù)學(xué)背景,讓學(xué)生明白本節(jié)課所要研究的數(shù)量積與向量的加法、減法及數(shù)乘一樣,都是向量的運(yùn)算,但與向量的線性運(yùn)算相比,數(shù)量積運(yùn)算又有其特殊性,那就是其結(jié)果發(fā)生了本質(zhì)的變化。

  問題2的設(shè)計意圖在于使學(xué)生在與向量加法類比的基礎(chǔ)上明了本節(jié)課的研究方法和順序,為教學(xué)活動指明方向。

  問題3的設(shè)計意圖在于使學(xué)生了解數(shù)量積的物理背景,讓學(xué)生知道,我們研究數(shù)量積絕不僅僅是為了數(shù)學(xué)自身的完善,而是有其客觀背景和現(xiàn)實意義的,從而產(chǎn)生了進(jìn)一步研究這種新運(yùn)算的愿望。同時,也為抽象數(shù)量積的概念做好鋪墊。

  活動二:探究數(shù)量積的概念

  1、概念的抽象

  在分析“功”的計算公式的基礎(chǔ)上提出問題4

  問題4:你能用文字語言來表述功的計算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結(jié)果又該如何表述?

  學(xué)生通過思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個向量的大小及其夾角余弦的乘積。這樣,學(xué)生事實上已經(jīng)得到數(shù)量積概念的文字表述了,在此基礎(chǔ)上,我進(jìn)一步明晰數(shù)量積的概念。

  2、概念的明晰

  已知兩個非零向量

  與

  ,它們的夾角為

  ,我們把數(shù)量 ︱

  ︱·︱

  ︱cos

  叫做

  與

  的數(shù)量積(或內(nèi)積),記作:

  ·

  ,即:

  ·

  = ︱

  ︱·︱

  ︱cos

  在強(qiáng)調(diào)記法和“規(guī)定”后 ,為了讓學(xué)生進(jìn)一步認(rèn)識這一概念,提出問題5

  問題5:向量的數(shù)量積運(yùn)算與線性運(yùn)算的結(jié)果有什么不同?影響數(shù)量積大小的因素有哪些?并完成下表:

  角

  的范圍0°≤

  <90°

  =90°0°<

  ≤180°

  ·

  的符號

  通過此環(huán)節(jié)不僅使學(xué)生認(rèn)識到數(shù)量積的結(jié)果與線性運(yùn)算的結(jié)果有著本質(zhì)的不同,而且認(rèn)識到向量的夾角是決定數(shù)量積結(jié)果的重要因素,為下面更好地理解數(shù)量積的性質(zhì)和運(yùn)算律做好鋪墊。

  3、探究數(shù)量積的幾何意義

  這個問題教材是這樣安排的:在給出向量數(shù)量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運(yùn)算律的第三條才直接以結(jié)論的形式呈現(xiàn)給學(xué)生,我覺得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學(xué)生自己歸納得出,所以做了調(diào)整。為此,我首先給出給出向量投影的概念,然后提出問題5。

  如圖,我們把│

  │cos

  (│

  │cos

  )叫做向量

  在

  方向上(

  在

  方向上)的投影,記做:OB1=│

  │cos

  問題6:數(shù)量積的幾何意義是什么?

  這樣做不僅讓學(xué)生從“形”的角度重新認(rèn)識數(shù)量積的概念,從中體會數(shù)量積與向量投影的關(guān)系,同時也更符合知識的連貫性,而且也節(jié)約了課時。

  4、研究數(shù)量積的物理意義

  數(shù)量積的概念是由物理中功的概念引出的,學(xué)習(xí)了數(shù)量積的概念后,學(xué)生就會明白功的數(shù)學(xué)本質(zhì)就是力與位移的數(shù)量積。為此,我設(shè)計以下問題 一方面使學(xué)生嘗試計算數(shù)量積,另一方面使學(xué)生理解數(shù)量積的物理意義,同時也為數(shù)量積的性質(zhì)埋下伏筆。

  問題7:

  (1) 請同學(xué)們用一句話來概括功的數(shù)學(xué)本質(zhì):功是力與位移的數(shù)量積 。

  (2)嘗試練習(xí):一物體質(zhì)量是10千克,分別做以下運(yùn)動:

  ①、在水平面上位移為10米;

 、、豎直下降10米;

 、邸⒇Q直向上提升10米;

 、、沿傾角為30度的斜面向上運(yùn)動10米;

  分別求重力做的功。

  活動三:探究數(shù)量積的運(yùn)算性質(zhì)

  1、性質(zhì)的發(fā)現(xiàn)

  教材中關(guān)于數(shù)量積的三條性質(zhì)是以探究的形式出現(xiàn)的,為了很好地完成這一探究活動,在完成上述練習(xí)后,我不失時機(jī)地提出問題8:

  (1)將嘗試練習(xí)中的① ② ③的結(jié)論推廣到一般向量,你能得到哪些結(jié)論?

  (2)比較︱

  ·

  ︱與︱

  ︱×︱

  ︱的大小,你有什么結(jié)論?

  在學(xué)生討論交流的基礎(chǔ)上,教師進(jìn)一步明晰數(shù)量積的性質(zhì),然后再由學(xué)生利用數(shù)量積的定義給予證明,完成探究活動。

  2、明晰數(shù)量積的性質(zhì)

  3、性質(zhì)的證明

  這樣設(shè)計體現(xiàn)了教師只是教學(xué)活動的引領(lǐng)者,而學(xué)生才是學(xué)習(xí)活動的主體,讓學(xué)生成為學(xué)習(xí)的研究者,不斷地體驗到成功的喜悅,激發(fā)學(xué)生參與學(xué)習(xí)活動的熱情,不僅使學(xué)生獲得了知識,更培養(yǎng)了學(xué)生由特殊到一般的思維品質(zhì)。

  活動四:探究數(shù)量積的運(yùn)算律

  1、運(yùn)算律的發(fā)現(xiàn)

  關(guān)于運(yùn)算律,教材仍然是以探究的形式出現(xiàn),為此,首先提出問題9

  問題9:我們學(xué)過了實數(shù)乘法的哪些運(yùn)算律?這些運(yùn)算律對向量是否也適用?

  通過此問題主要是想使學(xué)生在類比的基礎(chǔ)上,猜測提出數(shù)量積的運(yùn)算律。

  學(xué)生可能會提出以下猜測: ①

  ·

  =

  ·

 、(

  ·

  )

  =

  (

  ·

  ) ③(

  +

  )·

  =

  ·

  +

  ·

  猜測①的正確性是顯而易見的。

  關(guān)于猜測②的正確性,我提示學(xué)生思考下面的問題:

  猜測②的左右兩邊的結(jié)果各是什么?它們一定相等嗎?

  學(xué)生通過討論不難發(fā)現(xiàn),猜測②是不正確的'。

  這時教師在肯定猜測③的基礎(chǔ)上明晰數(shù)量積的運(yùn)算律:

  2、明晰數(shù)量積的運(yùn)算律

  3、證明運(yùn)算律

  學(xué)生獨立證明運(yùn)算律(2)

  我把運(yùn)算運(yùn)算律(2)的證明交給學(xué)生完成,在證明時,學(xué)生可能只考慮到λ>0的情況,為了幫助學(xué)生完善證明,提出以下問題:

  當(dāng)λ<0時,向量

  與λ

  ,

  與λ

  的方向 的關(guān)系如何?此時,向量λ

  與

  及

  與λ

  的夾角與向量

  與

  的夾角相等嗎?

  師生共同證明運(yùn)算律(3)

  運(yùn)算律(3)的證明對學(xué)生來說是比較困難的,為了節(jié)約課時,這個證明由師生共同完成,我想這也是教材的本意。

  在這個環(huán)節(jié)中,我仍然是首先為學(xué)生創(chuàng)設(shè)情景,讓學(xué)生在類比的基礎(chǔ)上進(jìn)行猜想歸納,然后教師明晰結(jié)論,最后再完成證明,這樣做不僅培養(yǎng)了學(xué)生推理論證的能力,同時也增強(qiáng)了學(xué)生類比創(chuàng)新的意識,將知識的獲得和能力的培養(yǎng)有機(jī)的結(jié)合在一起。

  活動五:應(yīng)用與提高

  例1、(師生共同完成)已知︱

  ︱=6,︱

  ︱=4,

  與

  的夾角為60°,求

  (

  +2

  )·(

  -3

  ),并思考此運(yùn)算過程類似于哪種運(yùn)算?

  例2、(學(xué)生獨立完成)對任意向量

  ,b是否有以下結(jié)論:

  (1)(

  +

  )2=

  2+2

  ·

  +

  2

  (2)(

  +

  )·(

  -

  )=

  2—

  2

  例3、(師生共同完成)已知︱

  ︱=3,︱

  ︱=4, 且

  與

  不共線,k為何值時,向量

  +k

  與

  -k

  互相垂直?并思考:通過本題你有什么收獲?

  本節(jié)教材共安排了四道例題,我根據(jù)學(xué)生實際選擇了其中的三道,并對例1和例3增加了題后反思。例1是數(shù)量積的性質(zhì)和運(yùn)算律的綜合應(yīng)用,教學(xué)時,我重點從對運(yùn)算原理的分析和運(yùn)算過程的規(guī)范書寫兩個方面加強(qiáng)示范。完成計算后,進(jìn)一步提出問題:此運(yùn)算過程類似于哪種運(yùn)算?目的是想讓學(xué)生在類比多項式乘法的基礎(chǔ)上自己猜測提出例2給出的兩個公式,再由學(xué)生獨立完成證明,一方面這并不困難,另一方面培養(yǎng)了學(xué)生通過類比這一思維模式達(dá)到創(chuàng)新的目的。例3的主要作用是,在繼續(xù)鞏固性質(zhì)和運(yùn)算律的同時,教給學(xué)生如何利用數(shù)量積來判斷兩個向量的垂直,是平面向量數(shù)量積的基本應(yīng)用之一,教學(xué)時重點給學(xué)生分析數(shù)與形的轉(zhuǎn)化原理。

  為了使學(xué)生更好的理解數(shù)量積的含義,熟練掌握性質(zhì)及運(yùn)算律,并能夠應(yīng)用數(shù)量積解決有關(guān)問題,再安排如下練習(xí):

  1、 下列兩個命題正確嗎?為什么?

  ①、若

  ≠0,則對任一非零向量

  ,有

  ·

  ≠0.

 、、若

  ≠0,

  ·

  =

  ·

  ,則

  =

  .

  2、已知△ABC中,

  =

  ,

  =

  ,當(dāng)

  ·

  <0或

  ·

  =0時,試判斷△ABC的形狀。

  安排練習(xí)1的主要目的是,使學(xué)生在與實數(shù)乘法比較的基礎(chǔ)上全面認(rèn)識數(shù)量積這一重要運(yùn)算,

  通過練習(xí)2使學(xué)生學(xué)會用數(shù)量積表示兩個向量的夾角,進(jìn)一步感受數(shù)量積的應(yīng)用價值。

  活動六:小結(jié)提升與作業(yè)布置

  1、本節(jié)課我們學(xué)習(xí)的主要內(nèi)容是什么?

  2、平面向量數(shù)量積的兩個基本應(yīng)用是什么?

  3、我們是按照怎樣的思維模式進(jìn)行概念的歸納和性質(zhì)的探究?在運(yùn)算律的探究過程中,滲透了哪些數(shù)學(xué)思想?

  4、類比向量的線性運(yùn)算,我們還應(yīng)該怎樣研究數(shù)量積?

  通過上述問題,使學(xué)生不僅對本節(jié)課的知識、技能及方法有了更加全面深刻的認(rèn)識,同時也為下

  一節(jié)做好鋪墊,繼續(xù)激發(fā)學(xué)生的求知欲。

  布置作業(yè):

  1、課本P121習(xí)題2.4A組1、2、3。

  2、拓展與提高:

  已知

  與

  都是非零向量,且

  +3

  與7

  -5

  垂直,

  -4

  與 7

  -2

  垂直求

  與

  的夾角。

  在這個環(huán)節(jié)中,我首先考慮檢測全體學(xué)生是否都達(dá)到了“課標(biāo)”的基本要求,因此安排了一組教材中的習(xí)題,目的是讓所有的學(xué)生繼續(xù)加深對數(shù)量積概念的理解和應(yīng)用,為后續(xù)學(xué)習(xí)打好基礎(chǔ)。其次,為了能讓不同的學(xué)生在數(shù)學(xué)領(lǐng)域得到不同的發(fā)展,我又安排了一道有一定難度的問題供學(xué)有余力的同學(xué)選做。

  六、教學(xué)評價設(shè)計

  評價方式的轉(zhuǎn)變是新課程改革的一大亮點,課標(biāo)指出:相對于結(jié)果,過程更能反映每個學(xué)生的發(fā)展變化,體現(xiàn)出學(xué)生成長的歷程。因此,數(shù)學(xué)學(xué)習(xí)的評價既要重視結(jié)果,也要重視過程。結(jié)合“課標(biāo)”對數(shù)學(xué)學(xué)習(xí)的評價建議,對本節(jié)課的教學(xué)我主要通過以下幾種方式進(jìn)行:

  1、 通過與學(xué)生的問答交流,發(fā)現(xiàn)其思維過程,在鼓勵的基礎(chǔ)上,糾正偏差,并對其進(jìn)行定

  性的評價。

  2、在學(xué)生討論、交流、協(xié)作時,教師通過觀察,就個別或整體參與活動的態(tài)度和表現(xiàn)做出評價,以此來調(diào)動學(xué)生參與活動的積極性。

  3、 通過練習(xí)來檢驗學(xué)生學(xué)習(xí)的效果,并在講評中,肯定優(yōu)點,指出不足。

  4、 通過作業(yè),反饋信息,再次對本節(jié)課做出評價,以便查漏補(bǔ)缺。

關(guān)于高中數(shù)學(xué)說課稿2

  一、教材分析:

  1、教材的地位與作用:

  線性規(guī)劃是運(yùn)籌學(xué)的一個重要分支,在實際生活中有著廣泛的應(yīng)用。本節(jié)內(nèi)容是在學(xué)習(xí)了不等式、直線方程的基礎(chǔ)上,利用不等式和直線方程的有關(guān)知識展開的,它是對二元一次不等式的深化和再認(rèn)識、再理解。通過這一部分的學(xué)習(xí),使學(xué)生進(jìn)一步了解數(shù)學(xué)在解決實際問題中的應(yīng)用,體驗數(shù)形結(jié)合和轉(zhuǎn)化的思想方法,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、應(yīng)用數(shù)學(xué)的意識和解決實際問題的能力。

  2、教學(xué)重點與難點:

  重點:畫可行域;在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解。

  難點:在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解。

  二、目標(biāo)分析:

  在新課標(biāo)讓學(xué)生經(jīng)歷“學(xué)數(shù)學(xué)、做數(shù)學(xué)、用數(shù)學(xué)”的理念指導(dǎo)下,本節(jié)課的教學(xué)目標(biāo)分設(shè)為知識目標(biāo)、能力目標(biāo)和情感目標(biāo)。

  知識目標(biāo):

  1、了解線性規(guī)劃的'意義,了解線性約束條件、線性目標(biāo)函數(shù)、可行解、可行域和最優(yōu)解等概念;

  2、理解線性規(guī)劃問題的圖解法;

  3、會利用圖解法求線性目標(biāo)函數(shù)的最優(yōu)解.

  能力目標(biāo):

  1、在應(yīng)用圖解法解題的過程中培養(yǎng)學(xué)生的觀察能力、理解能力。

  2、在變式訓(xùn)練的過程中,培養(yǎng)學(xué)生的分析能力、探索能力。

  3、在對具體事例的感性認(rèn)識上升到對線性規(guī)劃的理性認(rèn)識過程中,培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合思想解題的能力和化歸能力。

  情感目標(biāo):

  1、讓學(xué)生體驗數(shù)學(xué)來源于生活,服務(wù)于生活,體驗數(shù)學(xué)在建設(shè)節(jié)約型社會中的作用,品嘗學(xué)習(xí)數(shù)學(xué)的樂趣。

  2、讓學(xué)生體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,培養(yǎng)學(xué)生勤于思考、勇于探索的精神;

  3、讓學(xué)生學(xué)會用運(yùn)動觀點觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認(rèn)識論的思想。

關(guān)于高中數(shù)學(xué)說課稿3

  一、教材分析

 。ㄒ唬┑匚慌c作用

  《冪函數(shù)》選自高一數(shù)學(xué)新教材必修1第2章第3節(jié)。是基本初等函數(shù)之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。從教材的整體安排看,學(xué)習(xí)了解冪函數(shù)是為了讓學(xué)生進(jìn)一步獲得比較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,為今后學(xué)習(xí)三角函數(shù)等其他函數(shù)打下良好的基礎(chǔ).在初中曾經(jīng)研究過y=x,y=x2,y=x—1三種冪函數(shù)。這節(jié)內(nèi)容,是對初中有關(guān)內(nèi)容的進(jìn)一步的概括、歸納與發(fā)展,是與冪有關(guān)知識的高度升華.本節(jié)內(nèi)容之后,將把指數(shù)函數(shù),對數(shù)函數(shù),冪函數(shù)科學(xué)的組織起來,體現(xiàn)充滿在整個數(shù)學(xué)中的組織化,系統(tǒng)化的精神。讓學(xué)生了解系統(tǒng)研究一類函數(shù)的方法.這節(jié)課要特別讓學(xué)生去體會研究的方法,以便能將該方法遷移到對其他函數(shù)的研究.

  (二)學(xué)情分析

 。1)學(xué)生已經(jīng)接觸的函數(shù),確立利用函數(shù)的定義域、值域、奇偶性、單調(diào)性研究一個函數(shù)的意識,已初步形成對數(shù)學(xué)問題的合作探究能力。

  (2)雖然前面學(xué)生已經(jīng)學(xué)會用描點畫圖的方法來繪制指數(shù)函數(shù),對數(shù)函數(shù)圖像,但是對于冪函數(shù)的圖像畫法仍然缺乏感性認(rèn)識。

 。3)學(xué)生層次參差不齊,個體差異比較明顯。

  二、目標(biāo)分析

  新課標(biāo)指出“三維目標(biāo)”是一個密切聯(lián)系的有機(jī)整體。

  (一)教學(xué)目標(biāo)

 。1)知識與技能

 、偈箤W(xué)生理解冪函數(shù)的概念,會畫冪函數(shù)的圖象。

  ②讓學(xué)生結(jié)合這幾個冪函數(shù)的圖象,理解冪函圖象的變化情況和性質(zhì)。

  (2)過程與方法

 、僮寣W(xué)生通過觀察、總結(jié)冪函數(shù)的性質(zhì),培養(yǎng)學(xué)生概括抽象和識圖能力。

  ②使學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

  (3)情感態(tài)度與價值觀

 、偻ㄟ^熟悉的例子讓學(xué)生消除對冪函數(shù)的陌生感從而引出概念,引起學(xué)生注意,激發(fā)學(xué)生的學(xué)習(xí)興趣。

  ②利用多媒體,了解冪函數(shù)圖象的變化規(guī)律,使學(xué)生認(rèn)識到現(xiàn)代技術(shù)在數(shù)學(xué)認(rèn)知過程中的作用,從而激發(fā)學(xué)生的學(xué)習(xí)欲望。

 、叟囵B(yǎng)學(xué)生從特殊歸納出一般的意識,培養(yǎng)學(xué)生利用圖像研究函數(shù)奇偶性的能力。并引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)中的對稱美,讓學(xué)生在畫圖與識圖中獲得學(xué)習(xí)的快樂。

 。ǘ┲攸c難點

  根據(jù)我對本節(jié)課的內(nèi)容的理解,我將重難點定為:

  重點:從五個具體的冪函數(shù)中認(rèn)識概念和性質(zhì)

  難點:從冪函數(shù)的圖象中概括其性質(zhì)。

  三、教法、學(xué)法分析

 。ㄒ唬┙谭

  教學(xué)過程是教師和學(xué)生共同參與的過程,教師要善于啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動學(xué)生的積極性、主動性,要有效地滲透數(shù)學(xué)思想方法,努力去提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法。

  1、引導(dǎo)發(fā)現(xiàn)比較法

  因為有五個冪函數(shù),所以可先通過學(xué)生動手畫出函數(shù)的圖象,觀察它們的解析式和圖象并從式的角度和形的角度發(fā)現(xiàn)異同,并進(jìn)行比較,從而更深刻地領(lǐng)會冪函數(shù)概念以及五個冪函數(shù)的圖象與性質(zhì)。

  2、借助信息技術(shù)輔助教學(xué)

  由于多媒體信息技術(shù)能具有形象生動易吸引學(xué)生注意的特點,故此,可用多媒體制作引入情境,將學(xué)生引到這節(jié)課的學(xué)習(xí)中來。再利用《幾何畫板》畫出五個冪函數(shù)的圖象,為學(xué)生創(chuàng)設(shè)豐富的數(shù)形結(jié)合環(huán)境,幫助學(xué)生更深刻地理解冪函數(shù)概念以及在冪函數(shù)中指數(shù)的變化對函數(shù)圖象形狀和單調(diào)性的影響,并由此歸納冪函數(shù)的性質(zhì)。

  3、練習(xí)鞏固討論學(xué)習(xí)法

  這樣更能突出重點,解決難點,使學(xué)生既能夠進(jìn)行深入地獨立思考又能與同學(xué)進(jìn)行廣泛的交流與合作,這樣一來學(xué)生對這五個冪函數(shù)領(lǐng)會得會更加深刻,在這個過程中學(xué)生們分析問題和解決問題的能力得到進(jìn)一步的提高,班級整體學(xué)習(xí)氛氛圍也變得更加濃厚。

 。ǘ⿲W(xué)法

  本節(jié)課主要是通過對冪函數(shù)模型的特征進(jìn)行歸納,動手探索冪函數(shù)的圖像,觀察發(fā)現(xiàn)其有關(guān)性質(zhì),再改變觀察角度發(fā)現(xiàn)奇偶函數(shù)的特征。重在動手操作、觀察發(fā)現(xiàn)和歸納的過程。

  由于冪函數(shù)在第一象限的特征是學(xué)生不容易發(fā)現(xiàn)的問題,因此在教學(xué)過程中引導(dǎo)學(xué)生將抽象問題具體化,借助多媒體進(jìn)行動態(tài)演化,以形成較完整的知識結(jié)構(gòu)。

  四、教學(xué)過程分析

 。ㄒ唬┙虒W(xué)過程設(shè)計

  (1)創(chuàng)設(shè)情境,提出問題。新課標(biāo)指出:“應(yīng)該讓學(xué)生在具體生動的情境中學(xué)習(xí)數(shù)學(xué)”。在本節(jié)課的教學(xué)中,從我們熟悉的生活情境中提出問題,問題的設(shè)計改變了傳統(tǒng)目的明確的設(shè)計方式,給學(xué)生最大的思考空間,充分體現(xiàn)學(xué)生主體地位。

  問題1:下列問題中的函數(shù)各有什么共同特征?是否為指數(shù)函數(shù)?

  由學(xué)生討論,總結(jié),即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1

  這時學(xué)生觀察可能有些困難,老師提示可以用x表示自變量,用y表示函數(shù)值,上述函數(shù)式變成:

  都是自變量的若干次冪的形式。都是形如

  的函數(shù)。

  揭示課題:今天這節(jié)課,我們就來研究:冪函數(shù)

  (一)課堂主要內(nèi)容

 。1)冪函數(shù)的概念

  ①冪函數(shù)的定義。

  一般地,函數(shù)

  叫做冪函數(shù),其中x是自變量,a是常數(shù)。

 、趦绾瘮(shù)與指數(shù)函數(shù)之間的區(qū)別。

  冪函數(shù)——底數(shù)是自變量,指數(shù)是常數(shù);

  指數(shù)函數(shù)——指數(shù)是自變量,底數(shù)是常數(shù)。

 。2)幾個常見冪函數(shù)的圖象和性質(zhì)

  由同學(xué)們畫出下列常見的冪函數(shù)的圖象,并根據(jù)圖象將發(fā)現(xiàn)的性質(zhì)填入表格

  根據(jù)上表的內(nèi)容并結(jié)合圖象,總結(jié)函數(shù)的共同性質(zhì)。讓學(xué)生交流,老師結(jié)合學(xué)生的回答組織學(xué)生總結(jié)出性質(zhì)。

  以上問題的設(shè)計意圖:數(shù)形結(jié)合是一個重要的數(shù)學(xué)思想方法,它包含以數(shù)助形,和以形助數(shù)的思想。通過問題設(shè)計讓學(xué)生著手實際,借助行的生動來闡明冪函數(shù)的性質(zhì)。

  教師講評:冪函數(shù)的性質(zhì).

 、偎械膬绾瘮(shù)在(0,+∞)上都有定義,并且圖像都過點(1,1).

 、谌绻鸻>0,則冪函數(shù)的圖像通過原點,并在區(qū)間〔0,+∞)上是增函數(shù).

 、廴绻鸻<0,則冪函數(shù)在(0,+∞)上是減函數(shù),在第一象限內(nèi),當(dāng)x從右邊趨向于原點時,圖像在y軸右方無限地趨近y軸;當(dāng)x趨向于+∞時,圖像在x軸上方無限地趨近x軸.

 、墚(dāng)a為奇數(shù)時,冪函數(shù)為奇函數(shù);當(dāng)a為偶數(shù)時,冪函數(shù)為偶函數(shù)。

  以問題設(shè)計為主,通過問題,讓學(xué)生由已經(jīng)學(xué)過的指數(shù)函數(shù),對數(shù)函數(shù),描點作圖得到五個冪函數(shù)的圖像,但是我們應(yīng)該知道繪制冪函數(shù)的圖像比繪制指數(shù)函數(shù)和對數(shù)函數(shù)的圖像更為復(fù)雜,因為冪函數(shù)隨著冪指數(shù)的輕微變化會出現(xiàn)較大的'變化,因此,在描點作圖之前,應(yīng)引導(dǎo)學(xué)生對幾個特殊的冪函數(shù)的性質(zhì)先進(jìn)行初步的探究,如分析函數(shù)的定義域,奇偶性等,在根據(jù)研究結(jié)果和描點作圖畫出圖像,讓學(xué)生觀察所作圖像特征,并由圖象特征得到相應(yīng)的函數(shù)性質(zhì),讓學(xué)生充分體會系統(tǒng)的研究方法。同時學(xué)生對于歸納性質(zhì)這一環(huán)節(jié)相對指數(shù)函數(shù),對數(shù)函數(shù)的性質(zhì),學(xué)生會有更大的困難。因此,教學(xué)中只須對他們的圖像與基本性質(zhì)進(jìn)行認(rèn)識,而不必在一般冪函數(shù)上作過多的引申和介紹。在教學(xué)中,采用從具體到一般,再從一般到具體的安排。

  通過學(xué)生的主體參與,使學(xué)生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識識的再次深化。

 。3)當(dāng)堂訓(xùn)練,鞏固深化

  例題和練習(xí)題的選取應(yīng)結(jié)合學(xué)生認(rèn)知探究,鞏固本節(jié)課的重點知識,并能用知識加以運(yùn)用。本節(jié)課選取主要選取了兩道例題。

  例1是課本上的例題:證明f(x)=x1/2在(0,+∞)上是增函數(shù)。這題先從“形”的角度判斷函數(shù)的單調(diào)區(qū)間和單調(diào)性,再用到定義從“數(shù)”的角度對函數(shù)的單調(diào)性進(jìn)行推理論證,培養(yǎng)學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想和解決問題的專業(yè)素養(yǎng)。

  例2是補(bǔ)充例題,主要培養(yǎng)學(xué)生根據(jù)體例構(gòu)造出函數(shù),并利用函數(shù)的性質(zhì)來解決問題的能力,從而加深學(xué)生對冪函數(shù)及其性質(zhì)的理解。注意:由于學(xué)生對冪函數(shù)還不是很熟悉,所以在講評中要刻意體現(xiàn)出冪函數(shù)y=x1。3是增函數(shù)與y=x—5/4的圖像的畫法,即再一次讓學(xué)生體會根據(jù)解析式來畫圖像解題這一基本思路

 。4)小結(jié)歸納,回顧反思。 小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進(jìn)行總結(jié)。我設(shè)計了三個問題:

  (1)通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識?

  (2)通過本節(jié)課的學(xué)習(xí),你最大的體驗是什么?

 。3)通過本節(jié)課的學(xué)習(xí),你掌握了哪些技能?

 。ǘ┳鳂I(yè)設(shè)計作業(yè)分為必做題和選做題,必做題對本節(jié)課學(xué)生知識水平的反饋,選做題是對本節(jié)課內(nèi)容的延伸與,注重知識的延伸與連貫,強(qiáng)調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成.我設(shè)計了以下作業(yè):

 。1)必做題

 。2)選做題

 。ㄈ┌鍟O(shè)計

  板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進(jìn)程,能簡明扼要反映知識結(jié)構(gòu)及其相互聯(lián)系;能指導(dǎo)教師的教學(xué)進(jìn)程、引導(dǎo)學(xué)生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進(jìn)程更加連貫。

  五、評價分析

  學(xué)生學(xué)習(xí)的結(jié)果評價當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價。我采用及時點評、延時點評與學(xué)生互評相結(jié)合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價學(xué)生是否有積極的情感態(tài)度和頑強(qiáng)的理性精神,在概念反思過程中評價學(xué)生的歸納猜想能力是否得到發(fā)展,通過鞏固練習(xí)考查學(xué)生對冪函數(shù)是否有一個完整的集訓(xùn),并進(jìn)行及時的調(diào)整和補(bǔ)充。 以上就是我對本節(jié)課的理解和設(shè)計,敬請各位專家、評委批評指正。

  謝謝!

關(guān)于高中數(shù)學(xué)說課稿4

  【一】教學(xué)背景分析

  1。教材結(jié)構(gòu)分析

  《圓的方程》安排在高中數(shù)學(xué)第二冊(上)第七章第六節(jié)。圓作為常見的簡單幾何圖形,在實際生活和生產(chǎn)實踐中有著廣泛的應(yīng)用。圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個解析幾何中起著承前啟后的作用。

  2。學(xué)情分析

  圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的。但由于學(xué)生學(xué)習(xí)解析幾何的時間還不長、學(xué)習(xí)程度較淺,且對坐標(biāo)法的運(yùn)用還不夠熟練,在學(xué)習(xí)過程中難免會出現(xiàn)困難。另外學(xué)生在探究問題的能力,合作交流的意識等方面有待加強(qiáng)。

  根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

  3。教學(xué)目標(biāo)

 。1) 知識目標(biāo):①掌握圓的標(biāo)準(zhǔn)方程;

  ②會由圓的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;

  ③利用圓的標(biāo)準(zhǔn)方程解決簡單的實際問題。

 。2) 能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;

 、诩由顚(shù)形結(jié)合思想的理解和加強(qiáng)對待定系數(shù)法的運(yùn)用;

 、墼鰪(qiáng)學(xué)生用數(shù)學(xué)的意識。

 。3) 情感目標(biāo):①培養(yǎng)學(xué)生主動探究知識、合作交流的意識;

 、谠隗w驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣。

  根據(jù)以上對教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點和難點:

  4。 教學(xué)重點與難點

 。1)重點:圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用。

 。2)難點: ①會根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;

  ②選擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實際問題。

  為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上進(jìn)行分析:

  好學(xué)教育:

  【二】教法學(xué)法分析

  1。教法分析 為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上。另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實際問題的情境既能激發(fā)學(xué)生的'學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程。

  2。學(xué)法分析 通過推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對用坐標(biāo)法求軌跡方程的理解。通過求圓的標(biāo)準(zhǔn)方程,理解必須具備三個獨立的條件才可以確定一個圓。通過應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過程。 下面我就對具體的教學(xué)過程和設(shè)計加以說明:

  【三】教學(xué)過程與設(shè)計

  整個教學(xué)過程是由七個問題組成的問題鏈驅(qū)動的,共分為五個環(huán)節(jié):

  創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高

  反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申

  下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計意圖。

  首先:縱向敘述教學(xué)過程

 。ㄒ唬﹦(chuàng)設(shè)情境——啟迪思維

  問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2。7m,高為3m的貨車能不能駛?cè)脒@個隧道?

  通過對這個實際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時學(xué)生自己推導(dǎo)出了圓心在原點,半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題。用實際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實際,應(yīng)用于實際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望。這樣獲取的知識,不但易于保持,而且易于遷移。

  通過對問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來,此時再把問題深入,進(jìn)入第二環(huán)節(jié)。

 。ǘ┥钊胩骄俊@得新知

  問題二 1。根據(jù)問題一的探究能不能得到圓心在原點,半徑為的圓的方程?

  2。如果圓心在,半徑為時又如何呢?

  好學(xué)教育:

  這一環(huán)節(jié)我首先讓學(xué)生對問題一進(jìn)行歸納,得到圓心在原點,半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點,半徑為r的圓的標(biāo)準(zhǔn)方程。然后再讓學(xué)生對圓心不在原點的情況進(jìn)行探究。我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法。

  得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計了由淺入深的三個應(yīng)用平臺,進(jìn)入第三環(huán)節(jié)。

 。ㄈ⿷(yīng)用舉例——鞏固提高

  I。直接應(yīng)用 內(nèi)化新知

  問題三 1。寫出下列各圓的標(biāo)準(zhǔn)方程:

 。1)圓心在原點,半徑為3;

 。2)經(jīng)過點,圓心在點。

  2。寫出圓的圓心坐標(biāo)和半徑。

  我設(shè)計了兩個小問題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問題作準(zhǔn)備。

  II。靈活應(yīng)用 提升能力

  問題四 1。求以點為圓心,并且和直線相切的圓的方程。

  2。求過點,圓心在直線上且與軸相切的圓的方程。

  3。已知圓的方程為,求過圓上一點的切線方程。

  你能歸納出具有一般性的結(jié)論嗎?

  已知圓的方程是,經(jīng)過圓上一點的切線的方程是什么?

  我設(shè)計了三個小問題,第一個小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程。第二個小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓。第三個小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間。最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過圓上一點圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達(dá)到高潮。

  III。實際應(yīng)用 回歸自然

  問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。

  好學(xué)教育:

  我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應(yīng)用,同時也與引例相呼應(yīng),使學(xué)生形成解決實際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識。

 。ㄋ模┓答佊(xùn)練——形成方法

  問題六 1。求過原點和點,且圓心在直線上的圓的標(biāo)準(zhǔn)方程。

  2。求圓過點的切線方程。

  3。求圓過點的切線方程。

  接下來是第四環(huán)節(jié)——反饋訓(xùn)練。這一環(huán)節(jié)中,我設(shè)計三個小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心。另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識進(jìn)行判斷,這樣的設(shè)計對培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果。

 。ㄎ澹┬〗Y(jié)反思——拓展引申

  1。課堂小結(jié)

  把圓的標(biāo)準(zhǔn)方程與過圓上一點圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法 ①圓心為,半徑為r 的圓的標(biāo)準(zhǔn)方程為:

  圓心在原點時,半徑為r 的圓的標(biāo)準(zhǔn)方程為:。

 、谝阎獔A的方程是,經(jīng)過圓上一點的切線的方程是:。

  2。分層作業(yè)

  (A)鞏固型作業(yè):教材P81—82:(習(xí)題7。6)1,2,4。(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點的切線方程。

  3。激發(fā)新疑

  問題七 1。把圓的標(biāo)準(zhǔn)方程展開后是什么形式?

  2。方程表示什么圖形?

  在本課的結(jié)尾設(shè)計這兩個問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會知識的起點與終點都蘊(yùn)涵著問題,舊的問題解決了,新的問題又產(chǎn)生了。在知識的拓展中再次掀起學(xué)生探究的熱情。另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備。

  以上是我縱向的教學(xué)過程及簡單的設(shè)計意圖,接下來,我從三個方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計: 橫向闡述教學(xué)設(shè)計

  (一)突出重點 抓住關(guān)鍵 突破難點

  好學(xué)教育:

  求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點也是難點,為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點的同時突破了難點。

  第二個教學(xué)難點就是解決實際應(yīng)用問題,這是學(xué)生固有的難題,主要是因為應(yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心。最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個應(yīng)用問題——問題五。這樣的設(shè)計,使學(xué)生在解決問題的同時,形成了方法,難點自然突破。

 。ǘ⿲W(xué)生主體 教師主導(dǎo) 探究主線

  本節(jié)課的設(shè)計用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終。從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的。另外,我重點設(shè)計了兩次思維發(fā)散點,分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅(qū)動下,高效的完成本節(jié)的學(xué)習(xí)任務(wù)。

  (三)培養(yǎng)思維 提升能力 激勵創(chuàng)新

  為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問題的設(shè)計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強(qiáng)知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。

  以上是我對這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變。最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”。

關(guān)于高中數(shù)學(xué)說課稿5

  一、說教材

  (1)說教材的內(nèi)容和地位

  本次說課的內(nèi)容是人教版高一數(shù)學(xué)必修一第一單元第一節(jié)《集合》(第一課時)。集合這一課里,首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識安排在高中數(shù)學(xué)的最開始,是因為在高中數(shù)學(xué)中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握以及使用數(shù)學(xué)語言的基礎(chǔ)。從知識結(jié)構(gòu)上來說是為了引入函數(shù)的定義。因此在高中數(shù)學(xué)的模塊中,集合就顯得格外的舉足輕重了。

 。2)說教學(xué)目標(biāo)

  根據(jù)教材結(jié)構(gòu)和內(nèi)容以及教材地位和作用,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)與心理特征,依據(jù)新課標(biāo)制定如下教學(xué)目標(biāo):

  1.知識與技能:掌握集合的基本概念及表示方法。了解"屬于"關(guān)系的意義,掌握集合元素的特征。

  2.過程與方法:通過情景設(shè)置提出問題,揭示課題,培養(yǎng)學(xué)生主動探究新知的習(xí)慣。并通過"自主、合作與探究"實現(xiàn)"一切以學(xué)生為中心"的理念。

  3.情感態(tài)度與價值觀:感受數(shù)學(xué)的人文價值,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣,由集合的學(xué)習(xí)感受數(shù)學(xué)的簡潔美與和諧統(tǒng)一美。同時通過自主探究領(lǐng)略獲取新知識的喜悅。

 。3)說教學(xué)重點和難點

  依據(jù)課程標(biāo)準(zhǔn)和學(xué)生實際,我確定本課的教學(xué)重點為

  教學(xué)重點:集合的基本概念及元素特征。

  教學(xué)難點:掌握集合元素的三個特征,體會元素與集合的屬于關(guān)系。

  二、說教法和學(xué)法

  接下來則是說教法、學(xué)法

  教法與學(xué)法是互相聯(lián)系和統(tǒng)一的,不能孤立去研究。什么樣的教法必帶來相應(yīng)的學(xué)法,以遵循啟發(fā)性原則為出發(fā)點,就本節(jié)課而言,我采用"生活實例與數(shù)學(xué)實例"相結(jié)合,"師生互動與課堂布白"相輔助的方法。通過不同層次的練習(xí)體驗,憑借有趣、實用的教學(xué)手段,突出重點,突破難點。然而,學(xué)生是學(xué)習(xí)的主人,以學(xué)生為主體,創(chuàng)造條件讓學(xué)生參與探究活動,()不僅提高了學(xué)生探究能力,更讓學(xué)生獲得學(xué)習(xí)的技能和激發(fā)學(xué)生的學(xué)習(xí)興趣。因此,本次活動采用的學(xué)法有自主探究、觀察發(fā)現(xiàn)、合作交流、歸納總結(jié)等。

  總之,不管采取什么教法和學(xué)法,每節(jié)課都應(yīng)不斷研究學(xué)生的學(xué)習(xí)心理機(jī)制,不斷優(yōu)化教師本身的教學(xué)行為,自始至終以學(xué)生為主體,為學(xué)生創(chuàng)造和諧的課堂氛圍。

  三、說教學(xué)過程

  接著我來說一下最重要的部分,本節(jié)課的教學(xué)過程:

  這節(jié)課的流程主要分為六個環(huán)節(jié):創(chuàng)設(shè)情境(引入目標(biāo))、自主探究(感知目標(biāo))、討論辨析(理解目標(biāo))、變式訓(xùn)練(鞏固目標(biāo))、課堂小結(jié)(自我評價)、作業(yè)布置(反饋矯正)。上述六個環(huán)節(jié)由淺入深,層層遞進(jìn)。 多層次、多角度地加深對概念的理解。 提高學(xué)生學(xué)習(xí)的興趣,以達(dá)到良好的教學(xué)效果。

  第一環(huán)節(jié):創(chuàng)設(shè)問題情境,引入目標(biāo)

  課堂開始我將提出兩個問題:

  問題1:班級有20名男生,16名女生,問班級一共多少人?

  問題2:某次運(yùn)動會上,班級有20人參加田賽,16人參加徑賽,問一共多少人參加比賽?

  這里我會讓學(xué)生以小組討論的形式進(jìn)行討論問題,事實上小組合作的形式是本節(jié)課主要形式。

  待學(xué)生討論完畢以后我將作歸納總結(jié):問題2已無法用學(xué)過的知識加以解釋,這是與集合有關(guān)的問題,因此需用集合的語言加以描述(同時我將板書標(biāo)題:集合)。

  安排這一過程的意圖是為了從實際問題引入,讓學(xué)生了解數(shù)學(xué)來源于實際。從而激發(fā)學(xué)生參與課堂學(xué)習(xí)的欲望。

  很自然地進(jìn)入到第二環(huán)節(jié):自主探究

  讓學(xué)生閱讀教材,并思考下列問題:

 。1)有那些概念?

 。2)有那些符號?

  (3)集合中元素的特性是什么?

  安排這一過程的意圖是給學(xué)生提供活動空間,讓主體主動建構(gòu)自己的知識結(jié)構(gòu)。培養(yǎng)學(xué)生的探究能力。

  讓學(xué)生自主探究之后將進(jìn)入第三環(huán)節(jié):討論辨析

  小組合作探究(1)

  讓學(xué)生觀察下列實例

  (1)1~20以內(nèi)的所有質(zhì)數(shù);

  (2)所有的正方形;

 。3)到直線 的距離等于定長 的所有的點;

 。4)方程 的所有實數(shù)根;

  通過以上實例,辨析概念:

  (1)集合含義:一般地,某些指定的對象集在一起就成為一個集合,也簡稱集。而集合中的每個對象叫做這個集合的元素。

 。2)表示方法:集合通常用大括號{ }或大寫的拉丁字母A,B,C…表示,而元素用小寫的拉丁字母a,b,c…表示。

  小組合作探究(2)——集合元素的特征

  問題3:任意一組對象是否都能組成一個集合?集合中的元素有什么特征?

  問題4:某單位所有的"帥哥"能否構(gòu)成一個集合?由此說明什么?

  集合中的元素必須是確定的

  問題5:在一個給定的集合中能否有相同的元素?由此說明什么?

  集合中的元素是不重復(fù)出現(xiàn)的

  問題6:咱班的全體同學(xué)組成一個集合,調(diào)整座位后這個集合有沒有變化?由此說明什么? 集合中的元素是沒有順序的.

  我如此設(shè)計的意圖是因為:問題是數(shù)學(xué)的心臟,感受問題是學(xué)習(xí)數(shù)學(xué)的根本動力。

  小組合作探究(3)——元素與集合的關(guān)系

  問題7:設(shè)集合A表示"1~20以內(nèi)的所有質(zhì)數(shù)",那么3,4,5,6這四個元素哪些在集合A中?哪些不在集合A中?

  問題8:如果元素a是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達(dá)?

  a屬于集合A,記作a∈A

  問題9:如果元素a不是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達(dá)?

  a不屬于集合A,記作aA

  小組合作探究(4)——常用數(shù)集及其表示方法

  問題10:自然數(shù)集,正整數(shù)集,整數(shù)集,有理數(shù)集,實數(shù)集等一些常用數(shù)集,分別用什么符號表示?

  自然數(shù)集(非負(fù)整數(shù)集):記作 N

  正整數(shù)集:

  整數(shù)集:記作 Z

  有理數(shù)集:記作 Q 實數(shù)集:記作 R

  設(shè)計意圖:由于不同的人對同一問題有不同的體驗和理解。讓學(xué)生通過合作交流相互得到啟發(fā),從而不斷完善自己的知識結(jié)構(gòu)。

  第四環(huán)節(jié):理論遷移 變式訓(xùn)練

  1.下列指定的對象,能構(gòu)成一個集合的是

  ① 很小的數(shù)

 、 不超過30的非負(fù)實數(shù)

  ③ 直角坐標(biāo)平面內(nèi)橫坐標(biāo)與縱坐標(biāo)相等的點

 、 π的近似值

  ⑤ 所有無理數(shù)

  A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④

  第五環(huán)節(jié):課堂小結(jié),自我評價

  1.這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?

  2.這節(jié)課主要解釋了什么數(shù)學(xué)思想?

  設(shè)計意圖:引導(dǎo)學(xué)生對所學(xué)知識、思想方法進(jìn)行小結(jié),形成知識系統(tǒng)。教師用激勵性的語言加一點評,讓學(xué)生的思想敞亮的發(fā)揮出來。

  第六環(huán)節(jié):作業(yè)布置,反饋矯正

  1.必做題 課本習(xí)題1.1—1、2、3.

  2.選做題 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實數(shù)a 的值。

  設(shè)計意圖:充分考慮到學(xué)生的差異性,讓所有學(xué)生都有成功的情感體驗。

  四、板書設(shè)計

  好的板書就像一份微型教案,為了讓學(xué)生直觀易懂的看筆記,板書應(yīng)設(shè)計得有條理性、概括性、指導(dǎo)性,所以我設(shè)計的板書如下:

  集 合

  1.集合的概念

  2.集合元素的特征

 。▽W(xué)生板演)

  3.常見集合的表示

  4.范例研究

關(guān)于高中數(shù)學(xué)說課稿6

  尊敬的各位評委、各位老師大家好!我說課的題目是《函數(shù)的單調(diào)性》,我將從四個方面來闡述我對這節(jié)課的設(shè)計.

  一、教材分析

  1、教材的地位和作用

  (1)本節(jié)課主要對函數(shù)單調(diào)性的學(xué)習(xí);

  (2)它是在學(xué)習(xí)函數(shù)概念的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,同時又為基本初等函數(shù)的學(xué)習(xí)奠定了基礎(chǔ),所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節(jié)來寫)

  (3)它是歷年高考的熱點、難點問題

  (根據(jù)具體的課題改變就行了,如果不是熱點難點問題就刪掉)

  2、教材重、難點

  重點:函數(shù)單調(diào)性的定義

  難點:函數(shù)單調(diào)性的證明

  重難點突破:在學(xué)生已有知識的基礎(chǔ)上,通過認(rèn)真觀察思考,并通過小組合作探究的辦法來實現(xiàn)重難點突破。(這個必須要有)

  二、教學(xué)目標(biāo)

  知識目標(biāo):(1)函數(shù)單調(diào)性的定義

  (2)函數(shù)單調(diào)性的證明

  能力目標(biāo):培養(yǎng)學(xué)生全面分析、抽象和概括的能力,以及了解由簡單到復(fù)雜,由特殊到一般的化歸思想

  情感目標(biāo):培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識

  (這樣的教學(xué)目標(biāo)設(shè)計更注重教學(xué)過程和情感體驗,立足教學(xué)目標(biāo)多元化)

  三、教法學(xué)法分析

  1、教法分析

  “教必有法而教無定法”,只有方法得當(dāng)才會有效。新課程標(biāo)準(zhǔn)之處教師是教學(xué)的組織者、引導(dǎo)者、合作者,在教學(xué)過程要充分調(diào)動學(xué)生的積極性、主動性。本著這一原則,在教學(xué)過程中我主要采用以下教學(xué)方法:開放式探究法、啟發(fā)式引導(dǎo)法、小組合作討論法、反饋式評價法

  2、學(xué)法分析

  “授人以魚,不如授人以漁”,最有價值的知識是關(guān)于方法的只是。學(xué)生作為教學(xué)活動的主題,在學(xué)習(xí)過程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀察發(fā)現(xiàn)法、合作交流法、歸納總結(jié)法。

  (前三部分用時控制在三分鐘以內(nèi),可適當(dāng)刪減)

  四、教學(xué)過程

  1、以舊引新,導(dǎo)入新知

  通過課前小研究讓學(xué)生自行繪制出一次函數(shù)f(x)=x和二次函數(shù)f(x)=x^2的圖像,并觀察函數(shù)圖象的特點,總結(jié)歸納。通過課上小組討論歸納,引導(dǎo)學(xué)生發(fā)現(xiàn),教師總結(jié):一次函數(shù)f(x)=x的圖像在定義域是直線上升的,而二次函數(shù)f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當(dāng)添加手勢,這樣看起來更自然)

  2、創(chuàng)設(shè)問題,探索新知

  緊接著提出問題,你能用二次函數(shù)f(x)=x^2表達(dá)式來描述函數(shù)在(-∞,0)的圖像?教師總結(jié),并板書,揭示函數(shù)單調(diào)性的定義,并注意強(qiáng)調(diào)可以利用作差法來判斷這個函數(shù)的單調(diào)性。

  讓學(xué)生模仿剛才的表述法來描述二次函數(shù)f(x)=x^2在(0,+∞)的圖像,并找個別同學(xué)起來作答,規(guī)范學(xué)生的數(shù)學(xué)用語。

  讓學(xué)生自主學(xué)習(xí)函數(shù)單調(diào)區(qū)間的定義,為接下來例題學(xué)習(xí)打好基礎(chǔ)。

  3、例題講解,學(xué)以致用

  例1主要是對函數(shù)單調(diào)區(qū)間的鞏固運(yùn)用,通過觀察函數(shù)定義在(—5,5)的圖像來找出函數(shù)的單調(diào)區(qū)間。這一例題主要以學(xué)生個別回答為主,學(xué)生回答之后通過互評來糾正答案,檢查學(xué)生對函數(shù)單調(diào)區(qū)間的掌握。強(qiáng)調(diào)單調(diào)區(qū)間一般寫成半開半閉的形式

  例題講解之后可讓學(xué)生自行完成課后練習(xí)4,以學(xué)生集體回答的方式檢驗學(xué)生的學(xué)習(xí)效果。

  例2是將函數(shù)單調(diào)性運(yùn)用到其他領(lǐng)域,通過函數(shù)單調(diào)性來證明物理學(xué)的波意爾定理。這是歷年高考的'熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進(jìn)行證明,以規(guī)范總結(jié)證明步驟。一設(shè)二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。

  學(xué)生在熟悉證明步驟之后,做課后練習(xí)3,并以小組為單位找部分同學(xué)上臺板演,其他同學(xué)在下面自行完成,并通過自評、互評檢查證明步驟。

  4、歸納小結(jié)

  本節(jié)課我們主要學(xué)習(xí)了函數(shù)單調(diào)性的定義及證明過程,并在教學(xué)過程中注重培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識。

  5、作業(yè)布置

  為了讓學(xué)生學(xué)習(xí)不同的數(shù)學(xué),我將采用分層布置作業(yè)的方式:一組習(xí)題1.3A組1、2、3,二組習(xí)題1.3A組2、3、B組1、2

  6、板書設(shè)計

  我力求簡潔明了地概括本節(jié)課的學(xué)習(xí)要點,讓學(xué)生一目了然。

 。ㄟ@部分最重要用時六到七分鐘,其中定義講解跟例題講解一定要說明學(xué)生的活動)

  五、教學(xué)評價

  本節(jié)課是在學(xué)生已有知識的基礎(chǔ)上學(xué)習(xí)的,在教學(xué)過程中通過自主探究、合作交流,充分調(diào)動學(xué)生的積極性跟主動性,及時吸收反饋信息,并通過學(xué)生的自評、互評,讓內(nèi)部動機(jī)和外界刺激協(xié)調(diào)作用,促進(jìn)其數(shù)學(xué)素養(yǎng)不斷提高。

【高中數(shù)學(xué)說課稿】相關(guān)文章:

高中數(shù)學(xué)《集合》說課稿07-22

高中數(shù)學(xué)說課稿07-09

高中數(shù)學(xué)數(shù)列說課稿04-12

高中數(shù)學(xué)說課稿03-21

關(guān)于高中數(shù)學(xué)說課稿11-26

高中數(shù)學(xué)《向量》說課稿范文02-15

高中數(shù)學(xué)說課稿范文11-02

高中數(shù)學(xué)說課稿 15篇11-14

高中數(shù)學(xué)說課稿15篇11-05

精選高中數(shù)學(xué)說課稿5篇04-13