《分數基本性質》說課稿
作為一名無私奉獻的老師,時常需要用到說課稿,說課稿有助于提高教師理論素養(yǎng)和駕馭教材的能力。我們應該怎么寫說課稿呢?以下是小編收集整理的《分數基本性質》說課稿,僅供參考,大家一起來看看吧。
《分數基本性質》說課稿1
一、教材分析
分數的基本性質是約分和通分的基礎,而約分、通分又是分數四則運算的重要基礎,因此,理解分數的基本性質顯得尤為重要。而分數與除法的關系以及除法中的商不變的規(guī)律與這部分知識緊密聯(lián)系,是學習這部分內容的基礎。
探索分數的基本性質,關鍵是讓學生在活動中主動地觀察和發(fā)現(xiàn),在討論交流的基礎上歸納規(guī)律。根據我對教材的認識,本課時安排了學習活動和游戲活動讓學生尋找相等的分數,使學生初步體驗分數的大小相等關系,為觀察、發(fā)現(xiàn)分數的基本性質提供豐富的學習材料。然后引導學生觀察這兩組相等的分數,尋找分子、分母的變化規(guī)律,并展開充分的交流討論,在此基礎上歸納分數的基本性質。
教學目標:
1、知識目標:經歷探索分數的基本性質的過程,理解分數的基本性質。能用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。
2、能力目標:培養(yǎng)學生的觀察、比較、歸納、總結概括能力。
3、情感目標:經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣。
二、說教法
“將課堂還給學生,讓課堂煥發(fā)生命活力”,為營造學生在教學活動中的獨立、自主的學習空間,讓學生成為課堂的主人,本著這樣的指導思想,根據概念教學的特點,結合教學特點,以及學生的認知規(guī)律,我將采用的教學方法主要有:
1、 直觀演示法
先讓學生充分感知,然后比較歸納,最后概括出分數的基本性質,從而使學生的思維從形象思維過度到抽象思維。
2、 實際操作法
指導學生親自動一動、折一折,畫一畫,比一比,多這些實踐活動中加深學生對分數基本性質的理解,促使學生的感性認識逐步理性化。
3、 啟發(fā)式教學法
運用知識遷移規(guī)律組織教學,層層深入促使學生在積極的思維
4. 樹立以“以學生發(fā)展為本”、“以學定教”、“教為學服務”的思想,因此在教學中,我采用引導自學、合作探索相結合法,讓學會運用分數的`基本性質把一個分數化成分母不同但大小相等的分數,有效地提高了教學效率。在知識的鞏固階段,我還采用分層練習法,當然以上這些教法并不是孤立存在的,本著“一法為主,多法為輔”的思想,我將多種教法進行優(yōu)化組合,以達到促進學生學習方式的轉變,實現(xiàn)教學目標的目的
三、教學組織形式:
師生互動、合作與探索結合
四、教學過程與設計意圖
1、故事引入、激發(fā)興趣、揭示課題
以阿凡提講故事引入,然后小組討論。
2、動手操作,探索新知
、僮鲆蛔,折一折。拿出三張同樣大的長方形紙,請分別平均折成2份、4份、8份。并按照下圖涂色。如果把每張紙都看作“1”,請你把涂色的部分用分數表示出來。學生動手操作、匯報。
根據上面的過程,學生能得到一組相等的分數嗎?
、诮處熞龑W生歸納小結:比較這三個分數的分子和分母,它們各是按照什么規(guī)律變化的?分數的分子和分母同時乘上或除以相同的數(0除外),分數的大小不變,這就是分數的基本性質。
知識引伸,聯(lián)系舊知識:根據分數與除法的關系,以及整數除法中商不變的性質,你能說說它與分數的基本性質嗎?
設計意圖:新知識力求讓學生主動探索,逐步獲取。借助直觀圖組織學生進行一個動手操作活動,借助直觀圖形找出相等的分數,使學生能夠直觀感知。充分調動孩子們去動手、動腦,培養(yǎng)學生的操作能力和語言表達能力。并充分發(fā)揚學生的團結協(xié)作的精神, 互相幫助,每個人都能在激勵中得到不同的發(fā)展。
本次活動的安排為學生提供了豐富的學習材料,引導學生聯(lián)系以往的學習經驗,進行學習內容的遷移,自然得到分數大小的變化規(guī)律,教師在此也進行了適當的重點點撥。在這一環(huán)節(jié)的學習過程中,教師注重學生的觀察、比較、歸納概括能力的培養(yǎng)。
3、實踐游戲、深化理解、鞏固練習:
設計意圖:練習設計由易到難,由淺入深,既鞏固新知,又發(fā)展思維,其間還自然地滲透思想品德教育。師生對出數做題,能夠創(chuàng)設民主和諧的學習氣氛。學生對于課堂游戲都非常積極,這時,教師應該及時表揚表現(xiàn)出色的學生,也要顧及一些后進生的學習狀況,帶動后進生的學習激情。
4、全課總結:這節(jié)課你有什么收獲?
《分數基本性質》說課稿2
一、教材
1、教學內容:這是義務教育課程標準實驗教科書數學人教版五年級下冊第四單元P75的內容《分數的基本性質》。
2、教材與前后知識間的聯(lián)系:《分數的基本性質》是以分數的意義、分數與除法的關系以及整數除法中商不變的規(guī)律這些知識為基礎的。同時又是后面學習約分和通分的理論依據,而約分、通分又是分數四則運算的重要基礎,因此這部分內容不僅在單元中具有承前啟后的作用,對學生的后繼學習也有重要影響。
3、教材重點:探究分數的基本性質的過程。理解分數的基本性質,能運用分數的基本性質。
難點:自主探究出分數的基本性質。
4、知識與技能目標:理解和掌握分數的基本性質,經歷探索分數基本性質的過程,培養(yǎng)學生觀察、比較、抽象、概括、類推及動手實踐能力,進一步發(fā)展學生的思維。
過程與方法目標:是學生經歷觀察、操作、討論中,以自主探究、合作分享的教學方式,讓學生在交流中進一步完善對分數基本性質的理解。
情感態(tài)度,價值觀目標:讓學生在主動探索新知的過程中獲得成功的體驗,體驗數學學習的樂趣。
二、說教學理念:
1、以學生發(fā)展為本,著力強化主體意識。
2、從學生已有的認知發(fā)展水平和知識經驗出發(fā),為學生提供充分從事數學活動的機會,變學數學為做數學。
3、改變學生的學習方式,關注過程,讓學生經歷知識的形成過程,感受猜想、驗證、轉化等數學思想方法
三、說教法
主要采用創(chuàng)設情境,引導探究,引導自學,合作探索相結合等教法。
四、說學法
學生主要的學習方法是自主發(fā)現(xiàn)、操作體驗、合作交流,有順序的觀察題、對比分析、概括總結。
五、說教學過程
我將創(chuàng)設情境,動手體驗、自主探索的教學方式,指導學生運用“操作――發(fā)現(xiàn)法”、“觀察、歸納”法進行探究。為此,我設計了四個教學環(huán)節(jié):
第一個環(huán)節(jié)是創(chuàng)設故事情境,激發(fā)學生興趣《分數的基本性質》說課稿《分數的基本性質》說課稿。我覺得如果根據教材的安排來導入,顯得有些平淡,也不容易激發(fā)學生的學習興趣。因此我設計了一個媽媽給三個兒子分蘋果的故事。媽媽分別給三個兒子分得蘋果的1/2、2/4、4/8,分得的結果看似不公,實則相同。并讓學生作為裁判來評一評,看誰分的多,媽媽是不是偏心。這樣一來,學生學習數學的興趣就會提高,學習的積極性也調動起來了。同時,我又把這一懸念暫時先放一放,等學生理解并掌握了分數的基本性質后,學生就會恍然大捂。原來,三個兒子分得的.蘋果實際上是一樣多的,只不過是平均分的份數不一樣的,其中表示的份數也不一樣,但大小卻是相等的,誰也沒有吃虧。這樣的設計,不僅使教學結構更加完整,前后呼應,同時也提高了學生理解和應用分數的基本性質來解決實際問題的能力。
第二個環(huán)節(jié)是動手體驗,形象感知。分數的基本性質,是以分數的大小相等這一概念為基礎的。因此我讓學生用三張同樣大小的長方形紙代替蘋果分別折出1/2、2/4、4/8,并用彩色筆涂上顏色。這樣既幫助學生復習了分數的意義,又為學習新知識作了準備。接著讓學生觀察比較涂色部分的大小,再請學生交流,匯報實驗過程及結果,使1/2=2/4=4/8這個結論讓學生自己“做出來”,而不是老師講出來。這充分體現(xiàn)以學生為主體,自主探索的教學理念。
這種教學方式能有效地改變學生原有的一個整數對應一個大小的習慣性思維,初步體會到分數“形變值不變”的獨特之處,提高學生的認知能力。
第三個環(huán)節(jié)是深入探究,得出規(guī)律。這一節(jié)環(huán)節(jié)我提出問題讓學生討論:既然這三個分數大小相等,那這三個分子、分母都不相同的分數之間藏著什么秘密呢?你們能找出它們分子分母各自按照什么規(guī)律變化嗎?首先,讓學生自己觀察,把自己的發(fā)現(xiàn)在小組內討論交流,引導學生觀察:從左往右得出什么規(guī)律,反過來從右往左又得出什么規(guī)律。然后請學生再舉幾個這樣的例子,進行交流,有了這些較為豐富的感性認識,再總結出規(guī)律。最后學生們會概括得出:分數的分子和分母同時乘或者除以相同的數,分數的大小不變。(老師板書)預計學生不會把相同的數中的0除外,因此我會問同時乘和除以0也可以嗎?讓學生思考并得出0不能作為分母不能作為除數,所以0要除外,最后讓學生重新完整的敘述一遍,老師揭示課題。最后提出問題,我們剛才是借助圖聯(lián)系分數的意義來說明分數的基本性質,這個性質能不能根據分數與除法的關系和商不變的性質來說明呢?啟發(fā)學生用商不變的性質來說明分數的基本性質,溝通新舊知識的聯(lián)系,從而培養(yǎng)了學生遷移能力。最后師生共同總結本節(jié)課的學習方法。
最后一個環(huán)節(jié)是鞏固新知,拓展延伸。學以致用是探究學習的又一個基本特征《分數的基本性質》說課稿教學反思。因此我精心設計了練習題。首先是題型變化豐富
練習中,我除了安排一些基本根據分數的基本性質來填空外,我還安排了一些判斷題、口答題、填圖題、并要求學生不改變分數的大小,把分數改成分母是30的分數的題目。題型的豐富不僅提高了學生學習的興趣,也使學生更好地理解和應用分數的基本性質來解決實際問題的能力。其次是練習難度的層次性。數學題目經常出現(xiàn)有些學生吃不了,同時也有部分學生吃不飽的現(xiàn)象。為此,除了基本的練習題外,我還逐步加深難度,提高學生的思維能力,如:分數的分子加上10,要使分數的大小不變,分母應該加上幾?難度的加深,使學生的思維能力、解題能力等都有了明顯提高,真正把培優(yōu)補差工作落到了實處。
《分數基本性質》說課稿3
一、教材分析
1、 教材內容
《分數的基本性質》這一課是課改版小學數學教材第十冊的教學內容,學習本內容之前,學生已清楚理解分數的意義,明確分數與除法的關系,商不變性質等知識,這些都為本課學習做了知識上的鋪墊。分數的基本性質是一種規(guī)律性知識,分數的分子分母變了,分數的大小會變嗎?分數的分子分母如何變化,分數的大小不變呢?學生在這種變與不變中發(fā)現(xiàn)規(guī)律。
2、知識間的聯(lián)系:
七冊:商不變性質 十冊:分數的基本性質 十二冊:比的基本性質
同時《分數的基本性質》也是學生學習分數加減法的基礎。所以,本節(jié)課的教學內容具有比較重要的地位。
二、指導思想與設計理念
新的課程標準提出:教師應向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法。
根據這一新的理念,我認為教師可以為學生創(chuàng)設一種大問題背景下的探索活動,使學生在一種動態(tài)的探索過程中自己發(fā)現(xiàn)分數的基本性質,從而體驗發(fā)現(xiàn)真理的曲折和快樂,感受數學的思想方法,體會科學的學習方法。所以,教師的.著眼點,不能只是規(guī)律的結論和應用,而應有意識地突出思想和方法;谝陨纤伎,本課讓學生經歷:舊知喚醒(復習商不變性質與分數與除法的關系)新知猜想(分數中是否有類似的性質,如果有,是一個什么樣的性質?)實踐探究(看圖分類)得出結論(研究卡)深化認識(對結論的理解,嘗試練習,理解其中的變與不變,能用字母來表示式子)練習提高(基本題、綜合題、加深題)數學建模(用字母來表示分數的基本性質)建立聯(lián)系(分數的基本性質與商不變性質的聯(lián)系)。讓學生對于分數的基本性質能在數學的層面上有一個較為完整、清晰與明確的掌握。
三、學情分析
前測:(問卷形式)
問題1:你知道分數的基本性質嗎?你是怎樣理解的,試著舉例說明。
2:試著做一做下面這些題比較大。
4/7○2/7 1/2○2/4 3/5○9/15
分析:暫無
結論:暫無
四、教學目標及重難點
教學目標:
1、讓學生經歷分數基本性質的探究過程,理解和掌握分數的基本性質,初步建立數學模型。
2、利用分數的基本性質把一個分數化為指定分母(或分子)而大小不變的分數。
3、培養(yǎng)學生的觀察、概括等思維能力及(滲透變與不變)數學學習興趣。
教學重點:
理解掌握分數的基本性質,它是約分,通分的依據
解決策略:通過讓學生經歷猜想驗證得出結論實踐練習這樣的學習過程,掌握知識的要點:什么是同時?方法是:乘或除以,要點:相同的數(0除外),最終:分數的大小不變。
教學難點:
理解和掌握分數的基本性質。
解決策略:通過初步建立數學模型,使學生對分數的基本性質這個結論能夠擺脫表象的依賴,即對具體事物或圖例,從而從而成熟地思考、理解。
五、教法學法:
教法:樹立以以學生發(fā)展為本、以學定教的思想,為實現(xiàn)教學目標,有效地突出重點、突破難點,我遵循學生的認知規(guī)律,以建構主義學習理論為指導,在探究分數的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析,充分運用知識遷移的規(guī)律,在感知的基礎上加以抽象、概括,進行歸納整理,采取遷移教學法、引導發(fā)現(xiàn)法組織教學。
學法:有效的數學學習活動,不能單純模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。在學習例題的過程中學生主要采用自學嘗試法,獨立自主地學習將分數化成分母不同但大小相同的分數,并嘗試完成做一做,達到檢驗自學的目的。通過觀察、比較、提出問題并解決問題來進行自主探索與合作交流,充分發(fā)揮學生主體參與作用、激發(fā)學生學習愛好,同時讓學生獲得成功體驗。
六、教學過程
一、遷移舊知.提出猜想
1回憶舊知
活動:猜信封。通過猜信封中的數或算式,引導學生回憶分數與除法的關系。媒體演示:分數與除法的關系:
被除數除數=
通過誰能說一道與23商一樣的除法算式?引導學生回憶什么是商不變的性質?媒體出示:商不變的性質:
被除數和除數同時乘或除以相同的數(零除外),商不變。
2、提出猜想:
既然分數與除法的關系這么緊密.除法有商不變性質,那分數是否也會有這樣的性質,請大家大膽猜想一下。學生匯報后投影出示:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。
二、驗證猜想,建構新知
環(huán)節(jié)1、 看圖分類
下面是一組相等的正方形,請寫出每個圖形陰影部分所表示的分數,并把相同的分數分在一起。
通過動手操作,使學生不僅明白它們相等,滲透它們是因為什么而相等的為后面的實驗做好準備,避免學生出現(xiàn)盲目行動,同時也是為學生探究方法的多元化創(chuàng)造條件。
環(huán)節(jié)2、 討論方法
師:你是怎么判斷它們相等的?
師:它們相等,用算式可以怎么表示?
1/2 = 2/4 = 4/8
通過讓學生表述怎么判斷它們相等的鍛煉學生的表達能力。
3、研究規(guī)律
第一層:師:這些相等的式子,除了我們從圖上看到的大小相等之外,還有沒有其他的秘密呢?
利用研究卡進行研究。
確定的研究對象
分子和分母同時乘上或者
除以一個相同的數
得到的分數
研究對象與得到的分數相等嗎?
相等( )不相等()
猜想是否成立?
成立( )不成立( )
充分利用學生的生成資源:揭示課題:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
第二層:教師通過追問和簡單的練習重點處理分數基本性質的關鍵詞,滲透變與不變的數學思想。
師:為什么要0除外?
師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)
練習:2/3=( )/18、 6/21=2/( )、 3/5=21/( )、 27/39=( )/13
師:這里面什么變了,什么不變?(生:分子和分母變了,但分數的大小不變)
師:分子與分母是怎樣變化的?(同時乘或除以相同的數,0除外)
師:分數的基本性質與商不變性質有什么聯(lián)系?
環(huán)節(jié)4、質疑完善
3/4 = 3( )/ 4( )
師:括號中可以填哪些數?
預設:可以填無數個數
師:如果只用一個數來表示,填什么數好?
預設:字母
師:這個字母有什么特殊要求嗎?(0除外)
得到一個初級的數學模型。3/4= 3X/ 4X(X0)
讓學生打開課本進行閱讀、內化,并想一想還有什么問題嗎?
通過這個環(huán)節(jié)的練習,進行第一次數學建構。
三、 練習升華
通過以下練習進一步鞏固分數的基本性質,使學生初步利用分數的基本性質把一個分數化為指定分母(或分子)而大小不變的分數。
1、5/7=( )/35 、3/4=9/( )、 3/( )=12/20、 16/24=( )/3
2、把5/6和1/4都化為分母為12而大小不變的分數。
3、把2/3和3/4都化為分子為6而大小不變的分數。
4、把2/5的分子加上2以后,要使分數的大小不變,分母應加上多少?
5、 和 哪一個分數大,你能講出判斷的依據嗎?
四、總結延伸
師:這節(jié)課學了什么?
師:如果一個分數為A/B,你能用一個式子來表示分數的基本性質嗎?
A/B=AX/ 4X(X0)或A/B=AX/ 4X(X0)
在這個環(huán)節(jié)中,數學的模型才真正的建立。模型一方面便于學生記憶,便于學生理解意義,而且數學化地表示數學也是高年級學生所必備的。
五、作業(yè)p87-1、2
板書設計
分數基本性質
分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
68
34
1216
《分數基本性質》說課稿4
一、教學內容的說明
《分數的基本性質》一課是五年級下冊的一個內容。學習本內容之前,學生已清楚理解分數的意義,明確分數與除法的關系,商不變性質等知識,這些都為本課學習做了知識上的鋪墊。本課在小學數學學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯(lián)系,也是后面進一步學習約分、通分、分數計算的基礎。
二、學情分析
學生在三年級上學期已經初步認識了分數,知道分數各個部分的名稱,會讀、寫簡單的分數,會比較分子是1的分數,以及同分母分數的大小。還學習了簡單的同分母分數的加、減法。在本學期又學習了因數、倍數等概念,掌握了2、3、5的倍數的特征,為學習本單元知識打下了基礎。
三、教學目標
依據新的《數學課程標準》,為了更好地體現(xiàn)數學學習對學生在數學思考、解決問題以及情感與態(tài)度等方面的要求。根據本節(jié)課的具體內容并結合學生的實際情況,我制定了以下教學目標:
1.使學生理解與掌握分數的基本性質,能運用它改變分數的分母與分子,而使分數的大小不變。
2.培養(yǎng)學生觀察、比較、分析、概括等方面的能力。
3、通過實踐活動,鼓勵學生動手進行科學的驗證,培養(yǎng)其勇于探索,勇于創(chuàng)新的意識。
四、教學重點、難點
教學重點:
理解和掌握分數的基本性質,運用分數的基本性質解決實際問題。
教學難點
學生通過猜想和動手驗證,抽象概括出分數的基本性質。
五、教法學法的選擇
教法:本著“以學生發(fā)展為本”、“以學定教”的思想,按照學生學習的認知規(guī)律,在探究分數的基本性質過程中,主要采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析,充分運用知識遷移的規(guī)律,在感知的基礎上加以抽象、概括,進行歸納整理,采取遷移教學法、引導發(fā)現(xiàn)法組織教學。
學法:有效的數學學習活動,不能單純模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。在學習例題的過程中學生主要采用自學嘗試法,獨立自主地學習將分數化成分母不同但大小相同的分數,并嘗試完成做一做,達到檢驗自學的目的。通過觀察、比較、提出問題并解決問題來進行自主探索與合作交流,充分發(fā)揮學生主體參與作用、激發(fā)學生學習愛好,同時讓學生獲得成功體驗。
六、教學過程的設計
為了全面、準確地引導學生探索發(fā)現(xiàn)分數的基本性質,實現(xiàn)教學目標,我努力抓住學生的思維生長點組織教學,設計了“1.創(chuàng)設情境——引發(fā)思考2.引出新知——動手實踐3.初步感知——引導觀察4.發(fā)現(xiàn)規(guī)律——鞏固練習5.課堂小結——加深理解 ”五個環(huán)節(jié)。
一、創(chuàng)設情境,引發(fā)思考
1、上課開始我引入了故事:有一天媽媽給淘氣做了一個香噴噴的大蛋糕,藍貓看見了也想吃。淘氣說:我只有一個蛋糕,要不我分給你一些吧,我有三種分法,請你選擇一種:
第一種:把蛋糕平均分成2份,送給你其中的一份,也就是這個蛋糕的1/2;
第二種:把蛋糕平均分成4份,送給你其中的2份,也就是這個蛋糕的2/4;
第三種:把蛋糕平均分成8份,送給你其中的4份,也就是這個蛋糕的4/8。
選擇哪一種分法吃到的蛋糕最多呢?
同學們,如果你是藍貓,你會選擇哪一種呢?
先聽講一段故事,學生非常樂意,并會立即被吸引。思考故事當中提出的問題,學生自然興趣濃厚。通過故事設疑,激起了學生探求新知的欲望。
二、對于分數基本性質的理解
分為3個層次 借助長方形紙條來理解。通過觀察、舉例、驗證,初步理解和總結(分數的分子和分母同時乘或除以相同的數分數的大小不變。)——總結完善分數的基本性質。
1、借助長方形紙條理解
這里分成兩份層次(1)借助直觀圖理解(2)分析分數理解
。1)借助直觀圖理解。
首先,引導學生在同樣大的長方形紙條上分別表示出、、想一想為什么為什么分的份數不一樣,取的份數也不一樣可他們最后分的大小卻會相同呢?
。2)借助分數理解
在學生清楚的知道了三個分數為什么會相等后,從圖在回到抽象的三個分數上,說一說, 他們的分子、分母是怎樣變化的`。說明白后,明確分的份數就是分母,取得分數就是分子,在板書上改為“分母擴大了兩倍、四倍,分子也相應擴大了兩倍、四倍,分數大小不變”
2、通過觀察、舉例、驗證,初步理解和總結(分數的分子和分母同時乘或除以相同的數分數的大小不變。)
總結規(guī)律是在大量的直觀的數據或練習的基礎上實現(xiàn)的。為了給學生便于學生總結,我設計了“你還能舉出一個和3/6大小相等的分數嗎?你是怎樣想的?如果想讓分子是9,分母是? 想讓分母是18,分子呢?”一方面學生利用了分數的基本性質做了一些基礎的題,另一方面在敘述你是怎樣想的時候,其實也是對分數基本性質的概括。這樣當“用一句話總結你的發(fā)現(xiàn)”的時候,在語言敘述上就沒有什么障礙了。
3、關于“同時”“相同的數““0除外”的理解
兩種預設,在總結出“分數的分子、分母同時乘或除以相同的數,分數的大小不變!弊寣W生說說自己的理解,如果有有學生提出就上提出的學生說一說,如果沒有主動提出,就通過做個練習題,“2/3哪樣列式行嗎?為什么?”。讓學生說一說通過做這兩個題你有什么想提醒大家的。
四、鞏固練習
根據本節(jié)課的內容,在練習上我設計三個不同層次的練習,首先是針對大多數的基礎性練習,如填空、判斷。其次是稍有變動的,需要結合分數與除法關系完成的變式練習。
最后為了滿足優(yōu)等生的需要還涉及了以下練習
5/9的分母加9,分子加幾,分數的大小不變。
板書: 分數的基本性質
1/2==2/4=4/8
分數的分子和分母同時乘或者除以相同的數(0除外),分數大小不變。
《分數基本性質》說課稿5
一、說教材分析
《分數的基本性質》是義務教育課程標準實驗教材人教版五年級下冊第五單元的一個重要內容。該教學內容是以分數的意義、分數與除法的關系、整數除法中商不變的規(guī)律這些知識為基礎的。分數的基本性質是建立在分數大小相等這一概念基礎之上的。而兩個分數的大小相等,并不意味著兩個分數的分子、分母分別相同。分數的基本性質又是約分和通分的基礎,而約分和通分則是分數四則混合運算的重要基礎,因此,理解分數的基本性質顯得尤為重要。
二、說教學目標
根據教材分析制定如下的教學目標:
知識與技能:
1、使讓學生理解分數的基本性質,并會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數。
2、培養(yǎng)學生觀察、分析和抽象概括能力。
過程與方法:
1、讓學生經歷分數基本性質的探究過程。
2、通過引導啟發(fā),幫助學生學會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數的方法。
情感態(tài)度與價值觀:
1、體驗合作探究的樂趣,培養(yǎng)學生的團結協(xié)作精神。
2、滲透“事物間相互聯(lián)系”的辯證唯物主義觀點。
教學重點:理解分數基本性質。
教學難點:歸納分數的基本性質,并運用性質轉化分數。
教具教學準備:
多媒體課件,小棒、紙條、圓形紙片
三、說教學策略
為了營造學生在教學活動中的獨立、自主的學習空間,讓學生成為課堂的主人,本著“將課堂還給學生,讓課堂煥發(fā)生命活力”的指導思想,根據學生的認知規(guī)律,我采取以下教學策略:
1、采用了創(chuàng)設情境、引導探究、引導自學、組織討論、組織練習等教學策略。
2、實際操作:指導學生親自動手折一折,涂一涂,比一比,從這些實踐活動中加深學生對分數基本性質的理解,促進學生的感性認識逐步理性化。
3、引導概括:先讓學生充分感知,發(fā)現(xiàn)規(guī)律,然后比較歸納,最后概括出分數的基本性質,從而使學生的思維從形象思維過渡到抽象思維。
4、新課標指出:有效的數學學習活動,不能單純模仿與記憶。動手實踐、自主探索與合作交流是本節(jié)課學生學習的重要方式。
四、說教學流程
結合五年級學生的理解能力和年齡特征,我將本課的教學設計為六個環(huán)節(jié)。
(一)、創(chuàng)設情境,引發(fā)猜想
首先我為學生帶來一個《猴王分餅》的故事。
猴山上的小猴子最喜歡吃猴王做的餅了,有一天,猴王做了三塊大小一樣的餅分給小猴子吃。它先把第一塊餅平均切成4塊,分給猴1一塊;猴2見了說:“太少了,我要2塊!焙锿跤职训诙䦃K餅平均切成8塊,分給猴2兩塊;猴3更貪,它搶著說:“我要3塊,我要3塊……”猴王又把第三塊餅平均切成12塊,分給猴3兩。小朋友,你知道哪只猴子分得的餅多嗎?
“同學們,你們認為猴王分得公平嗎?”引發(fā)學生的猜想。
(這樣就激發(fā)了學生的學習興趣,為后面的學習做好了鋪墊。)
(二)自主探索,尋找規(guī)律
。ㄏ旅孢@個環(huán)節(jié)是課堂教學的中心環(huán)節(jié),新課標強調,要讓學生在實踐活動中進行探索性的學習。根據這一理念,我設計了下面的活動。讓學生在體驗中學習,在學習中體驗。)
1、小組合作 驗證猜想
這只是大家的猜想,究竟哪只猴子分得的餅多呢?親自分一分,驗證你們的猜想。
學生操作驗證---集體匯報交流----展示成果
2、既然三只小猴分得的餅同樣多,那么表示他們分得餅的三個分數是什么關系呢?這三個分數什么變了,什么沒變?
學生得出:這三個分數是相等關系,分數的分子和分母變化了,但分數的大小不變。
3、猴王把三張大小一樣的餅分給小猴一部分后,剩下的部分大小相等嗎?通過觀察演示得出3/4=6/8=9/12
4、我們班有64名同學,分成了四組,每組16人。那么,第一、二組學生的人數占全班學生人數的幾分之幾?引導學生用不同的分數表示,然后得出1/2=2/4=32/64
。ㄈ┍容^歸納 揭示規(guī)律
1、出示思考題
1/4=2/8=3/12
比較每組分數的分子和分母:
從左往右看,是按照什么規(guī)律變化的?
從右往左看,又是按照什么規(guī)律變化的?
通過觀察,你發(fā)現(xiàn)了什么?
讓學生帶著上面的思考題,先獨立思考,后小組討論、交流。
2、集體交流,歸納性質。
3、師生共同總結規(guī)律,找出性質中的關鍵詞,然后齊讀,注意關鍵的'字詞要重讀。
4、現(xiàn)在,大家知道猴王是運用什么性質分餅了嗎?
5、溝通分數的基本性質與商不變性質之間的聯(lián)系。引導學生應用分數和除法的關系,以及整數除法中商不變的性質,說明分數的基本性質。
。ㄟ@樣的設計就讓學生感受到了數學知識的內在聯(lián)系,同時滲透“事物之間是相互聯(lián)系”的辨證唯物主義觀點)
。ㄋ模┳詫W例2
1、自學例2。
2/3 = 2×()/3×4 =()/12
10/24 = 10 ( )/24 ( ) = ( )/12
2、展示交流:重點讓學生說說分母、分子是如何變化的?根據什么?
這樣設計的目的是學生學會的老師不包辦,從而培養(yǎng)了學生的自學能力。
。ㄎ澹┒鄬泳毩 鞏固深化
1、填上合適的數,說說你填寫的根據
1/3 =()/6 10/15 =()/3 1/4 = 5/()
我想通過這道題讓學生進一步加深對分數基本性質的形成過程的理解,從而培養(yǎng)學生的語言表達能力。
2、說一說下面各式運用分數的基本性質是否正確
5/24=5×2/24÷2=10/12 ( )
4/9=4÷2/9÷3=2/3 ( )
13/18=13+2/18+2=15/20 ( )
在這我設計了同學們在平時做題中容易混淆的問題,提醒同學們今后要注意。
3、想一想:(選擇你喜歡的一道題來做)
與1/2相等的分數有多少個?想像一下把手中的正方形的紙無限地平分下去,可得到多少個與1/2相等的分數?
9/24和20/32哪一個數大一些,你能講出判斷的依據嗎?
在這我讓同學們充分發(fā)揮想象,靈活運用分數的基本性質。為后面學習約分和通分的知識奠定基礎。
。┍菊n小結
同學們,通過這節(jié)課,你有哪些收獲?
學生在交流收獲的過程中,培養(yǎng)學生的知識概括能力。
五、說教學評價
1、教學過程中采用自我、小組、集體等多種評價方式,激發(fā)起學生交流的興趣。
2、多媒體課件的應用,創(chuàng)設生動的教學情境。
3、學生在發(fā)現(xiàn)、體驗、合作、交流、歸納、總結中,自主參與整個學習過程,營造獨立、自主的學習空間,學生成為課堂的主人。
《分數基本性質》說課稿6
尊敬的各位評委,各位老師:
大家好!我說課的內容是《分數的基本性質》。這課選自北師大版小學數學五年級上冊第三單元的學習內容,這部內容的學習是在學生學習了分數的意義、分數與除法的關系、商不變性質等知識的基礎上進行教學的。它是進一步學習約分、通分的基礎。
根據本單元的教學要求和本課的特點,我設計本課的教學目標有三點:
1、(認知目標)理解分數的基本性質,并了解它與除法中商不變的規(guī)律之間的聯(lián)系。
2、(認知目標)理解和掌握分數的基本性質。
3、(能力、情感目標)培養(yǎng)學生觀察、分析、推理的能力。
教學重點:理解和掌握分數的基本性質。
教學難點:讓學生自主探索,發(fā)現(xiàn)和歸納分數的基本性質,以及應用它解決相關的問題。
《數學課程標準》提出:把現(xiàn)代信息技術作為學生學習數學和解決問題的強有力工具,致力于改變學生的學習方式,使學生樂意并有更多的精力投入到現(xiàn)實的、探索性的數學活動中去。如何充分發(fā)揮、凸顯現(xiàn)代信息技術的優(yōu)越性和有效性而又省時省力呢?
本課依托網絡平臺,為學生創(chuàng)設一種大問題背景下的探索活動,以游戲這個學生感興趣的明線下,借助網絡實驗室,使學生在一種動態(tài)的探索過程中自己發(fā)現(xiàn)分數的基本性質,從而體驗發(fā)現(xiàn)真理的曲折和快樂,感受數學的思想方法,體會數學的科學性。創(chuàng)設“猜想——驗證——反思”的教學模式,以“猜想”貫穿全課,引導學生大膽猜想——驗證猜想——完善猜想等,從而一步步使分數的基本性質趨于完善。
我設計的具體教學過程如下:
第一環(huán)節(jié):激趣引入,凸顯信息技術的趣味性。
“好的開始是成功的一半”,本課運用學生感興趣的電腦游戲和卡通人物導入新課,有效地開啟學生思維的閘門,激起猜測探究的興趣,通過比較三個分數的大小,凸顯矛盾沖突。(我在教學比較這三個分數大小時,學生們各抒己見,堅持著自己的觀點不放,使得不同觀點的矛盾激化,激發(fā)了學生的好奇心和爭強好勝的心理,為后面的發(fā)現(xiàn)規(guī)律埋下伏筆。)
第二環(huán)節(jié):探索規(guī)律,凸顯信息技術的直觀性和時效性。
1、提出猜想。
學生進入國外網站,通過操作,直觀的觀察情境中三個分數的涂色部分,發(fā)現(xiàn)這三個分數的大小是相等的。
再引導學生觀察這組分數中“什么變了,什么沒變”,從變了的分母、分子入手去觀察它們是怎么變的,得到初步的猜想,“分數的分子、分母都乘或除以2,分數的大小不變”。
。ā皩W起于思,思起于疑”。這個環(huán)節(jié)中,當學生猜測三個分數誰大誰小,運用網絡實驗室用比平時更少的.時間、更直觀的得出三個分數大小相等,為后面猜想的提出提供了更多觀察、交流的時間)
2、完善猜想。
在得到初步猜想后,在游戲的大背景下,再出示一組分數:三分之二和十五分之十。學生猜測大小、進入網絡實驗室驗證,發(fā)現(xiàn)這兩個分數也是相等的。
這一部分的主要目的則在于完善初步猜想,使學生感受到分子、分母不僅可以乘或除以2,分數大小不變,還可以乘或除以像5這樣更大的數,從而得到進一步的猜想:“分數的分子、分母都乘或除以同一個數,分數的大小不變”。
(在這一環(huán)節(jié)中,網絡實驗室再次起到了快速、直觀知道分數大小的作用,唯一不同的是,這次使用了紙條這個不同的表現(xiàn)形式,通過不同的表現(xiàn)形式來表達分數的意義)
3、驗證猜想,得出規(guī)律。
學生把符合猜想的三組分數記錄在學習卡上,(用圖片方式呈現(xiàn))再到網絡實驗室里進行驗證,看看是否也都具有一定的規(guī)律。通過大量的例子顯示這不僅僅是學生的猜想,而是具有一定規(guī)律的。
最后運用分數與除法的關系和商不變的性質,從舊知遷移解釋、理解新知,得到“同一個數”不能為0,從而確定了最后規(guī)律,得到本課課題:分數的基本性質。(平時的教學中能驗證的分數少之又少,而學生通過猜想可以得到的分子、分母較大的相同大小的分數——如二分之一和百分之五十這樣的分數就很難驗證,通過我們的網絡實驗室就能很好地解決這個問題,充分體現(xiàn)了網絡實驗室的重要性和必要性。這樣,在平常教學中最花費時間的環(huán)節(jié)——驗證上節(jié)省了不少時間)
第三環(huán)節(jié):游戲鞏固,思維提升,凸顯信息技術的交互性。
學生已經理解了分數的基本性質后,再次進入網絡實驗室,以玩游戲的形式鞏固所學的規(guī)律。(教師也從這個過程了解學生的掌握情況。有的學生在玩這個游戲的時候甚至發(fā)現(xiàn)了兩個分數之間的分子、分母分別不具備倍數關系,如十二分之六和十八分之九,還發(fā)現(xiàn)通過找中間數也能運用分數的基本性質解釋這個現(xiàn)象。)
接著再通過回到第一組分數,利用分數的基本性質寫出與第一組分數相等的分數來提升學生的思維,初步感知與第一組分數相等的分數還有很多很多。讓學生感受到分數的基本性質應用非常廣泛,還需要他們進一步的學習和探索。
第四環(huán)節(jié):提煉方法,積累基本的數學活動經驗。
師生共同回顧學習過程,總結并提煉出探索規(guī)律的方法:猜想→驗證→得出結論,為學生今后的學習提供科學的學習方法。
第五環(huán)節(jié):網上交流,課內向課外延伸。
一節(jié)課的結束不僅僅是解決了幾個問題,更重要的引發(fā)學生新的思考和新的探究行為,但一節(jié)課的時間是非常有限的。所以在課的最后,教師在課件上給學生提供了課堂上所用網絡實驗室的網址和老師的博客,讓學生通過網絡實驗室這個平臺及博客這個載體,在網絡上回饋所學、發(fā)表言論。記得我公布博客地址不久就得到了學生的反饋,甚至聽課老師也參與其中,給我提出許多的意見和建議。這樣能讓學生感受了網絡資源豐富的同時,也使這節(jié)課不僅僅局限在課堂上,還拓寬到了網絡以及今后的生活、學習中,真真正正的利用、發(fā)揚網絡資源,把一些常規(guī)課堂無法實現(xiàn)的交流,都一一實現(xiàn),體現(xiàn)了信息技術的人性化、學生主體性以及網絡的延遲性和廣泛性。
最后我以一句話結束我今天的說課“兒童是知識的創(chuàng)造者而不是被動接受者,他們主動地建構屬于他們自己的知識和對事物的理解。當孩子們在經歷數學、體驗數學時,課堂才是充滿活力的!”,謝謝大家!
《分數基本性質》說課稿7
一、說教學理念
1、以學生發(fā)展為本,著力強化主體意識。
2 、從學生已有的認知發(fā)展水平和知識經驗出發(fā),為學生提供充分從事數學活動的機會,變“學數學”為“做數學”。
3、 致力于改變學生的學習方式,關注過程,讓學生經歷知識的形成過程,感受猜想、驗證、轉化等數學思想方法。
4、聯(lián)系生活實際、感受數學與現(xiàn)實世界的緊密聯(lián)系,體驗數學的應用價值。
二、說教材
《分數的基本性質》一課是九年義務教育六年制小學數學第九冊第四單元的內容。它是在學生學習了分數的意義、分數與除法的關系、商不變性質等知識的基礎上進行教學的。它是進一步學習約分、通分的基礎。
根據教材內容和學生的認知規(guī)律,將本課的教學目標擬定如下:
1、知識與技能:理解和掌握分數的基本性質,知道分數基本性質與整數除法中商不變性質的關系。能運用分數的基本性質把一個分數化成分母相同而大小相等的分數;培養(yǎng)學生觀察、比較、抽象、概括及動手實踐的能力,進一步發(fā)展學生的思維。
2、過程與方法:經歷探究分數基本性質的過程,感受“變與不變”、“極限”等數學思想方法。
3、情感、態(tài)度、價值觀:激發(fā)學生積極主動的情感狀態(tài),養(yǎng)成注意傾聽的習慣,體驗互助合作的樂趣。
本課的教學重點:在通過觀察、比較后抽象、概括出分數的基本性質,并會簡單應用。
本課的教學難點:理解和掌握分數的基本性質,溝通與商不變的規(guī)律之間的聯(lián)系與區(qū)別。
教學準備有:多媒體課件、每位學生二張長方形紙、兩張圓形紙。
三、說教法
本課的教學力求改變過去重知識,輕能力;重結果,輕過程;重教法、輕學法的狀況。樹立以“以學生發(fā)展為本”、“以學定教”、“教為學服務的思想。根據學生的學情,以自主探究為主線,以發(fā)展創(chuàng)新為宗旨,為學生提供學習的材料,采用引導探究、引導合作、引導發(fā)現(xiàn)、組織討論、組織練習等教法。精心組織一系列有效的數學活動,讓學生全面、全程、全心參與到每一個教學環(huán)節(jié)中,努力使課堂多一些自主、少一些包辦;多一些民主、少一些權威,實現(xiàn)教學為學服務的目的。
蘇霍姆林斯基說過:在人的心靈深處,總有一種根深蒂的需要,這就是希望自己是一個發(fā)現(xiàn)者、研究者、探索者,而在兒童的精神世界里這種需要尤其強烈。因此,當學生對二分之一等于四分之二等于六分之三產生疑問并急于了解其中奧秘時,沒有把現(xiàn)成的知識直接傳授給學生,令他們得到暫時的滿足,而是充分相信學生的認知潛能。在新知教學環(huán)節(jié)中,我主要采用引導探究、引導體驗、組織討論等方法最大限度地給予學生自主探索的時間和空間,把主動權交給學生讓學生以自己的方式自由、開放地去探索、發(fā)現(xiàn)、創(chuàng)造分數的基本性質,讓他們在嘗試中發(fā)現(xiàn)、討論中明理、合作中成功、質疑中發(fā)展,體驗知識的形成過程,使學生的個性得到發(fā)展,創(chuàng)造欲得到滿足。
現(xiàn)代教學論認為:要讓學生動手做科學,而不是用耳朵聽科學。學生在寫出一組大小相等的分數后我讓學生用自己喜歡的方法加以驗證,這一驗證的過程使學生在動腦、動口、動手,多種感官配合下,把靜態(tài)的知識轉化為動態(tài)的求知過程。
新課程標準指出:學生的數學學習應當是一個主動和富有個性的過程。因此在例題教學環(huán)節(jié),我采用自主探究的學法,讓學生自主進行學習,從而學會運用分數的基本性質把一個分數化成分母不同但大小相等的分數,有效地提高了教學效率。
在知識的鞏固階段,我還采用組織練習法,當然以上這些教法并不是孤立存在的,本著“一法為主,多法為輔”的思想,我將多種教法進行優(yōu)化組合,以達到促進學生學習方式的轉變,實現(xiàn)教學目標的目的。
四、說學法
新課標指出:有效的.數學學習活動,不能單純模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式;谶@樣的理念,本課學生的學習方法主要有:自主發(fā)現(xiàn)法、操作體驗法、合作交流法、自學嘗試法等。
1、學生在探究分數的基本性質時,學生主要采用自主發(fā)現(xiàn)法、操作體驗法、合作交流法,學生在得出二分之一等于四分之二等于六分之三后,小組合作找出幾組像這樣大小相等的分數,在這一過程中學生為了能寫出大小相等的分數,必然會產生對那組等式進行觀察的愿望,從中有所發(fā)現(xiàn)。之后學生通過同伴間的交流,運用折紙、等多種方法證明自己寫出的那組分數大小相等,他們在嘗試中發(fā)現(xiàn),在實踐中體驗。最后學生交流在寫數過程中的發(fā)現(xiàn),最后在討論中明理,揭示出分數的基本性質。
2、在學習例題的過程中學生主要采用自學嘗試法,獨立自主地學習將分數化成分母不同但大小不同的分數,并嘗試完成做一做,達到檢驗自學的目的。
當然,由于學生所處的文化環(huán)境、家庭背景和自身的思維方式的不同,不同的學生所采用的學習方法也不盡相同,作為教師要尊重學生的選擇,允許學生用自己喜歡的方式學習數學。
五、 說教學程序
依據新的教學理念及學生的認知特點,將本課的教學設計為以下四個過程:即談話導入、提出問題;自主探索、尋找規(guī)律;運用規(guī)律、鞏固深化;反思評價,完善認知。
第一、談話導入、提出問題:
前幾節(jié)課我們學習了分數的意義以及數與除法的關系等內容,我想大家一定學的非常好對嗎?先來考考大家!
設計意圖:這的樣設計,直接扣入主題,體現(xiàn)了數學的簡潔之美,迅速的點燃孩子們求知欲望的火花,從而為主動探究新知聚集動力。
第二、自主探索,尋找規(guī)律。
此過程共設計了以下三個環(huán)節(jié):
第一個環(huán)節(jié):建立幾組相等的分數,提供探究的數據。
設計意圖:這樣的設計,不僅復習了已有的知識,而且調動了孩子學習的積極性,用數形結合的思想理解分數的大小,從而很直觀上建立起三組分子和分母各不相同而分數的大小確相等的數學。再通過學習已有的學習經驗和手中的學具,讓學生接著舉出幾組分數大小相等的分數,這樣師生共同呈現(xiàn)的多組分數,為下面研究問題提供了大量的數據。
第二個環(huán)節(jié):小組合作,探究規(guī)律。
設計意圖:“疑是思之始,學之端”。這些分子和分母各不相同而分數大小確相同的分數之間一定存在著一些千絲萬縷的聯(lián)系,我們需要進一步的研究。這樣的設計,最大限度的調動了孩子的學習積極性,使學生成為課堂學習的主人,讓他們在獨立自主,合作交流的基礎上,對自己的所疑之處,提出合理的說明和解釋,通過師生共同的梳理,把靜態(tài)的知識轉化為動態(tài)的求知程,從而得出結論。
第三個環(huán)節(jié):溝通聯(lián)系,揭示規(guī)律。
設計意圖:聯(lián)系分數與除法的關系,結合商不變的性質,進一步說明分數基本性質。這樣的設計,從實踐的觀察和發(fā)現(xiàn)到理論的證明,層層深入的證明了我們發(fā)現(xiàn)規(guī)律的合理性,從而建立起“商不變的性質”與“分數的基本性質”之間的內在聯(lián)系,新的學習活動與原有的認知結構相互作用,引起了認知結構的重新構建,這是從理論上對規(guī)律的證明,在大量的實踐材料和理論證明中完成了“分數的基本性質”這一數學模型的構建過程。
第三、運用規(guī)律、鞏固深化、拓展思維
設計意圖:這一環(huán)節(jié)是進一步理解、深化新知識的重要環(huán)節(jié),在設計練習題時,要體現(xiàn)“讓不同的學生在數學上有不同的發(fā)展”這一新課程的理念。主要目的是培養(yǎng)學生的自主解題能力,在面對全體學生的基本上有所提高,注意對知識的鞏固。立足于基本練習,注意練習與學生生活實際的聯(lián)系,讓學生學有價值的數學。通過綜合練習培養(yǎng)學生的思維,也滲透“極限”和“歸納”的數學思想方法。
第四、反思評價,完善認知
你有什么收獲?還有什么不明白的?你認為自己在今天課堂上的表現(xiàn)怎樣?你幫助了誰或誰幫助了你?
設計意圖:這樣的設計,不但讓學生談知識技能方面的收獲,還著重讓學生談了學習的方法、情感態(tài)度方面的收獲,再一次激起良好的情緒體驗。
《分數基本性質》說課稿8
《分數的基本性質》一課是學生在充分認識了分數的意義和簡單應用的基礎上進行教學的。本課的教學目標是:學生通過自己的觀察、操作等手段,理解并掌握分數的基本性質,并能根據分數的基本性質對分數進行正確改寫。同時,理解分數與除法的內在聯(lián)系,并能用除法中商不變規(guī)律來解釋分數的基本性質又是本課教學的一個難點。為了使學生能更好地理解并掌握分數的基本性質,達到本課的教學目標。同時又能為后面的約分、通分和分數的加減法等知識的學習打下扎實的基礎。我能根據教材的實際需要,按照新課程的要求精心設計。在實際教學中,我能努力做到以下幾點:
第一、以故事導入,培養(yǎng)學生的學習興趣。在進行備課時,我覺得如果根據教材的安排來導入,顯得有些平淡,也不容易激發(fā)學生的學習興趣。為此,我設計了一個阿凡提的故事,讓阿凡提給三個兒子分田地,分得的結果看似不公,實則相同。并讓學生作為裁判來評一評,這樣一來,學生學習數學的.興趣必然提高,學習的積極性也會空前高漲。同時,我又把這一懸念暫時先放一放,等學生理解并掌握了分數的基本性質后,學生就會恍然大捂。原來,三個兒子分得的田地實際上是一樣多的,只不過是平均分的分數不一樣的,其中表示的份數也不一樣,但大小卻是相等的,誰也沒有吃虧。這樣的設計,不僅使教學結構更加完整,前后呼應,同時也提高了學生理解和應用分數的基本性質來解決實際問題的能力。
第二、發(fā)揮集體優(yōu)勢,培養(yǎng)學生的合作能力。為了有效解決教學中“少數學生爭臺面,多數學生做陪客”的現(xiàn)象,我在教學中也引入了小組合作學習的形式,提高學生學習的主動性,使學生在獲取數學知識的同時,形成良好的人際關系,促進學生的全面發(fā)展。為此,在觀察等分數的變化規(guī)律時,我讓學生充分展開討論。大家你一言我一語,一點一滴,逐步發(fā)現(xiàn)從左往右,分數的分子分母分別依次乘2、乘4、乘8,而分數的大小不變的變化規(guī)律。從而慢慢地引出了分數的基本性質。另外,在故事導入時,我也充分讓學生進行討論,看看三個兒子有沒有吃虧;钴S了課堂氣氛,提高了學生學習數學的興趣,取得了不錯的教學效果。
第三、精心設計練習題,提高學生解題能力。數學教學,做題目是其中最重要的一個方面。但傳統(tǒng)教學教師往往進行所謂的題海戰(zhàn)役,讓學生反復做、重復做,這樣不僅做累了學生同時也做怕了學生,消磨了學生學習的積極性。所以如何使學生愿做、樂做,同時又能達到教學目標,提高學生的數學綜合能力,是擺在我們面前的一個重要課題。為此,在教學《分數的基本性質》時,我也精心設計練習題。首先是題型變化豐富。練習中,我除了安排一些基本根據分數的基本性質來填空外,我還安排了一些判斷題、口答題、填圖題、并要求學生不改變分數的大小,把分數改成分母是30的分數的題目。題型的豐富不僅提高了學生學習的興趣,也使學生更好地理解和應用分數的基本性質來解決實際問題的能力。其次是練習難度的層次性。數學題目經常出現(xiàn)有些學生吃不了,同時也有部分學生吃不飽的現(xiàn)象。為此,除了基本的練習題外,我還逐步加深難度,提高學生的思維能力,如:的分子加上10,要使分數的大小不變,分母應該加上幾?難度的加深,使學生的思維能力、解題能力等都有了明顯提高,真正把培優(yōu)補差工作落到了實處。
最新的小學數學五年級下冊說課稿《分數的基本性質》:總之,學習無止境,在今后的教學中,我會更加努力地鉆研教材、設計教法,力爭使每一節(jié)數學課都能達到理想的教學效果。
《分數基本性質》說課稿9
一、說教學內容的創(chuàng)新處理
《分數的基本性質》是九年義務教育六年制小學數學第十冊第四單元的一個重要內容。該教學內容是以分數的意義、分數與除法的關系以及整數除法中商不變的規(guī)律這些知識為基礎的。原教材先通過直觀使學生了解1/2、2/4、3/6三個分數的分子、分母雖然不同,但是分數的大小是相等的。接著進一步研究這三個分數的分子和分母,思考它們是按照什么規(guī)律變化的。最后歸納出分數的基本性質。這樣安排教學內容,學生的主體地位不能得到充分體現(xiàn),不利于培養(yǎng)學生的問題意識。為此,我打算通過"折、畫、想、問、用"五個環(huán)節(jié)對教學內容作如下處理。
1.折--用三張同樣大小的長方形紙條分別折出二等分、四等、八等分。
2.畫--讓學生用色筆在長方形紙條上分別涂出它們的一半,并用分數來表示。
3.想--1/2、2/4、4/8這些分數有什么關系?你還能說出和"1/2"大小相等的其他分數吧?你還能說出和"2/3"大小相等的分數吧?
4.問--ww"1/2=2/4=/4/8"中,你發(fā)現(xiàn)什么?
5.用--用已學過的"分數的基本性質"解決有關的數學問題。這樣安排教學有以下幾點好處:
。1)有利于知識的遷移。
讓學生通過動手折、涂,再用分數表示,這樣既幫助學生復習了分數的意義,又為學習新知識作了準備。
。2)能發(fā)揮學生學習的主動性。
通過學生找和"1/2"大小相等的分數,以及和"2/3"大小相等的分數,發(fā)揮學生學習的主動性,體現(xiàn)自主學習的`精神。
(3)提高了學生的學習能力。
通過交流,培養(yǎng)學生敢于發(fā)表自己的意見,積極思考問題,積極探問題,培養(yǎng)學生概括問題的能力和解決問題的能力。
二、說教學模式
本節(jié)課起打算采用"創(chuàng)設情境,復習遷移--設疑激思,獲取新知--深化概念,及時反饋"的教學模式進行教學。
1.創(chuàng)設情境,復習遷移。
為了發(fā)揮學生學習的主動性,使舊知識起到正向遷移的作用,首先創(chuàng)設了動手操作的情境:起發(fā)給每位學生三張同樣大小的長方形紙條,讓學生折一折。把第一張紙條對折(也就是把這張紙條平均分成2份),把第二張紙條對折再對折(也就是把紙條平均分成4份),再把第三張3次對折(也就是把紙條平均分成8份)。接著,讓學生畫一畫,用彩筆在等分后的紙條上分別涂出它們的一半。告訴學生,如果把每張紙條都看作單位"1",問學生:你能把涂色的部分用分數表示嗎?(電腦顯示三張涂色的紙條,學生分別用分數1/2、2/4、4/8表示。)
這一情境的設置,主要是讓學生在動手操作過程中不僅復習了分數的意義,為下面導入新知識作好鋪墊、遷移。并且在教學一開始,就能抓住學生愛動手以及直觀思維的特點,激活課堂氣氛,營造良好的學習開端。
2.設疑激思,獲取新知。
"疑是思之始,學之端"。學,就是學習問題,學怎樣問問題。為此,我在上面教學的基上,引導學生逐一討論以下問題:
。1)1/2、2/4、4/8這些分數有什么關系?
。▽W生會說這三個分數的大小相等。)
。2)你能說出與"1/2"大小相等的其他分數嗎?你還能說出與"2/3"大小相等的分數嗎?
。ㄈ绻麑W生寫錯或寫不出,待得出分數基本性質后再寫)
。3)從"1/2=2/4=4/8"中,你發(fā)現(xiàn)了什么?
。ㄗ寣W生分組討論,充分發(fā)表自己的意見,經過歸納,最后得出:分數的分子和分母同時乘以或者除以相同的數,分數的大小不變。并把這句話顯示出來。)
(4)你對上面這句話覺得有什么問題嗎?
。▽W生可能會提出地"相同的數"中"0"必須除外。如果學生提出不出,就由教師提出問題:相同的數是不是任何數都行?為什么?)
最后,讓學生完整地概括出分數的基本性質。(老師揭示課題)
這樣教有利于培養(yǎng)學生的問題意識,師生情感交融、和諧,學生積極參與,思維活躍,學習主動,為學生創(chuàng)設一個良好的學習氛圍。
3.深化概念,及時反饋。
為了加深學生對分數基本性質的理解,激發(fā)學生的學習興趣,起設計了如下練習:
1.下面各式對嗎?為什么?(讓學生用手勢表示對錯)
(1)3/4=6/8(2)3/8=12/2(3)3/10=1/5
2.在()里填上合適的數。
()/6=()/36=8/12=2/()=()/24
3.把2/3和10/24化成分線是12而大小不變的分數。
4.把下面大小相等的兩個分數用線連接起來。
4/51/64/94/612/16
3/42/320/256/368/18
三、說教學目標
以上各個教學環(huán)節(jié)的設計體現(xiàn)如下幾點教學目標:
1.知識技能性目標:讓學生親身經歷"分數基本性質"抽象概括的全過程,正確理解和掌握分數的基本性質,使學生能運用分數的基本性質解決有關的數學問題。
2.發(fā)展性目標:培養(yǎng)學生觀察--探索--抽象--概括的能力以及遷移類推能力,滲透事物是相互聯(lián)系、發(fā)展變化的辯證唯物主義觀點,培養(yǎng)學生的數學意識、問題意識、合作意識以及應用意識。
3.創(chuàng)新性目標:讓學生在學習的過程中發(fā)現(xiàn)問題、解決問題,提高學生探索問題的能力和研究問題的能力。
《分數基本性質》說課稿10
我今天說課的內容是人教課標版教材五年級下冊第四單元的內容《分數的基本性質》。
本節(jié)內容是屬于“數與代數”知識領域。是在學生學習了分數的意義、分數大小的比較的基礎上進行教學的。又與整數除法及商不變的性質有著內在的聯(lián)系,更是分數的約分、通分的依據。為學生今后學習分數加減法計算、比的基本性質打下基礎。因此,本節(jié)課的內容尤為重要,起到承前啟后的作用,尤為重要。
本節(jié)教材圍繞著分數基本性質的得出與應用,安排了兩道例題。通過例1,概括出分數基本性質。通過例2,運用、鞏固分數的基本性質。練習聯(lián)系現(xiàn)實生活,讓學生了解可以依據分數基本性質解決的實際問題。如練習十四的第2題、第5題、第9題和第10題。有利于通過應用,促進了學生們的掌握分數的基本性質,也有利于培養(yǎng)學生的數學應用意識。在本節(jié)教材中,還穿插安排了一個“生活中的數學”欄目,介紹了分數在日常生活中的一些應用。涉及洗手液的使用方法、足球比賽的進程、照相機的曝光速度。這些例子,有助于引起學生的興趣,關注分數在現(xiàn)實生活中的種種應用。
以上就是我對教材的分析,下面我對學情和教法進行分析。五年級的學生認知結構中已經具有了抽象概念,因而具有邏輯推理能力,新舊知識遷移的能力,這些能力為本節(jié)課的學習做好了充分的準備。依據學生的認知規(guī)律,我在本節(jié)課的教學方法中力求做到為學生創(chuàng)設探究學習的情景;聯(lián)系生活實際,讓學生體會數學與生活的聯(lián)系;改變學生的學習方式,運用合作學習,培養(yǎng)學生的協(xié)作能力;運用多媒體教學手段增加教學的新穎性,引導學生以多種感官參與學習的全過程。我主要采用:創(chuàng)設情境引入新課、師生互動探討新知、引導學生總結等教學方法。
根據以上分析。我認為本節(jié)課的教學目標有以下幾點:
1、經歷探索分數的基本性質的過程,理解分數的基本性質。
2、在教學過程中,發(fā)展學生合理的推理能力,并清晰的闡述自己的觀點。
3、培養(yǎng)學生在合作中逐步形成評價與反思的意識。
4、在數學學習過程中,體驗獲得成功的樂趣,鍛煉克服困難的意志,建立自信心。
我認為本節(jié)課的教學重點是:理解、掌握分數的基本性質。
難點是:發(fā)現(xiàn)和歸納分數的基本性質,以及應用它解決相應的問題。
下面說說我的教學過程:
我將本課的教學設計以下幾個環(huán)節(jié),
一、設疑激趣,引入新課
教育學家布朗曾提出:“情境通過活動來合成知識,興趣是最好的老師”。
首先我通過多媒體為學生帶來一個和尚分餅的故事。從前有座山,山里有座廟,廟里有個老和尚和三個小和尚。小和尚最喜歡吃老和尚烙的餅了。有一天,老和尚做了三塊一樣大小的餅,想給小和尚吃,還沒給,小和尚就叫開了。矮和尚說:“我要一塊!”高和尚說:“我要兩塊!”胖和尚說:“我不要多,只要四塊!”老和尚聽了二話沒說,立刻把一塊餅平均分成四塊,取其中的一塊給了矮和尚;把第二塊餅平均分成八塊,取其中的兩塊給了高和尚;把第三塊餅平均分成十六塊,取其中的四塊給了胖和尚,一一滿足了他們的要求。同學們,你知道哪個和尚吃的多嗎?
這樣通過故事激發(fā)學生的學習興趣,為后面的學習做好了鋪墊。
二、自主探索,學習新知
新課標強調,要讓學生在實踐活動中進行探索性的學習。根據這一理念,我設計了下面的活動。讓學生在體驗中學習,在學習中體驗。
1、小組合作,讓學生用一張紙代替餅,試著分分看。經歷驗證猜想——學生操作驗證——集體匯報交流——展示成果四個過程。
2、引導提問:既然三個和尚分得的餅同樣多,那么表示他們分得餅的三個分數是什么關系呢?這三個分數什么變了,什么沒變?
學生得出:這三個分數是相等關系,分數的分子和分母變化了,但分數的大小不變。(隨著學生的回答,老師將板書的`三個分數用“=”連接,給出等式。)
3、引導學生從左到右觀察等式,想一下,這三個分數的分子、分母怎樣變化才保證了分數的大小不變的?(教師請同學們小組討論,學生各抒己見,爭論不休,氣氛活躍。)
師:誰能用一句話把這個變化規(guī)律敘述出來呢?
生:從左往右看,分數的分子、分母同時擴大了,也就是分子分母都乘了一個相同的數,但三個分數的大小沒有變。
師:你們觀察的真仔細!請大家給點掌聲好嗎?(出示課件)老師是這樣敘述的“分數的分子、分母都乘上同一個數,分數大小不變”。
4、讓學生從右到左觀察等式分子和分母又是如何變化的呢?誰能用一句話把這個變化規(guī)律敘述出來?小組討論后,同樣的方法讓學生小結規(guī)律,并請同學給予評價,讓學生抒發(fā)自己的見解,體現(xiàn)課堂教學的民主化。然后教師在課件中補充“或者除以”四個字,小結分數的基本性質。
5、接著讓學生四人小組一起做游戲,運用分數的基本性質,由一位同學說一個分數,然后其他同學依次說出相等的分數,不能重復,看看誰又快又準。
結束游戲,教師提問,現(xiàn)在我們知道分數的分子、分母都乘上或除以同一個數,分數大小不變。剛剛大家做游戲,有沒有人使用了0呢?大家想一想0可以不可以呢?讓學生回答:分數的分母不能為零。我在課件中填上“零除外”三個紅色的字,以便引起學生的注意。
6.教師引導:“學了分數的基本性質到底有什么用呢?老師告訴你們,根據分數的基本性質,我們就能變魔術一樣,把一個分數變成多個跟它大小一樣,分子分母卻不同的新分數。下面就讓我們來變個魔術!苯又寣W生練習課本例題2,兩名學生上臺演板,其他學生點評。學生自己小結方法。
教育家波利亞指出:學習任何新知的最佳途徑是由學生自己去發(fā)現(xiàn),因為這種發(fā)現(xiàn)理解最深,也最容易掌握內在規(guī)律和聯(lián)系。教學中給學生提供自主探究、合作交流的天地,積極為學生創(chuàng)設主動學習的機會,提供嘗試探索的空間,學生能主動從不同方面,不同角度思考問題,尋求解決途徑。同時還培養(yǎng)學生的合作意識,使不同的想法得到交流,實現(xiàn)知識的學習、互補。
三、分層練習,鞏固深化
只有通過相應的練習,才能更好地鞏固新知,形成技能。在練習的安排上我注重層次性,滲透多樣性,讓學生理解用所學的知識可以解決不同類型的問題,進一步提高解題能力。
1、涂一涂練習14,第1、7題。
因為要給空格上色,所以答案并不唯一,通過這兩題不僅能讓學生回憶探究發(fā)現(xiàn)規(guī)律的過程,充分體現(xiàn)了“玩中學,學中玩”的新課程理念。
2、說一說完成練習14,第8題
我想通過這道題讓學生進一步加深對分數基本性質的形成過程的理解,從而培養(yǎng)學生的語言表達能力。
3、想一想:第5、9、10題(選擇一題做為作業(yè))
在這我讓同學們充分發(fā)揮想象,靈活運用分數的基本性質。為后面學習約分和通分的知識奠定基礎。
四、暢談收獲,小結全課
讓學生自己總結所學內容,暢談收獲和感受,培養(yǎng)學生的概括能力和語言表達能力。
整節(jié)課中,我力求做到始終引導學生主動觀察、充分體驗、動手實踐、積極創(chuàng)新,努力做到既注重學生的獨立思考,又注重合作交流,既重視知識與能力的共進,又關注情感和體驗的提高,讓學生全面、深刻地理解分數的基本性質。
《分數基本性質》說課稿11
沈老師的課,給我感受最深的就是教學語言的準確性、嚴密性,無可挑剔,對學生的啟發(fā)、點撥恰到好處,與學生的交流親切自然,駕馭課堂的能力讓人佩服。盡管是一堂舊教材的課,但在沈老師設計的課堂中,卻讓人欣喜的發(fā)現(xiàn)新的課程標準中的新理念,為舊教材與新理念的有機結合作了一個很好的.典范作用。下面就這節(jié)課談談自己的體會。
1.教材簡析
《分數的基本性質》是小學數學教材第十冊的內容之一,在小學數學學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯(lián)系,也是后面進一步學習分數的計算、比的基本性質的基礎。分數的基本性質是一種規(guī)律性知識,分數的分子分母變了,分數的大小會變嗎?分數的分子分母如何變化,分數的大小不變呢?學生在這種“變”與“不變”中發(fā)現(xiàn)規(guī)律。
2、教材處理
。1)堅持以本為本的原則,把教材中的陳述性教學為猜想與驗證性發(fā)現(xiàn)。
(2)把總結式教學為學生自我發(fā)現(xiàn)、自我總結的探究性學習。
。3)以教師的主導地位轉化為學生為主體的學生探究性學習。
3、教學過程
這節(jié)課充分運用知識的遷移,調動了學生的知識積累,使學生學的輕松、愉快,同時感悟了知識的形成過程。這節(jié)課以“商不變的性質”復習引入,通過一組練習題充分復習了“被除數和除數同時擴大或縮小相同倍數,商不變!
在新授過程中,沈老師沒有單一地把今天所要學習的內容直接出示給學生,而是把一種靜態(tài)的數學知識變?yōu)橐环N讓學生在一種大問題背景下的探索活動,使學生在一種動態(tài)的探索過程中自己發(fā)現(xiàn)分數的基本性質,從而體驗發(fā)現(xiàn)真理的曲折和快樂,感受數學的思想方法,體會科學的學習方法。整個課堂創(chuàng)設了一種“猜想——驗證——反思”的教學模式,以“猜想”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證猜想——質疑討論、完善猜想等,把這一系列探究過程放大,把“過程性目標”凸顯出來。在這一過程中,學生不僅學得快樂,而且每個學生的個性也充分得到了發(fā)展,為學生的長遠發(fā)展奠定了良好的基礎。
沈老師設計的練習題的也是由淺入深,形式多樣。既復習了新知識,并讓學生在練習中有所提升,組織學生自己討論尋求解決的辦法,體現(xiàn)了自主學習。
《分數基本性質》說課稿12
一、說教材
《分數的基本性質》是九年義務教育六年制小學數學第十冊第五單元的一個重要內容。該教學內容是以分數的意義、分數與除法的關系以及整數除法中商不變的規(guī)律這些知識為基礎的。原教材先通過直觀使學生了解1/2、2/4、3/6 4/8四個分數的分子、分母雖然不同,但是分數的大小是相等的。接著進一步研究這四個分數的分子和分母,思考它們是按照什么規(guī)律變化的。最后歸納出分數的基本性質。這樣安排教學內容,學生的主體地位不能得到充分體現(xiàn),不利于培養(yǎng)學生的問題意識。為此,我打算通過"折、畫、想、問、用"五個環(huán)節(jié)對教學內容作如下處理。
1.畫--讓學生用色筆在長方形紙條上分別涂出它們的一半,并用分數來表示。
2.想--1/2、2/4、3/6 、4/8這些分數有什么關系?你還能說出和"1/2"大小相等的其他分數吧?你還能說出和"2/3"大小相等的分數吧?
3.問—從"1/2=2/4=3/6=4/8"中,你發(fā)現(xiàn)了什么?
4.用--用已學過的"分數的基本性質"解決有關的數學問題。這樣安排教學有以下幾點好處:
。1)有利于知識的遷移。
讓學生通過動手折、涂,再用分數表示,這樣既幫助學生復習了分數的意義,又為學習新知識作了準備。
。2)能發(fā)揮學生學習的主動性。
通過學生找和"1/2"大小相等的分數,以及和"2/3"大小相等的分數,發(fā)揮學生學習的主動性,體現(xiàn)自主學習的精神。
。3)提高了學生的學習能力。
通過交流,培養(yǎng)學生敢于發(fā)表自己的意見,積極思考問題,積極探究問題,培養(yǎng)學生概括問題的能力和解決問題的能力。
二、說教學目標
以上各個教學環(huán)節(jié)的設計體現(xiàn)如下幾點教學目標:
1.知識技能性目標:讓學生親身經歷"分數基本性質"抽象概括的全過程,正確理解和掌握分數的'基本性質,使學生能運用分數的基本性質解決有關的數學問題。
2.發(fā)展性目標:培養(yǎng)學生觀察--探索--抽象--概括的能力以及遷移類推能力,滲透事物是相互聯(lián)系、發(fā)展變化的辯證唯物主義觀點,培養(yǎng)學生的數學意識、問題意識、合作意識以及應用意識。
3.創(chuàng)新性目標:讓學生在學習的過程中發(fā)現(xiàn)問題、解決問題,提高學生探索問題的能力和研究問題的能力。
三、說教法
本節(jié)課起打算采用"創(chuàng)設情境,復習遷移--設疑激思,獲取新知--深化概念,及時反饋"的教學模式進行教學。
1.創(chuàng)設情境,復習遷移。
為了發(fā)揮學生學習的主動性,使舊知識起到正向遷移的作用,首先創(chuàng)設了動手操作的情境:課開始發(fā)給每位學生四張同樣大小的長方形紙條,讓學生折一折。把第一張紙條對折(也就是把這張紙條平均分成2份),把第二張紙條對折再對折(也就是把紙條平均分成4份),再把第三張3次對折(也就是把紙條平均分成8份)。接著,讓學生畫一畫,用彩筆在等分后的紙條上分別涂出它們的一半。告訴學生,如果把每張紙條都看作單位"1",問學生:你能把涂色的部分用分數表示嗎? 這一情境的設置,主要是讓學生在動手操作過程中不僅復習了分數的意義,為下面導入新知識作好鋪墊、遷移。并且在教學一開始,就能抓住學生愛動手以及直觀思維的特點,激活課堂氣氛,營造良好的學習開端。
2.設疑激思,獲取新知。
"疑是思之始,學之端"。學,就是學習問題,學怎樣問問題。為此,我在上面教學的基上,引導學生逐一討論以下問題:
。1)1/2、2/4、3/6、 4/8這些分數有什么關系?
(學生會說這四個分數的大小相等。)
(2)你能說出與"1/2"大小相等的其他分數嗎?你還能說出與"2/3"大小相等的分數嗎?
。ㄈ绻麑W生寫錯或寫不出,待得出分數基本性質后再寫)
。3)從"1/2=2/4=3/6=4/8"中,你發(fā)現(xiàn)了什么?
。ㄗ寣W生分組討論,充分發(fā)表自己的意見,經過歸納,最后得出:分數的分子和分母同時乘以或者除以相同的數,分數的大小不變。并把這句話顯示出來。)
(4)你對上面這句話覺得有什么問題嗎?
(學生可能會提出地"相同的數"中"0"必須除外。如果學生提出不出,就由教師提出問題:相同的數是不是任何數都行?為什么?)
最后,讓學生完整地概括出分數的基本性質。(老師揭示課題)
這樣教有利于培養(yǎng)學生的問題意識,師生情感交融、和諧,學生積極參與,思維活躍,學習主動,為學生創(chuàng)設一個良好的學習氛圍。
3.深化概念,及時反饋。
為了加深學生對分數基本性質的理解,激發(fā)學生的學習興趣,起設計了如下練習:
1.下面各式對嗎?為什么?(讓學生用手勢表示對錯)
(1)3/4=6/8 (2)3/8=12/2 (3)3/10=1/5
2.在()里填上合適的數。
()/6=()/36=8/12=2/()=()/24
3.把2/3和10/24化成分線是12而大小不變的分數。
4.把下面大小相等的兩個分數用線連接起來。
4/5 1/6 4/9 4/6 12/16
3/4 2/3 20/25 6/36 8/18
《分數基本性質》說課稿13
《分數的基本性質》一課是學生在充分認識了分數的意義和簡單應用的基礎上進行教學的。
各位老師,同學:
大家上午好!
我說課的內容是:人教版小學數學課標教材五年級下冊75頁—76頁《分數基本性質》。下面我就從教材分析、學情分析、教學目標、教法學法及教學過程五個方面來談一下教學過程設計及設計意圖。
一、說教材分析
本節(jié)內容屬于概念教學!斗謹祷拘再|》在小學數學學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯(lián)系,也是后面進一步學習分數的計算、比的基本性質的基礎,還是約分、通分的依據。
二、說學情分析
學生已經清楚理解分數的意義,明確分數與除法的關系,商不變性質等知識,這些都為本節(jié)課學習做了知識上的鋪墊。分數的基本性質是一種規(guī)律性知識,分數的分子、分母變了,分數的大小卻沒變。學生在這種“變”與“不變”中發(fā)現(xiàn)規(guī)律,掌握新知識。
三、說教學目標
綜合分析課程標準要求及學生實際,我確定本節(jié)教學目標如下:
1.理解與掌握分數的`基本性質,并會運用分數的基本性質把不同的分數化成分母(或分子)相同而大小不變的分數。
2.初步養(yǎng)成觀察、比較、抽象概括的邏輯思維能力,并且在自主探究中正確認識與理解變與不變的辯證關系。
3.受到數學思想的熏陶,養(yǎng)成樂于探究的學習態(tài)度。
教學重點:理解掌握分數的基本性質,它是約分、通分的依據。
教學難點:讓學生自主探索、發(fā)現(xiàn)與歸納分數的基本性質,以及應用它解決相關的問題。
四、說教法學法
根據本節(jié)課的教學目標,考慮到學生已有的知識、生活經驗和認知特點,結合教材內容,本課我主要采用猜想驗證與探索發(fā)現(xiàn)的教學模式。在分數的基本性質過程中,采取學生動手操作、小組討論、合作探究等方式,引導學生進行比較、觀察、分析。通過觀察、比較,提出問題并解決問題來進行自主探索與合作交流,充分發(fā)揮學生主體參與作用,激發(fā)學生學習興趣,同時讓學生獲得成功體驗。
五、說教學過程
本節(jié)課的教學過程我分五個部分進行
第一部分:故事設疑,揭示課題。以唐僧師徒分餅的故事創(chuàng)設問題情境,揭示本節(jié)課要研究的問題。
第二部分:組織討論,動手操作。主要是組織學生動手進行折、畫、標等活動,初步理解分數基本性質。
第三部分:合作探究,發(fā)現(xiàn)規(guī)律。主要的是學生找出規(guī)律,并利用規(guī)律解決問題。
第四部分:多層練習,鞏固深化。主要是鞏固所學知識并進行拓展提高。
第五部分:梳理知識,反思小結。主要是總結全課。
其中,第三部分“合作探究,發(fā)現(xiàn)規(guī)律”可以細化為三個環(huán)節(jié):
環(huán)節(jié)一:動手操作,進行比較
這一環(huán)節(jié)是在第二部分的基礎上進行的,我給每組學生三張大小一樣的長條紙,讓學生用分數表示涂色部分,并比較大小。此環(huán)節(jié)的設計主要是培養(yǎng)學生的比較能力。
環(huán)節(jié)二:呈現(xiàn)問題,引導觀察
這一環(huán)節(jié)主要呈現(xiàn)給學生這樣一個問題,“第一環(huán)節(jié)中的分數的分子、分母都不一樣,為什么大小相等”,引導學生從左到右、從右到左兩方面去觀察,此環(huán)節(jié)的設計主要是培養(yǎng)學生的觀察能力。
環(huán)節(jié)三:交流匯報,得出規(guī)律
這一環(huán)節(jié)主要是學生匯報交流,得出結論。
如果學生沒有概括出“0除外”就設計兩組練習,分子、分母同乘或除以0,完善結論;如果概括出來了,再追加一個問題“為什么強調0除外”,鞏固結論。最終推導出分數的基本性質----分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。此環(huán)節(jié)的設計主要是培養(yǎng)學生的抽象概括能力。
應該強調的是,無論學生說的多么好,教師最后的總結與確認是不可缺少的。
以上是我對《分數基本性質》一節(jié)的教學設計意圖,有不當之處,請各位批評指導。
《分數基本性質》說課稿14
各位老師,大家好!今天我說課的內容是課程標準試驗教科書數學五年級下冊第四單元第三課時“分數的基本性質”。下面我從設計理念,教材,教法,學法,教學過程五個方面進行說課。
一、說設計理念
1、以學生的發(fā)展為本,著力強化個人主體意識,同時關注學生學習動機、興趣等情感態(tài)度。
2、從學生已有的認知發(fā)展水平和知識經驗出發(fā),為學生提供充分從事數學活動的機會和充分的練習空間。
3、致力于改變學生的學習方式,關注過程,讓學生經歷知識的形成過程,感受驗證、轉化,以及“用數學學數學”等數學思想方法。
二、說教材
1、教學內容:
《分數的基本性質》一課是五年級下冊第四單元的一個內容。這部分內容的學習是在學生學習了分數的意義、分數與除法的關系、商不變性質等知識的基礎上進行教學的,它是以后學習約分、通分的依據。因此,分數的基本性質是本單元的教學重點之一。教材在講解這一知識點時,應注意加強整數商不變性質的內在聯(lián)系,這樣既幫助學生理解了分數的基本性質,又溝通了新舊知識的內在聯(lián)系。
2、學情分析:
學生在三年級上學期已經初步認識了分數,知道分數各個部分的名稱,會讀、寫簡單的分數,會比較分子是1的分數,以及同分母分數的大小。還學習了簡單的同分母分數的加、減法。在本學期又學習了因數、倍數等概念,掌握了2、3、5的倍數的特征,為學習本單元知識打下了基礎。另外,本單元的知識內容概念較多,比較抽象,學生的抽象邏輯思維在很大程度上還需要直觀形象思維的支撐。在數學教學中,化抽象為具體、直觀,對于順利開展教學是十分必要的。
3、教學目標:
(1)通過教學使得學生理解和掌握分數的基本性質,能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數,再應用這一規(guī)律解決簡單的實際問題。
。2)引導學生在參與觀察、比較、猜想、驗證等學習活動過程中,有條件、有根據的思考、探究問題,培養(yǎng)學生的抽象概括能力。
。3)滲透初步的辨證唯物主義思想教育,使學生受到數學思想方法的熏陶,培養(yǎng)樂于探究的學習態(tài)度。
4、教學重點:理解和掌握分數的基本性質。
5、教學難點:學習自主探索,發(fā)現(xiàn)和歸納分數的基本性質,以及應用它解決相應的問題。
6、教具學具:課件,三張同樣大小的長方形紙條、彩筆。
三、說教法
“將課堂還給學生,讓課堂煥發(fā)生命活力”,為營造學生在教學活動中的獨立、自主的學習空間,讓學生成為課堂的主人,本著這樣的指導思想,以及學生的認知規(guī)律,我采用的教學方法主要有:
1、實際操作法
指導學生親自動手折一折,涂一涂,比一比,從這些實踐活動中加深學生對分數基本性質的理解,促使學生的感性認識逐步理性化。
2、直觀演示法
先讓學生充分感知,發(fā)現(xiàn)規(guī)律,然后比較歸納,最后概括出分數的基本性質,從而使學生的思維從形象思維過渡到抽象思維。
3、啟發(fā)式教學法
運用知識遷移規(guī)律組織教學,用數學學數學,層層深入,促使學生在積極的思維中獲取新知。
四、說學法
1、學生在學習分數的基本性質時,引導學生采用自主發(fā)現(xiàn)法、操作體驗法,學生在紙條上涂出相應的陰影部分后,必然會對那三個圖形進行觀察和比較,從中有所發(fā)現(xiàn)。之后老師通過啟發(fā)學生運用分數的基本性質,證明那三個分數大小相等,在嘗試中發(fā)現(xiàn),在實踐中體驗,從而加深學生對分數基本性質的理解。
2、在學習例題的過程中教師先采用啟發(fā)法,再采用學生自學嘗試法,獨立自主地學習將分數化成分母不同但大小相同的分數,并嘗試完成練習題,達到檢驗自學的目的。
五、說教學過程
1、復習提問,舊知鋪墊
新課開始,我先板書了一個除法算式 1÷2,然后讓學生不計算,說出一個除法算式和它的商相等,學生邊說我邊抽取兩個算式板書,比如2÷4,4÷8 ,3÷ 6等。然后讓學生說說是根據什么想到這些算式的(商不變的規(guī)律),商不變的規(guī)律的內容又是什么<被除數和除數同時擴大或縮小相同的倍數(0除外),商不變>。
第二步,我讓學生根據分數與除法的關系,把這三個算式寫成分數形式,根據三個算式商相等,推導出這三個分數的大小。也就是1/2=2/4=4/8。此時,引導學生:在除法中有商不變的性質,那么分數中又有什么規(guī)律呢?今天我們就共同來探討分數當中的這個問題。這樣設計的目的就是讓學生通過觀察算式和分數的特點,培養(yǎng)學生直覺觀察能力,激發(fā)學生利用舊知識商不變的規(guī)律,探求新知識的興趣,同時也使學生明確要解決的問題。
2、動手操作,初步感知
首先讓學生用三張同樣大小的長方形紙條折一折,再涂色表示出每張紙的1/2,2/4,4/8。再觀察涂色部分,說說發(fā)現(xiàn)了什么?在學生匯報時,說出發(fā)現(xiàn):涂色部分面積相等,也就說明這三個分數大小相等。然后通過電腦再進一步證實學生的發(fā)現(xiàn):把一張紙條平均分成2份,涂其中1份,得到1/2;把一張紙條平均分成4份,涂其中2份,得到2/4;把一張紙條平均分成8份,涂其中4份,得到4/8;通過觀察,我們發(fā)現(xiàn)三個陰影部分大小相等,說明三個分數大小相等。這一過程的設置,主要是利用學生愛動手以及直觀思維的特點,讓學生在動手操作過程中不僅復習了分數的意義,為下面導入新知識作好遷移,而且激活了課堂氣氛,營造了良好的學習開端。
3、設疑促思,探究新知
“疑是思之始,學之端”。在教師板書1/2=2/4=4/8后,進一步引導學生觀察這三個分數,它們的分子分母都不相同,但是分數的大小卻相等,提出疑問:這里面隱藏著什么秘密,有什么規(guī)律?接著將發(fā)言權充分交給學生,完全開放空間,激發(fā)學生思索,并暢所欲言,說出自己發(fā)現(xiàn)的.規(guī)律,(比如:將1/2的分子分母同時乘2得到2/4,將2/4的分子分母同時乘2得到4/8,將1/2的分子分母同時乘4得到4/8;將4/8的分子分母同時除以2得到2/4,將2/4的分子分母同時除以2得到1/2,將4/8的分子分母同時除以4得到1/2共6種)。
在學生自主探究的基礎上,逐步完善學生的說法,適時引導學生將發(fā)現(xiàn)的規(guī)律總結成一句話:分數的分子分母同時乘或者除以相同的數,分數的大小不變。
如果學生在此說出了0除外更好,如果沒有,在此基礎上,提出疑問:“同時”表示什么意思?這個相同的數是任何數都行嗎?為什么?那么同學們總結的規(guī)律該怎樣敘述更完整呢?在學生加上“0除外”完整敘述后,指出:分數的這種變化規(guī)律就是我們今天學習的“分數的基本性質”,并借此板書課題“分數的基本性質”。
這樣設計的目的就是培養(yǎng)學生發(fā)現(xiàn)問題,自主探究問題的能力,也培養(yǎng)學生的語言表達能力,抽象概括能力和初步的邏輯思維能力。
另外,我還安排了“聽一聽”,讓學生聽5句話并判斷對錯。
第一句:分數的分子分母同時乘相同的數(0除外),分數的大小不變。
第二句:分數的分子分母同時除以相同的數(0除外),分數的大小不變。
第三句:分數的分子分母同時加上相同的數(0除外),分數的大小不變。
第四句:分數的分子分母同時減去相同的數(0除外),分數的大小不變。
第五句:分數的分子分母同時乘或者除以相同的數(0除外),分數的大小不變。
除了進行“聽一聽”的練習,還有習題的判斷。這樣一次次地加深,強化學生對分數的基本性質的理解,反復錘煉學生,達到對知識的更深刻的掌握,也為后面例題的完成奠定厚實的基礎。
4、初步應用,深化新知
學習分數的基本性質,就是為了在生活中運用它。給你一個分數,能把它化成分母不同而大小相同的分數嗎?借此引出例2。讓學生讀題,并明白做題要求有兩個:一是分數大小不變,二是分母相同。在引導學生完成第一個分數后,第二個分數讓學生獨立完成在書上,然后全班學生交流自己的過程及結果。但是一個例2不足以讓學生達到鞏固的目的,所以再次安排了和例2題型完全一樣的“做一做”,讓學生獨立思考,寫在練習本上,并抽兩名學生板演,對出現(xiàn)的問題共同指正。這樣的安排是為了把“分數的基本性質”及時練習,反復應用,對學生鞏固新知、利用新知都達到好的效果。
5、多樣練習,鞏固知識
在初步應用“分數的基本性質”后,我安排了四個不同層次的習題。其中“填一填”是基礎練習,但也包含有6/12=( )/( )的發(fā)散題!芭幸慌小币彩菍Α胺謹档幕拘再|”做進一步的詮釋!罢f一說”是一種變換了形式的習題,難度不大,只不過說法不同,最后還安排了“想一想”環(huán)節(jié),解決的方法已經蘊含在前面的“聽一聽”環(huán)節(jié)中。整個習題設計部分,題目呈現(xiàn)方式的多樣,吸引了學生的注意力,激發(fā)了學生興趣。同時練習題排列遵循由易到難的原則,層層深入,也有效的培養(yǎng)了學生創(chuàng)新意識和解決問題的能力。
6 、全課小結,整理知識
讓學生回顧本節(jié)課,說一說自己的收獲,培養(yǎng)學生的知識概括能力。同時,教師也在此時進行總結:分數的基本性質和商不變的性質只是在說法上不同,在實質上是相同的,所謂“萬變不離其宗”正是如此。通過利用“分數的基本性質”填空,寫出許許多多分子分母不同但分數大小相等的分數,體會“以不變應萬變”的數學學習方法。最后告訴學生一個小秘密,以后還將學習比的基本性質,它是在“分數的基本性質”的基礎上學習的,這也是“用數學學數學”的學習方法。這樣安排會更加激發(fā)學生學習數學的興趣,以及探究數學問題的方法。
最后,我想說,學習無止境,在今后的教學中,我會更加努力地鉆研教材、設計教法,力爭使每一節(jié)數學課都能達到理想的教學效果。
《分數基本性質》說課稿15
各位老師:下午好!我今天說課的內容是北師大版小學數學第九冊《分數基本性質》首先,對教材進行分析。
教材分析:
《分數基本性質》是北師大版小學數學第九冊內容。是在三年級下冊已經體驗了分數產生的過程,認識了整體“1”,初步理解了分數的意義,能認、讀、寫簡單的分數,會簡單的同分母分數加減法的基礎上,學習真假分數,分數基本性質,約分通分、比大小等知識,為后續(xù)學習分數與小數互化、分數乘除法四則混合運算打好基礎。
學情分析:
學生已經知道了真假分數,掌握了分數與除數的關系及商不變性質,再來學習分數基本性質。分數的基本性質是一種規(guī)律性知識,分數的分子分母變了,分數的大小卻不變。學生在這種“變”與“不變”中發(fā)現(xiàn)規(guī)律,掌握新知識。
教學目標:
1.知識目標:經歷探索分數基本性質的過程,理解并掌握分數的基本性質,能運用分數的基本性質把一個分數化成指定分母(或分子)而大小不變的分數。
2.能力目標:培養(yǎng)學生觀察、比較、抽象、概括等初步的邏輯思維能力,并且能夠正確認識和理解變與不變的辨證關系。
3.情感目標:經歷觀察、操作和討論等數學學習活動使學生進一步體驗數學學習的樂趣。通過學生的成功體驗,培養(yǎng)學生熱愛數學的情感。
教學重點:
能運用分數的基本性質把一個分數化成指定分母(或分子)而大小不變的分數理解分數基本性質的含義,掌握分數基本性質的推導過程。
教學方法:
根據本節(jié)課的教學內容和教學目標采用講授法,小組合作學習。
教具準備:
準備大小相等的圓形紙片,水彩筆等。
教學過程:
一、故事設疑,揭示課題。
我將以唐僧師徒分餅的故事創(chuàng)設問題情景。八戒吃第一塊餅的1/4,沙和尚吃第二塊餅的2/8,悟空吃第三塊餅的4/16,他們誰吃的多呢?以此引入新課,激發(fā)學生思考的興趣,積極參與到課堂教學中來。并在這個環(huán)節(jié)設計學生動手折、畫、標等活動,折出1/4,2/8,4/16,用彩筆在折的圓上涂出1/4,2/8,4/16,再用鉛筆標出分數。在動手做的過程中初步理解分數基本性質。
二、合作探索,尋找規(guī)律。
請同學們觀察1/4,2/8,4/16;3/4,6/8,12/16這兩組分數,分子分母有什么變化,分數又有什么變化?組織討論交流匯報。如果沒有概括出“把0除外”就設計一組練習:分子分母同乘0,完善結論;如果概括出來了,就順勢進行驗證。推導出分數基本性質-----分數的分子分母都乘或除以相同的.數(0除外),分數的大小不變。
三、鞏固練習。
練習題的設計有簡單到復雜,例:分數的分子乘5,要使分數的大小不變,分母 ( );2/3=??( )/186/21=2/( )等這樣的題,進行練習。
四、梳理知識,溝通聯(lián)系。
小結分數基本性質,請同學們回憶“商不變性質”。------在除法中,被除數和除數同時擴大(或縮。┫嗤谋稊担愠猓,商不變。
然后比較這兩個性質的聯(lián)系。這樣設計主要是為了共建知識之間的聯(lián)系,有助于學生靈活遷移應用,觸類旁通。
五、多層練習,鞏固深化。
1.(1)把5/6和1/4化為分母為12而大小不變的分數。
。2)把2/3和3/4化為分子為6而大小不變的分數。
2.考考你:1/4的分子加上3,要使分數的大小不變,分母應加上( )。
六、全課小結
現(xiàn)在讓我們看板書,回憶這節(jié)課學到了什么知識,比上眼睛想一想,覺得把內容記下了,就微笑一下,是不是覺得學習是件快樂的是呢?
【《分數基本性質》說課稿】相關文章:
分數的基本性質說課稿11-07
《分數的基本性質》說課稿06-09
分數基本性質說課稿07-06
分數的基本性質說課稿11-11
分數的基本性質說課稿優(yōu)秀03-31
關于《分數的基本性質》說課稿01-06
【精選】分數的基本性質說課稿四篇01-18
精選分數的基本性質說課稿三篇02-13
分數的基本性質說課稿九篇01-25