高中數(shù)學(xué)解題技巧
高中數(shù)學(xué)解題技巧1
選擇題答案是四選一,只有一個(gè)正確答案,所以除了按部就班的解題方法外,還需要注意一些解題策略。
首先,要認(rèn)真審題。做題時(shí)忌諱的就是不認(rèn)真讀題,埋頭苦算,結(jié)果不但浪費(fèi)了大量的時(shí)間,甚至有時(shí)候還選錯(cuò),結(jié)果事倍功半。所以一定要讀透題,由題迅速聯(lián)想到涉及到的概念,公式,定理以及知識(shí)點(diǎn)中要注意的問題。發(fā)掘題目中的隱含條件,要去偽存真,領(lǐng)會(huì)題目的真正含義。
其次,要注意解題方法。做題時(shí)除了按照解答題的思路直接來求以外,還要注意一些特殊的方法,比如說特殊值法,代入法,排除法,驗(yàn)證法,數(shù)形結(jié)合法等等。
直接法。有些選擇題本身就是由一些填空題,判斷題,解答題改編而來的,因此往往可采用直接法,直接由概念、公式、定理及性質(zhì)出發(fā),按照做解答題的方法一步步來求。我們?cè)谧鼋獯痤}時(shí)大部分都是采用這種方法。排除法。選擇題因其答案是四選一,必然只有一個(gè)正確答案,那么我們就可以采用排除法,從四個(gè)選項(xiàng)中排除掉易于判斷是錯(cuò)誤的答案,那么留下的一個(gè)自然就是正確的答案。
驗(yàn)證法。通過對(duì)選擇支的觀察,分析,將各選擇支逐個(gè)代入題干中,進(jìn)行驗(yàn)證、或適當(dāng)選取特殊值進(jìn)行檢驗(yàn)、或采取其他驗(yàn)證手段,以判斷選擇支正誤的方法。特殊值法。有些選擇題用常規(guī)方法求解比較困難,若根據(jù)答案中所提供的信息,選擇某些特殊情況進(jìn)行分析,或選擇某些特殊值進(jìn)行計(jì)算,或?qū)⒆帜竻?shù)換成具體數(shù)值代入,把一般形式變?yōu)樘厥庑问,再進(jìn)行判斷往往十分簡(jiǎn)單。
數(shù)形結(jié)合法。也叫圖象法。有些選擇題用代數(shù)方法解計(jì)算較繁,但若能根據(jù)題意,做出草圖,然后根據(jù)圖形的形狀、位置、性質(zhì)、綜合特征等,由圖形的直觀性得出選擇題的答案。選擇題的解題方法還有很多,但做題時(shí)也不要拘泥于固定思維,有時(shí)候一道題可采用多種特殊方法綜合運(yùn)用。還有,在做選擇題的過程中,遇到關(guān)鍵性的詞語(yǔ)可用筆做個(gè)記號(hào),以引起自己的注意,比如說至少,沒有一個(gè),至多一個(gè)等等。第一遍沒做的題也要做個(gè)記號(hào),但要注意與其它記號(hào)區(qū)分開來,這樣不容易遺漏。最后,做完題后要仔細(xì)檢查,有沒有遺漏的,有沒有涂錯(cuò)的,全面認(rèn)真的再做一遍,可用不同的方法做一下,驗(yàn)證答案。另外遇到真不會(huì)做的,也不要空著不做,一定要選個(gè)答案。
影響高中數(shù)學(xué)成績(jī)的原因及解決方法
面對(duì)眾多初中學(xué)習(xí)的成功者淪為高中學(xué)習(xí)的失敗者,筆者對(duì)他們的學(xué)習(xí)狀態(tài)進(jìn)行了研究、調(diào)查表明,造成成績(jī)滑坡的主要原因有以下幾個(gè)方面.
1.被動(dòng)學(xué)習(xí).許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強(qiáng)的依賴心理,跟隨老師慣性運(yùn)轉(zhuǎn),沒有掌握學(xué)習(xí)主動(dòng)權(quán).表現(xiàn)在不定計(jì)劃,坐等上課,課前沒有預(yù)習(xí),對(duì)老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”.沒有真正理解所學(xué)內(nèi)容。
2.學(xué)不得法.老師上課一般都要講清知識(shí)的來龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法.而一部分同學(xué)上課沒能專心聽課,對(duì)要點(diǎn)沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時(shí)鞏固、總結(jié)、尋找知識(shí)間的聯(lián)系,只是趕做作業(yè),亂套題型,對(duì)概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背.也有的晚上加班加點(diǎn),白天無(wú)精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微.
3.不重視基礎(chǔ).一些“自我感覺良好”的同學(xué),常輕視基本知識(shí)、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對(duì)難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海.到正規(guī)作業(yè)或考試中不是演算出錯(cuò)就是中途“卡殼”.
4.進(jìn)一步學(xué)習(xí)條件不具備.高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識(shí)的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識(shí)與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備.高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高.如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實(shí)根分布與參變量方程,三角公式的變形與靈活運(yùn)用,空間概念的形成,排列組合應(yīng)用題及實(shí)際應(yīng)用問題等.客觀上這些觀點(diǎn)就是分化點(diǎn),有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補(bǔ)救措施,查缺補(bǔ)漏,分化是不可避免的.
高中學(xué)生僅僅想學(xué)是不夠的,還必須“會(huì)學(xué)”,要講究科學(xué)的學(xué)習(xí)方法,提高學(xué)習(xí)效率,才能變被動(dòng)為主動(dòng).針對(duì)學(xué)生學(xué)習(xí)中出現(xiàn)的上述情況,教師應(yīng)當(dāng)采取以加強(qiáng)學(xué)法指導(dǎo)為主,化解分化點(diǎn)為輔的對(duì)策:
1.加強(qiáng)學(xué)法指導(dǎo),培養(yǎng)良好學(xué)習(xí)習(xí)慣。良好的學(xué)習(xí)習(xí)慣包括制定計(jì)劃、課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面.
制定計(jì)劃使學(xué)習(xí)目的明確,時(shí)間安排合理,不慌不忙,穩(wěn)扎穩(wěn)打,它是推動(dòng)學(xué)生主動(dòng)學(xué)習(xí)和克服困難的內(nèi)在動(dòng)力.但計(jì)劃一定要切實(shí)可行,既有長(zhǎng)遠(yuǎn)打算,又有短期安排,執(zhí)行過程中嚴(yán)格要求自己,磨煉學(xué)習(xí)意志.
課前自學(xué)是學(xué)生上好新課,取得較好學(xué)習(xí)效果的基礎(chǔ).課前自學(xué)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)主動(dòng)權(quán).自學(xué)不能搞走過場(chǎng),要講究質(zhì)量,力爭(zhēng)在課前把教材弄懂,上課著重聽老師講課的思路,把握重點(diǎn),突破難點(diǎn),盡可能把問題解決在課堂上.
上課是理解和掌握基本知識(shí)、基本技能和基本方法的關(guān)鍵環(huán)節(jié).“學(xué)然后知不足”,課前自學(xué)過的同學(xué)上課更能專心聽課,他們知道什么地方該詳,什么地方可略;什么地方該精雕細(xì)刻,什么地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼.
及時(shí)復(fù)習(xí)是高效率學(xué)習(xí)的重要一環(huán),通過反復(fù)閱讀教材,多方查閱有關(guān)資料,強(qiáng)化對(duì)基本概念知識(shí)體系的理解與記憶,將所學(xué)的新知識(shí)與有關(guān)舊知識(shí)聯(lián)系起來,進(jìn)行分析比較,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記上,使對(duì)所學(xué)的新知識(shí)由“懂”到“會(huì)”.
獨(dú)立作業(yè)是學(xué)生通過自己的獨(dú)立思考,靈活地分析問題、解決問題,進(jìn)一步加深對(duì)所學(xué)新知識(shí)的理解和對(duì)新技能的掌握過程.這一過程是對(duì)學(xué)生意志毅力的考驗(yàn),通過運(yùn)用使學(xué)生對(duì)所學(xué)知識(shí)由“會(huì)”到“熟”.
解決疑難是指對(duì)獨(dú)立完成作業(yè)過程中暴露出來對(duì)知識(shí)理解的錯(cuò)誤,或由于思維受阻遺漏解答,通過點(diǎn)撥使思路暢通,補(bǔ)遺解答的過程.解決疑難一定要有鍥而不舍的精神,做錯(cuò)的.作業(yè)再做一遍.對(duì)錯(cuò)誤的地方?jīng)]弄清楚要反復(fù)思考,實(shí)在解決不了的要請(qǐng)教老師和同學(xué),并要經(jīng)常把易錯(cuò)的地方拿出來復(fù)習(xí)強(qiáng)化,作適當(dāng)?shù)闹貜?fù)性練習(xí),把求老師問同學(xué)獲得的東西消化變成自己的知識(shí),長(zhǎng)期堅(jiān)持使對(duì)所學(xué)知識(shí)由“熟”到“活”.
系統(tǒng)小結(jié)是學(xué)生通過積極思考,達(dá)到全面系統(tǒng)深刻地掌握知識(shí)和發(fā)展認(rèn)識(shí)能力的重要環(huán)節(jié).小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與有關(guān)資料,通過分析、綜合、類比、概括,揭示知識(shí)間的內(nèi)在聯(lián)系.以達(dá)到對(duì)所學(xué)知識(shí)融會(huì)貫通的目的.經(jīng)常進(jìn)行多層次小結(jié),能對(duì)所學(xué)知識(shí)由“活”到“悟”.
課外學(xué)習(xí)包括閱讀課外書籍與報(bào)刊,參加學(xué)科競(jìng)賽與講座,走訪高年級(jí)同學(xué)或老師交流學(xué)習(xí)心得等.課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補(bǔ)充和繼續(xù),它不僅能豐富學(xué)生的文化科學(xué)知識(shí),加深和鞏固課內(nèi)所學(xué)的知識(shí),而且能滿足和發(fā)展他們的興趣愛好,培養(yǎng)獨(dú)立學(xué)習(xí)和工作能力,激發(fā)求知欲與學(xué)習(xí)熱情.
2.循序漸進(jìn),防止急躁
由于學(xué)生年齡較小,閱歷有限,為數(shù)不少的高中學(xué)生容易急躁,有的同學(xué)貪多求快,囫圇吞棗,有的同學(xué)想靠幾天“沖刺”一蹴而就,有的取得一點(diǎn)成績(jī)便洋洋自得,遇到挫折又一蹶不振.針對(duì)這些情況,教師要讓學(xué)生懂得學(xué)習(xí)是一個(gè)長(zhǎng)期的鞏固舊知識(shí)、發(fā)現(xiàn)新知識(shí)的積累過程,決非一朝一夕可以完成,為什么高中要上三年而不是三天!許多優(yōu)秀的同學(xué)能取得好成績(jī),其中一個(gè)重要原因是他們的基本功扎實(shí),他們的閱讀、書寫、運(yùn)算技能達(dá)到了自動(dòng)化或半自動(dòng)化的熟練程度.
3.研究學(xué)科特點(diǎn),尋找最佳學(xué)習(xí)方法
數(shù)學(xué)學(xué)科擔(dān)負(fù)著培養(yǎng)學(xué)生運(yùn)算能力、邏輯思維能力、空間想象能力,以及運(yùn)用所學(xué)知識(shí)分析問題、解決問題的能力的重任.它的特點(diǎn)是具有高度的抽象性、邏輯性和廣泛的適用性,對(duì)能力要求較高.學(xué)習(xí)數(shù)學(xué)一定要講究“活”,只看書不做題不行,埋頭做題不總結(jié)積累不行,對(duì)課本知識(shí)既要能鉆進(jìn)去,又要能跳出來,結(jié)合自身特點(diǎn),尋找最佳學(xué)習(xí)方法.華羅庚先生倡導(dǎo)的“由薄到厚”和“由厚到薄”的學(xué)習(xí)過程就是這個(gè)道理.方法因人而異,但學(xué)習(xí)的四個(gè)環(huán)節(jié)(預(yù)習(xí)、上課、整理、作業(yè))和一個(gè)步驟(復(fù)習(xí)總結(jié))是少不了的.
4.加強(qiáng)輔導(dǎo),化解分化點(diǎn)
如前所述高中數(shù)學(xué)中易分化的地方多,這些地方一般都有方法新、難度大、靈活性強(qiáng)等特點(diǎn).對(duì)易分化的地方教師應(yīng)當(dāng)采取多次反復(fù),加強(qiáng)輔導(dǎo),開辟專題講座,指導(dǎo)閱讀參考書等方法,將出現(xiàn)的錯(cuò)誤提出來讓學(xué)生議一議,充分展示他們的思維過程,通過變式練習(xí),提高他們的鑒賞能力,以達(dá)到靈活掌握知識(shí)、運(yùn)用知識(shí)的目的。
高中數(shù)學(xué)解題技巧2
第一、求函數(shù)定義域題忽視細(xì)節(jié)函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,考生想要在考場(chǎng)上準(zhǔn)確求出定義域,就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。在求一般函數(shù)定義域時(shí),要注意以下幾點(diǎn):分母不為0;偶次被開放式非負(fù);真數(shù)大于0以及0的0次冪無(wú)意義。函數(shù)的定義域是非空的數(shù)集,在解答函數(shù)定義域類的題時(shí)千萬(wàn)別忘了這一點(diǎn)。復(fù)合函數(shù)要注意外層函數(shù)的定義域由內(nèi)層函數(shù)的值域決定。
第二、帶絕對(duì)值的函數(shù)單調(diào)性判斷錯(cuò)誤帶絕對(duì)值的函數(shù)實(shí)質(zhì)上就是分段函數(shù),判斷分段函數(shù)的單調(diào)性有兩種方法:第一,在各個(gè)段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,然后對(duì)各個(gè)段上的單調(diào)區(qū)間進(jìn)行整合;第二,畫出這個(gè)分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)能夠進(jìn)行直觀的判斷。函數(shù)題離不開函數(shù)圖象,而函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),考生在解答函數(shù)題時(shí),要第一時(shí)間在腦海中畫出函數(shù)圖象,從圖象上分析問題,解決問題。對(duì)于函數(shù)不同的單調(diào)遞增(減)區(qū)間,千萬(wàn)記住,不要使用并集,指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。
第三、求函數(shù)奇偶性的常見錯(cuò)誤求函數(shù)奇偶性類的題最常見的錯(cuò)誤有求錯(cuò)函數(shù)定義域或忽視函數(shù)定義域,對(duì)函數(shù)具有奇偶性的前提條件不清,對(duì)分段函數(shù)奇偶性判斷方法不當(dāng)?shù)鹊。判斷函?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱的前提下,再根據(jù)奇偶函數(shù)的定義進(jìn)行判斷。在用定義進(jìn)行判斷時(shí),要注意自變量在定義域區(qū)間內(nèi)的任意性。
第四、抽象函數(shù)推理不嚴(yán)謹(jǐn)很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同“特征”而設(shè)計(jì)的,在解答此類問題時(shí),考生可以通過類比這類函數(shù)中一些具體函數(shù)的.性質(zhì)去解決抽象函數(shù)。多用特殊賦值法,通過特殊賦可以找到函數(shù)的不變性質(zhì),這往往是問題的突破口。抽象函數(shù)性質(zhì)的證明屬于代數(shù)推理,和幾何推理證明一樣,考生在作答時(shí)要注意推理的嚴(yán)謹(jǐn)性。每一步都要有充分的條件,別漏掉條件,更不能臆造條件,推理過程層次分明,還要注意書寫規(guī)范。
第五、函數(shù)零點(diǎn)定理使用不當(dāng)若函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,且有f(a)f(b)<>
第六、混淆兩類切線曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過一個(gè)點(diǎn)的切線是指過這個(gè)點(diǎn)的曲線的所有切線,這個(gè)點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過一個(gè)點(diǎn)的切線可能不止一條。因此,考生在求解曲線的切線問題時(shí),首先要區(qū)分是什么類型的切線。
第七、混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系一個(gè)函數(shù)在某個(gè)區(qū)間上是增函數(shù)的這類題型,如果考生認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,很容易就會(huì)出錯(cuò)。解答函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時(shí)一定要注意,一個(gè)函數(shù)的導(dǎo)函數(shù)在某個(gè)區(qū)間上單調(diào)遞增(減)的充要條件是這個(gè)函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。
第八、導(dǎo)數(shù)與極值關(guān)系不清考生在使用導(dǎo)數(shù)求函數(shù)極值類問題時(shí),容易出現(xiàn)的錯(cuò)誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),卻沒有對(duì)這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號(hào)進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn),往往就會(huì)出錯(cuò),出錯(cuò)原因就是考生對(duì)導(dǎo)數(shù)與極值關(guān)系沒搞清楚?蓪(dǎo)函數(shù)在一個(gè)點(diǎn)處的導(dǎo)函數(shù)值為零只是這個(gè)函數(shù)在此點(diǎn)處取到極值的必要條件,小編在此提醒廣大考生,在使用導(dǎo)數(shù)求函數(shù)極值時(shí),一定要對(duì)極值點(diǎn)進(jìn)行仔細(xì)檢查。
高中數(shù)學(xué)解題技巧3
高中數(shù)學(xué)解題小技巧
1、圓錐曲線中最后題往往聯(lián)立起來很復(fù)雜導(dǎo)致k算不出,這時(shí)你可以取特殊值法強(qiáng)行算出k過程就是先聯(lián)立,后算代爾塔,用下偉達(dá)定理,列出題目要求解的表達(dá)式,就ok了。
2、選擇題中如果有算錐體體積和表面積的話,直接看選項(xiàng)面積找到差2倍的小的就是答案,體積找到差3倍的小的就是答案,屢試不爽!
3、三角函數(shù)第二題,如求a(cosB+cosC)/(b+c)coA之類的先邊化角然后把第一題算的比如角A等于60度直接假設(shè)B和C都等于60°帶入求解。省時(shí)省力!
4、空間幾何證明過程中有一步實(shí)在想不出把沒用過的條件直接寫上然后得出想不出的那個(gè)結(jié)論即可。如果第一題真心不會(huì)做直接寫結(jié)論成立則第二題可以直接用!用常規(guī)法的同學(xué)建議先隨便建立個(gè)空間坐標(biāo)系,做錯(cuò)了還有2分可以得!
5、立體幾何中第二問叫你求余弦值啥的一般都用坐標(biāo)法!如果求角度則常規(guī)法簡(jiǎn)單!
6、選擇題中考線面關(guān)系的可以先從D項(xiàng)看起前面都是來浪費(fèi)你時(shí)間的
7、選擇題中求取值范圍的直接觀察答案從每個(gè)選項(xiàng)中取與其他選項(xiàng)不同的特殊點(diǎn)帶入能成立的就是答案
8、線性規(guī)劃題目直接求交點(diǎn)帶入比較大小即可
9、遇到這樣的選項(xiàng)A、1/2,B、1,C、3/2,D、5/2這樣的話答案一般是D因?yàn)锽可以看作是2/2前面三個(gè)都是出題者湊出來的如果答案在前面3個(gè)的話D應(yīng)該是2(4/2)
高中數(shù)學(xué)萬(wàn)能解題技巧
①特值檢驗(yàn)法、對(duì)于具有一般性的數(shù)學(xué)問題,我們?cè)诮忸}過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達(dá)到去偽存真的目的。
②極端性原則、將所要研究的問題向極端狀態(tài)進(jìn)行分析,使因果關(guān)系變得更加明顯,從而達(dá)到迅速解決問題的目的。極端性多數(shù)應(yīng)用在求極值、取值范圍、解析幾何上面,很多計(jì)算步驟繁瑣、計(jì)算量大的題,一但采用極端性去分析,那么就能瞬間解決問題。
、厶蕹、利用已知條件和選擇支所提供的信息,從四個(gè)選項(xiàng)中剔除掉三個(gè)錯(cuò)誤的答案,從而達(dá)到正確選擇的目的。這是一種常用的方法,尤其是答案為定值,或者有數(shù)值范圍時(shí),取特殊點(diǎn)代入驗(yàn)證即可排除。
、軘(shù)形結(jié)合法、由題目條件,作出符合題意的圖形或圖象,借助圖形或圖象的直觀性,經(jīng)過簡(jiǎn)單的推理或計(jì)算,從而得出答案的方法。數(shù)形結(jié)合的好處就是直觀,甚至可以用量角尺直接量出結(jié)果來。
、葸f推歸納法、通過題目條件進(jìn)行推理,尋找規(guī)律,從而歸納出正確答案的方法。
、揄樛品、利用數(shù)學(xué)定理、公式、法則、定義和題意,通過直接演算推理得出結(jié)果的方法。
⑦逆推驗(yàn)證法(代答案入題干驗(yàn)證法)、將選擇支代入題干進(jìn)行驗(yàn)證,從而否定錯(cuò)誤選擇支而得出正確選擇支的方法。
⑧正難則反法、從題的正面解決比較難時(shí),可從選擇支出發(fā)逐步逆推找出符合條件的結(jié)論,或從反面出發(fā)得出結(jié)論。
、崽卣鞣治龇、對(duì)題設(shè)和選擇支的特點(diǎn)進(jìn)行分析,發(fā)現(xiàn)規(guī)律,歸納得出正確判斷的方法。
、夤乐颠x擇法、有些問題,由于題目條件限制,無(wú)法(或沒有必要)進(jìn)行精準(zhǔn)的運(yùn)算和判斷,此時(shí)只能借助估算,通過觀察、分析、比較、推算,從面得出正確判斷的方法。
高中數(shù)學(xué)解題技巧總結(jié)
1、調(diào)理大腦思緒,提前進(jìn)入數(shù)學(xué)情境
考前要摒棄雜念,排除干擾思緒,使大腦處于“空白”狀態(tài),創(chuàng)設(shè)數(shù)學(xué)情境,進(jìn)而醞釀數(shù)學(xué)思維,提前進(jìn)入“角色”,通過清點(diǎn)用具、暗示重要知識(shí)和方法、提醒常見解題誤區(qū)和自己易出現(xiàn)的錯(cuò)誤等,進(jìn)行針對(duì)性的自我安慰,從而減輕壓力,輕裝上陣,穩(wěn)定情緒、增強(qiáng)信心,使思維單一化、數(shù)學(xué)化、以平穩(wěn)自信、積極主動(dòng)的心態(tài)準(zhǔn)備應(yīng)考。
2、沉著應(yīng)戰(zhàn),確保旗開得勝,以利振奮精神
良好的開端是成功的一半,從考試的心理角度來說,這確實(shí)是很有道理的,拿到試題后,不要急于求成、立即下手解題,而應(yīng)通覽一遍整套試題,摸透題情,然后穩(wěn)操一兩個(gè)易題熟題,讓自己產(chǎn)生“旗開得勝”的快意,從而有一個(gè)良好的開端,以振奮精神,鼓舞信心,很快進(jìn)入最佳思維狀態(tài),即發(fā)揮心理學(xué)所謂的“門坎效應(yīng)”,之后做一題得一題,不斷產(chǎn)生正激勵(lì),穩(wěn)拿中低,見機(jī)攀高。
3、“內(nèi)緊外松”,集中注意,消除焦慮怯場(chǎng)
集中注意力是考試成功的保證,一定的神經(jīng)亢奮和緊張,能加速神經(jīng)聯(lián)系,有益于積極思維,要使注意力高度集中,思維異常積極,這叫內(nèi)緊,但緊張程度過重,則會(huì)走向反面,形成怯場(chǎng),產(chǎn)生焦慮,抑制思維,所以又要清醒愉快,放得開,這叫外松。
4、一“慢”一“快”,相得益彰
有些考生只知道考場(chǎng)上一味地要快,結(jié)果題意未清,條件未全,便急于解答,豈不知欲速則不達(dá),結(jié)果是思維受阻或進(jìn)入死胡同,導(dǎo)致失敗。應(yīng)該說,審題要慢,解答要快。審題是整個(gè)解題過程的“基礎(chǔ)工程”,題目本身是“怎樣解題”的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認(rèn)識(shí),為形成解題思路提供全面可靠的依據(jù)。而思路一旦形成,則可盡量快速完成。
5、“六先六后”,因人因卷制宜
在通覽全卷,將簡(jiǎn)單題順手完成的情況下,情緒趨于穩(wěn)定,情境趨于單一,大腦趨于亢奮,思維趨于積極,之后便是發(fā)揮臨場(chǎng)解題能力的黃金季節(jié)了,這時(shí),考生可依自己的解題習(xí)慣和基本功,結(jié)合整套試題結(jié)構(gòu),選擇執(zhí)行“六先六后”的戰(zhàn)術(shù)原則。
1、先易后難
。就是先做簡(jiǎn)單題,再做綜合題,應(yīng)根據(jù)自己的實(shí)際,果斷跳過啃不動(dòng)的題目,從易到難,也要注意認(rèn)真對(duì)待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。
2、先熟后生。
通覽全卷,可以得到許多有利的積極因素,也會(huì)看到一些不利之處,對(duì)后者,不要驚慌失措,應(yīng)想到試題偏難對(duì)所有考生也難,通過這種暗示,確保情緒穩(wěn)定,對(duì)全卷整體把握之后,就可實(shí)施先熟后生的方法,即先做那些內(nèi)容掌握比較到家、題型結(jié)構(gòu)比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時(shí),可以使思維流暢、超常發(fā)揮,達(dá)到拿下中高檔題目的目的。
3、先同后異。
先做同科同類型的題目,思考比較集中,知識(shí)和方法的溝通比較容易,有利于提高單位時(shí)間的效益。高考題一般要求較快地進(jìn)行“興奮灶”的轉(zhuǎn)移,而“先同后異”,可以避免“興奮灶”過急、過頻的跳躍,從而減輕大腦負(fù)擔(dān),保持有效精力,
4、先小后大。
小題一般是信息量少、運(yùn)算量小,易于把握,不要輕易放過,應(yīng)爭(zhēng)取在大題之前盡快解決,從而為解決大題贏得時(shí)間,創(chuàng)造一個(gè)寬松的'心理基礎(chǔ)
5、先點(diǎn)后面。
近年的高考數(shù)學(xué)解答題多呈現(xiàn)為多問漸難式的“梯度題”,解答時(shí)不必一氣審到底,應(yīng)走一步解決一步,而前面問題的解決又為后面問題準(zhǔn)備了思維基礎(chǔ)和解題條件,所以要步步為營(yíng),由點(diǎn)到面6、先高后低。即在考試的后半段時(shí)間,要注重時(shí)間效益,如估計(jì)兩題都會(huì)做,則先做高分題;估計(jì)兩題都不易,則先就高分題實(shí)施“分段得分”,以增加在時(shí)間不足前提下的得分。
6、確保運(yùn)算準(zhǔn)確,立足一次成功
數(shù)學(xué)高考題的容量在120分鐘時(shí)間內(nèi)完成大小26個(gè)題,時(shí)間很緊張,不允許做大量細(xì)致的解后檢驗(yàn),所以要盡量準(zhǔn)確運(yùn)算(關(guān)鍵步驟,力求準(zhǔn)確,寧慢勿快),立足一次成功。解題速度是建立在解題準(zhǔn)確度基礎(chǔ)上,更何況數(shù)學(xué)題的中間數(shù)據(jù)常常不但從“數(shù)量”上,而且從“性質(zhì)”上影響著后繼各步的解答。所以,在以快為上的前提下,要穩(wěn)扎穩(wěn)打,層層有據(jù),步步準(zhǔn)確,不能為追求速度而丟掉準(zhǔn)確度,甚至丟掉重要的得分步驟,假如速度與準(zhǔn)確不可兼得的說,就只好舍快求對(duì)了,因?yàn)榻獯鸩粚?duì),再快也無(wú)意義。
7、講求規(guī)范書寫,力爭(zhēng)既對(duì)又全
考試的又一個(gè)特點(diǎn)是以卷面為唯一依據(jù)。這就要求不但會(huì)而且要對(duì)、對(duì)且全,全而規(guī)范。會(huì)而不對(duì),令人惋惜;對(duì)而不全,得分不高;表述不規(guī)范、字跡不工整又是造成高考數(shù)學(xué)試卷非智力因素失分的一大方面。因?yàn)樽舟E潦草,會(huì)使閱卷老師的第一印象不良,進(jìn)而使閱卷老師認(rèn)為考生學(xué)習(xí)不認(rèn)真、基本功不過硬、“感情分”也就相應(yīng)低了,此所謂心理學(xué)上的“光環(huán)效應(yīng)”!皶鴮懸ふ砻婺艿梅帧敝v的也正是這個(gè)道理。
8、面對(duì)難題,講究方法,爭(zhēng)取得分
會(huì)做的題目當(dāng)然要力求做對(duì)、做全、得滿分,而更多的問題是對(duì)不能全面完成的題目如何分段得分。下面有兩種常用方法。
1、缺步解答。
對(duì)一個(gè)疑難問題,確實(shí)啃不動(dòng)時(shí),一個(gè)明智的解題方法是、將它劃分為一個(gè)個(gè)子問題或一系列的步驟,先解決問題的一部分,即能解決到什么程度就解決到什么程度,能演算幾步就寫幾步,每進(jìn)行一步就可得到這一步的分?jǐn)?shù)。如從最初的把文字語(yǔ)言譯成符號(hào)語(yǔ)言,把條件和目標(biāo)譯成數(shù)學(xué)表達(dá)式,設(shè)應(yīng)用題的未知數(shù),設(shè)軌跡題的動(dòng)點(diǎn)坐標(biāo),依題意正確畫出圖形等,都能得分。還有象完成數(shù)學(xué)歸納法的第一步,分類討論,反證法的簡(jiǎn)單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從局部到整體,產(chǎn)生頓悟,形成思路,獲得解題成功。
2、跳步解答。
解題過程卡在一中間環(huán)節(jié)上時(shí),可以承認(rèn)中間結(jié)論,往下推,看能否得到正確結(jié)論,如得不出,說明此途徑不對(duì),立即否得到正確結(jié)論,如得不出,說明此途徑不對(duì),立即改變方向,尋找它途;如能得到預(yù)期結(jié)論,就再回頭集中力量攻克這一過渡環(huán)節(jié)。若因時(shí)間限制,中間結(jié)論來不及得到證實(shí),就只好跳過這一步,寫出后繼各步,一直做到底;另外,若題目有兩問,第一問做不上,可以第一問為“已知”,完成第二問,這都叫跳步解答。也許后來由于解題的正遷移對(duì)中間步驟想起來了,或在時(shí)間允許的情況下,經(jīng)努力而攻下了中間難點(diǎn),可在相應(yīng)題尾補(bǔ)上。
9、以退求進(jìn),立足特殊
發(fā)散一般對(duì)于一個(gè)較一般的問題,若一時(shí)不能取得一般思路,可以采取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強(qiáng)條件,等等。總之,退到一個(gè)你能夠解決的程度上,通過對(duì)“特殊”的思考與解決,啟發(fā)思維,達(dá)到對(duì)“一般”的解決。
10、應(yīng)用性問題思路、面—點(diǎn)—線
解決應(yīng)用性問題,首先要全面調(diào)查題意,迅速接受概念,此為“面”;透過冗長(zhǎng)敘述,抓住重點(diǎn)詞句,提出重點(diǎn)數(shù)據(jù),此為“點(diǎn)”;綜合聯(lián)系,提煉關(guān)系,依靠數(shù)學(xué)方法,建立數(shù)學(xué)模型,此為“線”,如此將應(yīng)用性問題轉(zhuǎn)化為純數(shù)學(xué)問題。當(dāng)然,求解過程和結(jié)果都不能離開實(shí)際背景。
11、執(zhí)果索因,逆向思考,正難則反
對(duì)一個(gè)問題正面思考發(fā)生思維受阻時(shí),用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進(jìn)展,如果順向推有困難就逆推,直接證有困難就反證,如用分析法,從肯定結(jié)論或中間步驟入手,找充分條件;用反證法,從否定結(jié)論入手找必要條件。
12、回避結(jié)論的肯定與否定,解決探索性問題
對(duì)探索性問題,不必追求結(jié)論的“是”與“否”、“有”與“無(wú)”,可以一開始,就綜合所有條件,進(jìn)行嚴(yán)格的推理與討論,則步驟所至,結(jié)論自明。
高中數(shù)學(xué)解題技巧4
17題三角函數(shù)
17題考的知識(shí)點(diǎn)比較簡(jiǎn)單,只要在平時(shí)多加注意和總結(jié)就不成問題,但是重要的公式譬如二倍角公式等一定要熟記,這些是做題的基礎(chǔ);
18題立體幾何
18題的第一小題通常是證明題,有時(shí)利用現(xiàn)成的條件馬上就可以證明,但是也不排除需要做輔助線有一點(diǎn)難度的可能,而且形勢(shì)越來越偏向后一種,所以在平時(shí)要多多注意需要做輔助線的證明題,第二小題通常是求線面角和線線角的大小,也有可能是求相關(guān)的體積,不過這樣也是變相的讓你求線面角或線線角的大小,至于求面面角大小,我們老師說不大可能,因?yàn)榍竺婷娼堑碾y度稍大所需要的時(shí)間也會(huì)比較多,這樣對(duì)后面的發(fā)揮會(huì)有比較大的影響,(雖然高考的目的是選拔人才,但是全省的平均分也不能太低。)
提醒一點(diǎn):如果做第二小題時(shí)沒有很快有思路,那就果斷選擇向量法,向量法的難點(diǎn)是空間直角坐標(biāo)系的建立,一定要找到三條相互垂直的線分別作為x軸y軸z軸,相互垂直一定要是能證明出來的,如果單憑感覺建立空間直角坐標(biāo)系萬(wàn)一錯(cuò)了后面的就完全錯(cuò)了。
19題導(dǎo)數(shù)
19題的難點(diǎn)是求導(dǎo),如果你對(duì)復(fù)雜函數(shù)的求導(dǎo)掌握的很熟練,那第一小題就不用擔(dān)心啦,第二小題會(huì)比較有難度,但是基礎(chǔ)還是求導(dǎo),無(wú)論有沒有思路都要先求導(dǎo),說不定在求導(dǎo)的過程中就找到思路了;
20題圓錐曲線
20題是圓錐曲線,第一小題還是比較基礎(chǔ)的但完全正確的前提是要掌握橢圓、雙曲線、拋物線的定義,因?yàn)楹苡锌赡軙?huì)出現(xiàn)讓你判斷某某是橢圓、雙曲線、還是拋物線的題目。第二小題比較難,但是簡(jiǎn)單在有一定的套路,(做題做多了就知道的)套路就是1.設(shè)立坐標(biāo),一般是求什么設(shè)什么.2.將坐標(biāo)帶入所在曲線的方程中.3.利用韋達(dá)定理求出x1+x2,x1x2,y1+y2,y1y2.4.所求的內(nèi)容盡力轉(zhuǎn)換為與x1、x2、y1、y2相關(guān)的式子,在轉(zhuǎn)換的過程中要結(jié)合題目的條件.一定要篩選和轉(zhuǎn)換題目中所給出的條件,因?yàn)橛械姆绞诫m然可以得出結(jié)果但是過程很復(fù)雜,浪費(fèi)的'時(shí)間會(huì)比較多,別忘了后面還有一個(gè)大boss呢。
21題最難
21題那實(shí)在是太難了,至少在我看來,最后一小題幾乎是寫不出來的,就算完全寫出來也需要很長(zhǎng)的時(shí)間,那我們能做的就是在剩下為數(shù)不多的時(shí)間內(nèi)盡力向老師要分?jǐn)?shù),就是能想到什么就寫下來不要打草稿直接寫。最后提一下:鈴聲響起來的那一刻,其實(shí)你的分?jǐn)?shù)已經(jīng)定了,無(wú)論考的好還是壞,都是既定的事實(shí)了,那就隨它去吧,爭(zhēng)取明天的英語(yǔ)才是最主要的。
注意:我有一個(gè)很好的做數(shù)學(xué)錯(cuò)題的方法在這里分享給大家,就是將數(shù)學(xué)錯(cuò)題分類。怎么分類呢?首先,將主要內(nèi)容分類,就和課本上一樣分類,就像第一章節(jié)是關(guān)于集合第二章節(jié)是關(guān)于函數(shù)。其次,將該章節(jié)學(xué)到的內(nèi)容分類,譬如集合中有并集、交集等就將錯(cuò)題分為關(guān)于交集的錯(cuò)題關(guān)于并集的錯(cuò)題,如果是都有的話就寫到混合的錯(cuò)題中。
最后,將解并集題目的方法中再進(jìn)行分類,譬如分為1.利用畫數(shù)軸方法解.2.利用—方法解......這樣到時(shí)把所有的解題方法都掌握了,那么數(shù)學(xué)題還怕什么。依據(jù)以上幾點(diǎn),我覺得錯(cuò)題本最好是活頁(yè)的,這樣分類起來會(huì)比較方便而且可以隨時(shí)增減題目雖然方法不是特別好,但是自我感覺還是有很多可取的地方的。無(wú)論方法多么完美,只有付出行動(dòng)才會(huì)有進(jìn)步。
高中數(shù)學(xué)大題解題思路高考數(shù)學(xué)大題結(jié)構(gòu)安排:第三步就是將化簡(jiǎn)為一個(gè)整體的式子(如y=a的形式)根據(jù)題目要
A、三角函數(shù)與向量的結(jié)合求來解答:
B、概率論最值(值域):要首先求出的范圍,然后求出y的范圍
C、立體幾何單調(diào)性:首先明確sin函數(shù)的單調(diào)性,然后將代入sin函數(shù)的單調(diào)范
D、圓錐曲線圍解出x的范圍(這里一定要注意2的正負(fù)性)
E、導(dǎo)數(shù)周期性:利用公式求解
F、數(shù)列對(duì)稱性:要熟練掌握sin、cos、tan函數(shù)關(guān)于軸對(duì)稱和點(diǎn)對(duì)稱的公式。
高中數(shù)學(xué)解題技巧5
數(shù)學(xué)證明題解題的方法
第一步:結(jié)合幾何意義記住零點(diǎn)存在定理、中值定理、泰勒公式、極限存在的兩個(gè)準(zhǔn)則等基本原理,包括條件及結(jié)論。知道基本原理是證明的基礎(chǔ),知道的程度(即就是對(duì)定理理解的深入程度)不同會(huì)導(dǎo)致不同的推理能力。如20xx年數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因?yàn)閿?shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個(gè)題目非常簡(jiǎn)單,只用了極限存在的兩個(gè)準(zhǔn)則之一:?jiǎn)握{(diào)有界數(shù)列必有極限。只要知道這個(gè)準(zhǔn)則,該問題就能輕松解決,因?yàn)閷?duì)于該題中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗(yàn)證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。
第二步:借助幾何意義尋求證明思路。一個(gè)證明題,大多時(shí)候是能用其幾何意義來正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。如20xx年數(shù)學(xué)一第19題是一個(gè)關(guān)于中值定理的證明題,可以在直角坐標(biāo)系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個(gè)函數(shù)除兩個(gè)端點(diǎn)外還有一個(gè)函數(shù)值相等的點(diǎn),那就是兩個(gè)函數(shù)分別取最大值的點(diǎn)(正確審題:兩個(gè)函數(shù)取得最大值的點(diǎn)不一定是同一個(gè)點(diǎn))之間的一個(gè)點(diǎn)。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個(gè)零點(diǎn),兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。再如20xx年數(shù)學(xué)一第18題(1)是關(guān)于零點(diǎn)存在定理的證明題,只要在直角坐標(biāo)系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個(gè)函數(shù)圖形有交點(diǎn),這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個(gè)端點(diǎn)處大小關(guān)系恰好相反,也就是差函數(shù)在兩個(gè)端點(diǎn)的值是異號(hào)的,零點(diǎn)存在定理保證了區(qū)間內(nèi)有零點(diǎn),這就證得所需結(jié)果。
高中數(shù)學(xué)證明題解題方法
一、合情推理
1.歸納推理是由部分到整體,由個(gè)別到一般的推理,在進(jìn)行歸納時(shí),要先根據(jù)已知的部分個(gè)體,把它們適當(dāng)變形,找出它們之間的聯(lián)系,從而歸納出一般結(jié)論;
2.類比推理是由特殊到特殊的推理,是兩類類似的對(duì)象之間的推理,其中一個(gè)對(duì)象具有某個(gè)性質(zhì),則另一個(gè)對(duì)象也具有類似的性質(zhì)。在進(jìn)行類比時(shí),要充分考慮已知對(duì)象性質(zhì)的'推理過程,然后類比推導(dǎo)類比對(duì)象的性質(zhì)。
二、演繹推理
演繹推理是由一般到特殊的推理,數(shù)學(xué)的證明過程主要是通過演繹推理進(jìn)行的,只要采用的演繹推理的大前提、小前提和推理形式是正確的,其結(jié)論一定是正確,一定要注意推理過程的正確性與完備性。
三、直接證明與間接證明
直接證明是相對(duì)于間接證明說的,綜合法和分析法是兩種常見的直接證明。綜合法一般地,利用已知條件和某些數(shù)學(xué)定義、定理、公理等,經(jīng)過一系列的推理論證,最后推導(dǎo)出所要證明的結(jié)論成立,這種證明方法叫做綜合法(或順推證法、由因?qū)Ч?。分析法一般地,從要證明的結(jié)論出發(fā),逐步尋求使它成立的充分條件,直至最后,把要證明的結(jié)論歸結(jié)為判定一個(gè)明顯成立的條件(已知條件、定理、定義、公理等)為止,這種證明方法叫做分析法。
間接證明是相對(duì)于直接證明說的,反證法是間接證明常用的方法。假設(shè)原命題不成立,經(jīng)過正確的推理,最后得出矛盾,因此說明假設(shè)錯(cuò)誤,從而證明原命題成立,這種證明方法叫做反證法。
四、數(shù)學(xué)歸納法
數(shù)學(xué)上證明與自然數(shù)N有關(guān)的命題的一種特殊方法,它主要用來研究與正整數(shù)有關(guān)的數(shù)學(xué)問題,在高中數(shù)學(xué)中常用來證明等式成立和數(shù)列通項(xiàng)公式成立。
幾何證明解題技巧
題型:這種題型分為兩類:第一類就是證明題,也就是證明平行(線面平行、面面平行),第二類就是證明垂直(線線垂直、線面垂直、面面垂直);第二就是計(jì)算題,包括棱錐體的體積公式計(jì)算、點(diǎn)到面的距離、有關(guān)二面角的計(jì)算(理科生掌握)解題思路:
證線面平行如直線與面有兩種方法:一種方法是在面中找到一條線與平行即可(一般情況下沒有現(xiàn)成的線存在,這個(gè)時(shí)候需要我們?cè)诿孀鲆粭l輔助線去跟線平行,一般這條輔助線的作法就是找中點(diǎn));另一種方法就是過直線作一個(gè)平面與面平行即可,輔助面的作法也基本上是找中點(diǎn)。
證面面平行:這類題比較簡(jiǎn)單,即證明這兩個(gè)平面的兩條相交線對(duì)應(yīng)平行即可。
證線面垂直如直線與面:這類型的題主要是看有前提沒有,即如果直線所在的平面與面在題目中已經(jīng)告訴我們是垂直關(guān)系了,那么我們只需要證明直線垂直于面與面的交線即可;如果題目中沒有說直線所在的.平面與面是垂直的關(guān)系,那么我們需要證明直線垂直面內(nèi)的兩條相交線即可。
其實(shí)說實(shí)話,證明垂直的問題都是很簡(jiǎn)單的,一般都有什么勾股定理呀,還有更多的是根據(jù)一個(gè)定理(一條直線垂直于一個(gè)面,那么這條直線就垂直這個(gè)面的任何一條線)來證明垂直。
證面面垂直與證面面垂直:這類問題也比較簡(jiǎn)單,就是需要轉(zhuǎn)化為證線面垂直即可。
體積和點(diǎn)到面的距離計(jì)算:如果是三棱錐的體積要注意等體積法公式的應(yīng)用,一般情況就是考這個(gè)東西,沒有什么難度的,關(guān)鍵是高的尋找,一定要注意,只要你找到了高你就勝利了。除了三棱錐以外的其他錐體不要用等體積法了哈,等體積法是三棱錐的專利。二面角的計(jì)算:這類型對(duì)理科生來說是一個(gè)噩夢(mèng),其難度有二,第一是首先你要找到二面角在什么地方,另一個(gè)難度就是你要知道這個(gè)二面角所在直角三角形的邊長(zhǎng)分別是多少。
二面角(面與面)的找法主要是遵循以下步驟:首先找到從一個(gè)面的頂點(diǎn)A出發(fā)引向另一個(gè)面的垂線,垂足為B,然后過垂足B向這兩個(gè)面的交線做垂線,垂足為C,最后將A點(diǎn)與C點(diǎn)連接起來,這樣即為二面角(說白了就是應(yīng)用三垂線定理來找)
二面角所在直角三角形的邊長(zhǎng)求法:一般應(yīng)用勾股定理,相似三角形,等面積法,正余弦定理等。
這里我著重說一下就是在題目中可能會(huì)出現(xiàn)這樣的情況,就是兩個(gè)面的相交處是一個(gè)點(diǎn),這個(gè)時(shí)候需要我們過這個(gè)點(diǎn)補(bǔ)充完整兩個(gè)面的交線,不知道怎么補(bǔ)交線的跟我說一聲。
高中數(shù)學(xué)解題技巧6
數(shù)形結(jié)合
數(shù)形結(jié)合的方法,就是將數(shù)字與圖形二者進(jìn)行相互變換,不僅可以把問題變得更加簡(jiǎn)單,而且可以把抽象的問題變得更加具體,這種方法在數(shù)學(xué)的學(xué)習(xí)過程中經(jīng)常用到.通過對(duì)二次函數(shù)的定義以及性質(zhì)進(jìn)行學(xué)習(xí),我們了解到它的圖像是一個(gè)拋物線,并且它的圖像還具有非常多的特殊性。
例如,它具有對(duì)稱性、單調(diào)性等等,我們?cè)趯?duì)二次函數(shù)求解的過程中,可以充分地利用它的圖像所具有的這些性質(zhì),它不僅可以把復(fù)雜的二次函數(shù)變得更加的簡(jiǎn)單,而且可以把二次函數(shù)變得更加直觀.拋物線具有的對(duì)稱性是一個(gè)非常重要的解題思路.二次函數(shù)圖像的對(duì)稱軸一般與y軸平行或者重合;它的另一大特性是連續(xù)性,并且與其對(duì)應(yīng)的方程最多只能夠有兩個(gè)實(shí)根,因此就會(huì)產(chǎn)生一個(gè)區(qū)間,這可以為我們的解題帶來很多方便.在解題的過程中還可以利用二次函數(shù)的單調(diào)性,這也是經(jīng)常用到的方法。
代數(shù)推理
眾所周知,二次函數(shù)的函數(shù)式是y = ax2 + bx + c,觀察其函數(shù)式非常的簡(jiǎn)單,而與其對(duì)應(yīng)的拋物線圖像卻比較容易發(fā)生變形,例如,在其中會(huì)有一般式、頂點(diǎn)式以及零點(diǎn)式等等,因此,在解決二次函數(shù)問題的過程中,其函數(shù)式會(huì)得到非常廣泛的應(yīng)用。
在二次函數(shù)的函數(shù)式y(tǒng) = ax2 + bx + c中,具有三個(gè)變量a,b,c,在確定這三個(gè)變量時(shí)一定要給出三個(gè)相互獨(dú)立的條件,有一些時(shí)候?qū)⑺o出的條件全部應(yīng)用完成之后還不能夠得出三個(gè)變量的值,這時(shí)我們就要使用逆向思維,看給出的條件中是否含有隱含條件,我們不能夠被其中的假象迷惑;我們還應(yīng)該學(xué)會(huì)利用二次函數(shù)與方程根之間具有的關(guān)系,寫出它的頂點(diǎn)式,我們可以對(duì)二次函數(shù)進(jìn)行假設(shè),對(duì)其圖像進(jìn)行描繪;然后使用函數(shù)所具有的一些性質(zhì)對(duì)其進(jìn)行限制,并且在對(duì)頂點(diǎn)式進(jìn)行運(yùn)用的過程中要非常的靈活.頂點(diǎn)式看著比較復(fù)雜,而其中最簡(jiǎn)單的就是它,在此過程中充分的利用頂點(diǎn)式,最后一定會(huì)找到答案。
二次函數(shù)的問題靈活多變,在題目中稍稍改變一下各項(xiàng)的系數(shù)(a、b、c),就可能會(huì)改變函數(shù)的開口方向、對(duì)稱軸、二次方程的根(x1、x2)的情況;改變一下定義域的`取值,就會(huì)影響到二次函數(shù)的最值y。這樣貌似一樣的題目,就變成了一個(gè)新題,會(huì)產(chǎn)生很多的不同。從這個(gè)角度上講,二次函數(shù)的題目是永遠(yuǎn)做不完的,所以要在做題的過程中不斷地強(qiáng)化對(duì)于知識(shí)點(diǎn)的認(rèn)識(shí),摸清其內(nèi)部的思路,學(xué)會(huì)舉一反三,這樣才能夠提高上課的效率,做學(xué)習(xí)的主人。學(xué)會(huì)舉一反三同樣需要在大量的做題和思考之后,這對(duì)于學(xué)生的思考能力也有著較高的要求,在具體的學(xué)習(xí)活動(dòng)中不斷地摸索二次函數(shù)的學(xué)習(xí)規(guī)律,才能夠加強(qiáng)對(duì)于二次函數(shù)的認(rèn)識(shí)。
注重二次函數(shù)圖像的學(xué)習(xí)和認(rèn)識(shí)
對(duì)于二次函數(shù)的學(xué)習(xí),尤其需要注意的一點(diǎn)就是對(duì)于圖像的認(rèn)識(shí)和使用。首先將二次函數(shù)畫出來能夠較為直觀地反映出函數(shù)本身的特點(diǎn),如開口方向、對(duì)稱抽、與坐標(biāo)軸的交點(diǎn)情況等。圖像的使用對(duì)于認(rèn)識(shí)二次函數(shù)有較大的幫助作用,尤其是在總結(jié)和歸納知識(shí)點(diǎn)的過程中,函數(shù)圖像能夠很直觀地折射出函數(shù)的性質(zhì)。二次函數(shù)的圖像實(shí)則展現(xiàn)的是一種數(shù)學(xué)上的美感,完美圖形的展示,顯示了幾何圖像本身無(wú)與倫比的美?梢哉f二次函數(shù)的圖像不僅僅是數(shù)學(xué)學(xué)習(xí)和解題的必需,更是認(rèn)識(shí)數(shù)學(xué)美的途徑,它帶給學(xué)生更多的是數(shù)學(xué)美的感性認(rèn)識(shí)。
注重開發(fā)式教學(xué),實(shí)現(xiàn)學(xué)生思維能力的培養(yǎng)提升
高中數(shù)學(xué)教學(xué)中,函數(shù)作為高中數(shù)學(xué)教學(xué)的重要部分,在教學(xué)中涉及的范圍內(nèi)容不僅多,并且所占的比例范圍也比較大。二次函數(shù)作為高中數(shù)學(xué)函數(shù)教學(xué)的重要一部分,其在教學(xué)中所占的比例內(nèi)容也相對(duì)比較多。因此,進(jìn)行高中數(shù)學(xué)二次函數(shù)教學(xué)所應(yīng)用的教學(xué)思想以及方法也就相對(duì)較多,在實(shí)際教學(xué)中,教師應(yīng)注意通過二次函數(shù)教學(xué)思想與教學(xué)方法的合理選擇應(yīng)用,以實(shí)現(xiàn)在二次函數(shù)教學(xué)基礎(chǔ)上學(xué)生數(shù)學(xué)思維能力的培養(yǎng)提升。
比如,在教學(xué)中可以通過下列題目的引導(dǎo)解答,引導(dǎo)學(xué)生對(duì)二次函數(shù)的內(nèi)涵與外延進(jìn)行掌握理解,同時(shí)進(jìn)行二次函數(shù)解題方式的總結(jié)思考,進(jìn)而實(shí)現(xiàn)數(shù)學(xué)思維能力的培養(yǎng)提升。已知y=ax2+bx+c,其中a>0,并且方程f(x)-x=0的兩個(gè)根x1和x2滿足0根據(jù)上題所給出的已知條件,在進(jìn)行該題目的計(jì)算解答中,不僅需要對(duì)題目已知與問題進(jìn)行很好的理解,以通過二次函數(shù)的圖象與性質(zhì)變化特征,進(jìn)行題目解答,同時(shí)在該題目解答中還需要應(yīng)用到數(shù)形結(jié)合和分類討論等解題方法。
加強(qiáng)高中數(shù)學(xué)二次函數(shù)概念定義的理解認(rèn)識(shí)
在二次函數(shù)教學(xué)中,高中數(shù)學(xué)的二次函數(shù)教學(xué)是建立在初中階段函數(shù)定義與知識(shí)教學(xué)的基礎(chǔ)之上的,在進(jìn)行函數(shù)知識(shí)內(nèi)容的定義解釋中,是通過集合之間的相對(duì)應(yīng)關(guān)系實(shí)現(xiàn)函數(shù)定義解釋的,與初中函數(shù)定義之間有著一定的區(qū)別,這就使學(xué)生在學(xué)習(xí)過程中對(duì)函數(shù)定義的理解不容易接受和適應(yīng)。因此,進(jìn)行高中數(shù)學(xué)二次函數(shù)的教學(xué),首先需要結(jié)合初中函數(shù)教學(xué)的定義內(nèi)容,對(duì)函數(shù)教學(xué)的知識(shí)定義進(jìn)行全面透徹的理解,以便于學(xué)生學(xué)習(xí)與掌握。
在高中數(shù)學(xué)二次函數(shù)教學(xué)中,首先注意引導(dǎo)學(xué)生對(duì)初中階段所學(xué)習(xí)的二次函數(shù)定義和內(nèi)容進(jìn)行復(fù)習(xí)回顧,同時(shí)與高中數(shù)學(xué)中的二次函數(shù)定義內(nèi)容進(jìn)行對(duì)比,以實(shí)現(xiàn)進(jìn)一步理解認(rèn)識(shí),弄清楚二次函數(shù)的定義、對(duì)應(yīng)關(guān)系和定義域、值域等相應(yīng)內(nèi)容,以便后續(xù)教學(xué)的開展與實(shí)施。比如,在教學(xué)“已知f(x)=x2+1,要求f(2),f(a)和f(x+1)”一題中,如果對(duì)二次函數(shù)概念定義的理解認(rèn)識(shí)比較清晰,就可以看出該問題就是一個(gè)簡(jiǎn)單的二次函數(shù)代換問題,通過自變量的代換就能夠?qū)λ髥栴}進(jìn)行解答。需要注意的是,在進(jìn)行上述問題的解答過程中,還需要引導(dǎo)學(xué)生理解認(rèn)識(shí)二次函數(shù)的概念定義,像二次函數(shù)f(x+1)=x2+2x+2中,就不能夠?qū)(x+1)理解為x=x+1時(shí)的函數(shù)值,而應(yīng)理解為自變量x+1的函數(shù)值。
嘗試教學(xué)法與啟發(fā)式教學(xué)并用,激發(fā)學(xué)生的概括能力
高中二次函數(shù)有很多規(guī)律潛在于函數(shù)的學(xué)習(xí)過程,如果只是通過教師的普通講解讓學(xué)生被動(dòng)接受,學(xué)生難以掌握知識(shí),對(duì)于特殊解題方法的應(yīng)用印象不會(huì)深刻,對(duì)于知識(shí)點(diǎn)的記憶程度不會(huì)牢固。如果在二次函數(shù)教學(xué)中采用嘗試教學(xué)法,讓學(xué)生先自行解題,發(fā)現(xiàn)不足或困難后通過啟發(fā)式教育,引導(dǎo)學(xué)生一步步求解并在這個(gè)過程中發(fā)現(xiàn)新的規(guī)律,通過這種方法記憶將比被動(dòng)接受更加牢固。
例如,對(duì)于函數(shù)零點(diǎn)個(gè)數(shù)的判斷,以y=lnx+2x-6這個(gè)函數(shù)為例,讓學(xué)生先自主進(jìn)行零點(diǎn)個(gè)數(shù)的判斷。大多數(shù)學(xué)生在解題的時(shí)候,求解lnx+2x-6=0這個(gè)方程來求方程的零點(diǎn),然后求解出零點(diǎn)的個(gè)數(shù)。但是,在解題過程中,幾乎所有的學(xué)生都不能完成對(duì)這一方程的求解。學(xué)生發(fā)現(xiàn)問題時(shí),教師再適時(shí)進(jìn)行引導(dǎo)式的教育,讓學(xué)生求解出函數(shù)的最值,并作圖于二元坐標(biāo)系中,最后按照函數(shù)與橫軸交點(diǎn)判斷出方程的零點(diǎn)個(gè)數(shù)。在這種模式下,首先讓學(xué)生通過自主學(xué)習(xí)尋找出傳統(tǒng)方法中的弊端,然后通過指引式教學(xué),讓學(xué)生逐步發(fā)現(xiàn)求解的特殊方法,最后加深學(xué)生的印象,同時(shí)也再次利用了數(shù)形結(jié)合的方法。
利用信息數(shù)據(jù)統(tǒng)計(jì),加強(qiáng)針對(duì)性訓(xùn)練
數(shù)學(xué)學(xué)習(xí)不是一朝一夕就能提高成績(jī),而是需要刻苦鍛煉。二次函數(shù)由于難度大,在高中數(shù)學(xué)中占據(jù)的比重高,更需要強(qiáng)化訓(xùn)練。在數(shù)字化的今天,高中數(shù)學(xué)的訓(xùn)練不能簡(jiǎn)單進(jìn)行盲目練習(xí),而是要根據(jù)班級(jí)的實(shí)際情況進(jìn)行有針對(duì)性地訓(xùn)練,來提高學(xué)生在二次函數(shù)學(xué)習(xí)中的效果,最終達(dá)到各個(gè)班級(jí)共同進(jìn)步的目的。
由于國(guó)家對(duì)于教育的重視,數(shù)字化的設(shè)備走進(jìn)了學(xué)校課堂,更新了學(xué)校的教學(xué)工具。教師在平時(shí)的課堂訓(xùn)練及作業(yè)測(cè)試中,要做好相應(yīng)記錄,將知識(shí)有條理地分成若干模塊,對(duì)各個(gè)班級(jí)在學(xué)習(xí)時(shí)候的情況進(jìn)行統(tǒng)計(jì)。在二次函數(shù)教學(xué)中,教師可以根據(jù)函數(shù)的基本概念、基本初等函數(shù)、函數(shù)的應(yīng)用等幾個(gè)方面進(jìn)行分類統(tǒng)計(jì),對(duì)各個(gè)班級(jí)在二次函數(shù)學(xué)習(xí)的過程中產(chǎn)生的各方面問題進(jìn)行記錄,并在課程學(xué)習(xí)的復(fù)習(xí)前進(jìn)行相關(guān)數(shù)據(jù)的分析,根據(jù)數(shù)據(jù)制作統(tǒng)計(jì)圖表等,給各個(gè)班級(jí)開出一份明確的診斷證明,并根據(jù)實(shí)際情況為各個(gè)班級(jí)設(shè)計(jì)不同的講義,讓學(xué)生有針對(duì)性地進(jìn)行強(qiáng)化和糾正,彌補(bǔ)自己的不足,最終讓各個(gè)班級(jí)都能克服弱點(diǎn),在二次函數(shù)的學(xué)習(xí)中得到共同的進(jìn)步。
高中數(shù)學(xué)解題技巧7
1.解決絕對(duì)值問題(化簡(jiǎn)、求值、方程、不等式、函數(shù)),把含絕對(duì)值的問題轉(zhuǎn)化為不含絕對(duì)值的問題。具體轉(zhuǎn)化方法有:
①分類討論法:根據(jù)絕對(duì)值符號(hào)中的數(shù)或式子的正、零、負(fù)分情況去掉絕對(duì)值。
、诹泓c(diǎn)分段討論法:適用于含一個(gè)字母的多個(gè)絕對(duì)值的情況。
、蹆蛇吰椒椒ǎ哼m用于兩邊非負(fù)的方程或不等式。
、軒缀我饬x法:適用于有明顯幾何意義的情況。
2.根據(jù)項(xiàng)數(shù)選擇方法和按照一般步驟是順利進(jìn)行因式分解的重要技巧。因式分解的一般步驟是:
3. 利用完全平方公式把一個(gè)式子或部分化為完全平方式就是配方法,它是數(shù)學(xué)中的重要方法和技巧。配方法的主要根據(jù)有:
4. 解某些復(fù)雜的特型方程要用到:換元法。換元法解方程的一般步驟是:
5. 待定系數(shù)法是在已知對(duì)象形式的條件下求對(duì)象的一種方法。適用于求點(diǎn)的坐標(biāo)、函數(shù)解析式、曲線方程等重要問題的解決。其解題步驟是:
(1)設(shè)
(2)列
(3)解
(4)寫
6. 復(fù)雜代數(shù)等式型條件的使用技巧:
左邊化零,右邊變形
7. 圖像的平移規(guī)律是研究復(fù)雜函數(shù)的重要方法。平移規(guī)律是:
8. 討論函數(shù)性質(zhì)的重要方法是圖像法——看圖像、得性質(zhì)。
9. 化簡(jiǎn)
的方法是觀察法:
10. 代數(shù)式求值的`方法有:
(1)直接代入法
(2)化簡(jiǎn)代入法
(3)適當(dāng)變形法(和積代入法)
注意:當(dāng)求值的代數(shù)式是字母的“對(duì)稱式”時(shí),通?梢曰癁樽帜浮昂团c積”的形式,從而用“和積代入法”求值。
11. 方程中除過未知數(shù)以外,含有的其它字母叫參數(shù),這種方程叫含參方程。解含參方程一般要用“分類討論法”,其原則是:
、侔凑疹愋颓蠼
②根據(jù)需要討論
、鄯诸悓懗鼋Y(jié)論。
12. 恒相等成立的有用條件:
13. 由一元二次不等式解集為R的有關(guān)結(jié)論容易得到下列恒不等成立的條件:
高中數(shù)學(xué)解題技巧8
高中數(shù)學(xué)?碱}型答題技巧與方法
1、解決絕對(duì)值問題
主要包括化簡(jiǎn)、求值、方程、不等式、函數(shù)等題,基本思路是:把含絕對(duì)值的問題轉(zhuǎn)化為不含絕對(duì)值的問題。
具體轉(zhuǎn)化方法有:
、俜诸愑懻摲:根據(jù)絕對(duì)值符號(hào)中的數(shù)或式子的正、零、負(fù)分情況去掉絕對(duì)值。
、诹泓c(diǎn)分段討論法:適用于含一個(gè)字母的多個(gè)絕對(duì)值的情況。
、蹆蛇吰椒椒ǎ哼m用于兩邊非負(fù)的方程或不等式。
、軒缀我饬x法:適用于有明顯幾何意義的情況。
2、因式分解
根據(jù)項(xiàng)數(shù)選擇方法和按照一般步驟是順利進(jìn)行因式分解的重要技巧。因式分解的一般步驟是:
提取公因式;選擇用公式;十字相乘法;分組分解法;拆項(xiàng)添項(xiàng)法;
3、配方法。利用完全平方公式把一個(gè)式子或部分化為完全平方式就是配方法,它是數(shù)學(xué)中的重要方法和技巧。配方法的主要根據(jù)有:
4、換元法。解某些復(fù)雜的特型方程要用到“換元法”。換元法解方程的一般步驟是:設(shè)元→換元→解元→還元
5、待定系數(shù)法。待定系數(shù)法是在已知對(duì)象形式的條件下求對(duì)象的一種方法。適用于求點(diǎn)的坐標(biāo)、函數(shù)解析式、曲線方程等重要問題的解決。其解題步驟是:①設(shè)②列③解④寫
6、復(fù)雜代數(shù)等式。復(fù)雜代數(shù)等式型條件的使用技巧:左邊化零,右邊變形。
、僖蚴椒纸庑停(-----)(----)=0兩種情況為或型
、谂涑善椒叫停(----)2+(----)2=0兩種情況為且型
7、數(shù)學(xué)中兩個(gè)最偉大的解題思路
(1)求值的思路列欲求值字母的方程或方程組
(2)求取值范圍的思路列欲求范圍字母的不等式或不等式組
8、化簡(jiǎn)二次根式。基本思路是:把√m化成完全平方式。即:
9、觀察法
10、代數(shù)式求值
方法有:
(1)直接代入法
(2)化簡(jiǎn)代入法
(3)適當(dāng)變形法(和積代入法)
注意:當(dāng)求值的代數(shù)式是字母的“對(duì)稱式”時(shí),通?梢曰癁樽帜浮昂团c積”的形式,從而用“和積代入法”求值。
11、解含參方程。方程中除過未知數(shù)以外,含有的其它字母叫參數(shù),這種方程叫含參方程。解含參方程一般要用‘分類討論法’,其原則是:
(1)按照類型求解
(2)根據(jù)需要討論
(3)分類寫出結(jié)論
12、恒相等成立的有用條件
(1)ax+b=0對(duì)于任意x都成立關(guān)于x的方程ax+b=0有無(wú)數(shù)個(gè)解a=0且b=0。
(2)ax2+bx+c=0對(duì)于任意x都成立關(guān)于x的方程ax2+bx+c=0有無(wú)數(shù)解a=0、b=0、c=0。
13、恒不等成立的條件。由一元二次不等式解集為R的有關(guān)結(jié)論容易得到下列恒不等成立的條件:
14、平移規(guī)律。圖像的平移規(guī)律是研究復(fù)雜函數(shù)的'重要方法。平移規(guī)律是:
15、圖像法。討論函數(shù)性質(zhì)的重要方法是圖像法——看圖像、得性質(zhì)。定義域圖像在X軸上對(duì)應(yīng)的部分;值域圖像在Y軸上對(duì)應(yīng)的部分;單調(diào)性從左向右看,連續(xù)上升的一段在X軸上對(duì)應(yīng)的區(qū)間是增區(qū)間;從左向右看,連續(xù)下降的一段在X軸上對(duì)應(yīng)的區(qū)間是減區(qū)間。最值圖像點(diǎn)處有值,圖像最低點(diǎn)處有最小值;奇偶性關(guān)于Y軸對(duì)稱是偶函數(shù),關(guān)于原點(diǎn)對(duì)稱是奇函數(shù)
16、函數(shù)、方程、不等式間的重要關(guān)系
方程的根
▼
函數(shù)圖像與x軸交點(diǎn)橫坐標(biāo)
▼
不等式解集端點(diǎn)
17、一元二次不等式的解法。一元二次不等式可以用因式分解轉(zhuǎn)化為二元一次不等式組去解,但比較復(fù)雜;它的簡(jiǎn)便的實(shí)用解法是根據(jù)“三個(gè)二次”間的關(guān)系,利用二次函數(shù)的圖像去解。具體步驟如下:
二次化為正
▼
判別且求根
▼
畫出示意圖
▼
解集橫軸中
18、一元二次方程根的討論。一元二次方程根的符號(hào)問題或m型問題可以利用根的判別式和根與系數(shù)的關(guān)系來解決,但根的一般問題、特別是區(qū)間根的問題要根據(jù)“三個(gè)二次”間的關(guān)系,利用二次函數(shù)的圖像來解決。“圖像法”解決一元二次方程根的問題的一般思路是:
題意
▼
二次函數(shù)圖像
▼
不等式組
不等式組包括:a的符號(hào);△的情況;對(duì)稱軸的位置;區(qū)間端點(diǎn)函數(shù)值的符號(hào)。
19、基本函數(shù)在區(qū)間上的值域
我們學(xué)過的一次函數(shù)、反比例函數(shù)、二次函數(shù)等有名稱的函數(shù)是基本函數(shù);竞瘮(shù)求值域或最值有兩種情況:
(1)定義域沒有特別限制時(shí)---記憶法或結(jié)論法;
(2)定義域有特別限制時(shí)---圖像截?cái)喾,一般思路是?/p>
畫出圖像
▼
截出一斷
▼
得出結(jié)論
20、最值型應(yīng)用題的解法
應(yīng)用題中,涉及“一個(gè)變量取什么值時(shí)另一個(gè)變量取得值或最小值”的問題是最值型應(yīng)用題。解決最值型應(yīng)用題的基本思路是函數(shù)思想法,其解題步驟是:
設(shè)變量
▼
列函數(shù)
▼
求最值
▼
寫結(jié)論
21、穿線法
穿線法是解高次不等式和分式不等式的方法。其一般思路是:
首項(xiàng)化正
▼
求根標(biāo)根
▼
右上起穿
▼
奇穿偶回
注意:①高次不等式首先要用移項(xiàng)和因式分解的方法化為“左邊乘積、右邊是零”的形式。②分式不等式一般不能用兩邊都乘去分母的方法來解,要通過移項(xiàng)、通分合并、因式分解的方法化為“商零式”,用穿線法解。
高考數(shù)學(xué)五大解題思路總結(jié)
高考數(shù)學(xué)解題思想一:函數(shù)與方程思想
函數(shù)思想是指運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,通過建立函數(shù)關(guān)系(或構(gòu)造函數(shù))運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題;方程思想,是從問題的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語(yǔ)言將問題轉(zhuǎn)化為方程(方程組)或不等式模型(方程、不等式等)去解決問題。利用轉(zhuǎn)化思想我們還可進(jìn)行函數(shù)與方程間的相互轉(zhuǎn)化。
高考數(shù)學(xué)解題思想二:數(shù)形結(jié)合思想
中學(xué)數(shù)學(xué)研究的對(duì)象可分為兩大部分,一部分是數(shù),一部分是形,但數(shù)與形是有聯(lián)系的,這個(gè)聯(lián)系稱之為數(shù)形結(jié)合或形數(shù)結(jié)合。它既是尋找問題解決切入點(diǎn)的“法寶”,又是優(yōu)化解題途徑的“良方”,因此我們?cè)诮獯饠?shù)學(xué)題時(shí),能畫圖的盡量畫出圖形,以利于正確地理解題意、快速地解決問題。
高考數(shù)學(xué)解題思想三:特殊與一般的思想
用這種思想解選擇題有時(shí)特別有效,這是因?yàn)橐粋(gè)命題在普遍意義上成立時(shí),在其特殊情況下也必然成立,根據(jù)這一點(diǎn),我們可以直接確定選擇題中的正確選項(xiàng)。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣精彩。
高考數(shù)學(xué)解題思想四:極限思想解題步驟
極限思想解決問題的一般步驟為:(1)對(duì)于所求的未知量,先設(shè)法構(gòu)思一個(gè)與它有關(guān)的變量;(2)確認(rèn)這變量通過無(wú)限過程的結(jié)果就是所求的未知量;(3)構(gòu)造函數(shù)(數(shù)列)并利用極限計(jì)算法則得出結(jié)果或利用圖形的極限位置直接計(jì)算結(jié)果。
高考數(shù)學(xué)解題思想五:分類討論思想
我們常常會(huì)遇到這樣一種情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)進(jìn)行下去,這是因?yàn)楸谎芯康膶?duì)象包含了多種情況,這就需要對(duì)各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。引起分類討論的原因很多,數(shù)學(xué)概念本身具有多種情形,數(shù)學(xué)運(yùn)算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。在分類討論解題時(shí),要做到標(biāo)準(zhǔn)統(tǒng)一,不重不漏。
高中數(shù)學(xué)的解題的方法
1、首先是精選題目,做到少而精。只有解決質(zhì)量高的、有代表性的題目才能達(dá)到事半功倍的效果。然而絕大多數(shù)的同學(xué)還沒有辨別、分析題目好壞的能力,這就需要在老師的指導(dǎo)下來選擇復(fù)習(xí)的練習(xí)題,以了解高考題的形式、難度。
2、其次是分析題目。解答任何一個(gè)數(shù)學(xué)題目之前,都要先進(jìn)行分析。相對(duì)于比較難的題目,分析更顯得尤為重要。我們知道,解決數(shù)學(xué)問題實(shí)際上就是在題目的已知條件和待求結(jié)論中架起聯(lián)系的橋梁,也就是在分析題目中已知與待求之間差異的基礎(chǔ)上,化歸和消除這些差異。當(dāng)然在這個(gè)過程中也反映出對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)掌握的熟練程度、理解程度和數(shù)學(xué)方法的靈活應(yīng)用能力。例如,許多三角方面的題目都是把角、函數(shù)名、結(jié)構(gòu)形式統(tǒng)一后就可以解決問題了,而選擇怎樣的三角公式也是成敗的關(guān)鍵。
3、最后,題目總結(jié)。解題不是目的,我們是通過解題來檢驗(yàn)我們的學(xué)習(xí)效果,發(fā)現(xiàn)學(xué)習(xí)中的不足的,以便改進(jìn)和提高。因此,解題后的總結(jié)至關(guān)重要,這正是我們學(xué)習(xí)的大好機(jī)會(huì)。對(duì)于一道完成的題目,有以下幾個(gè)方面需要總結(jié):
、僭谥R(shí)方面,題目中涉及哪些概念、定理、公式等基礎(chǔ)知識(shí),在解題過程中是如何應(yīng)用這些知識(shí)的。
、谠诜椒ǚ矫妫喝绾稳胧值,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應(yīng)用。
、勰懿荒馨呀忸}過程概括、歸納成幾個(gè)步驟(比如用數(shù)學(xué)歸納法證明題目就有很明顯的三個(gè)步驟)。
、苣懿荒軞w納出題目的類型,進(jìn)而掌握這類題目的解題通法(我們反對(duì)老師把現(xiàn)成的題目類型給學(xué)生,讓學(xué)生拿著題目套類型,但我們鼓勵(lì)學(xué)生自己總結(jié)、歸納題目類型)。
高中數(shù)學(xué)解題技巧9
(1)充分利用幾何圖形
解析幾何的研究對(duì)象就是幾何圖形及其性質(zhì),所以在處理解析幾何問題時(shí),除了運(yùn)用代數(shù)方程外,充分挖掘幾何條件,并結(jié)合平面幾何知識(shí),這往往能減少計(jì)算量。
(2)充分利用韋達(dá)定理及“設(shè)而不求”的策略
我們經(jīng)常設(shè)出弦的端點(diǎn)坐標(biāo)而不求它,而是結(jié)合韋達(dá)定理求解,這種方法在有關(guān)斜率、中點(diǎn)等問題中常常用到。
(3)充分利用曲線系方程
利用曲線系方程可以避免求曲線的交點(diǎn),因此也可以減少計(jì)算。
(4)充分利用橢圓的參數(shù)方程
橢圓的參數(shù)方程涉及到正、余弦,利用正、余弦的有界性,可以解決相關(guān)的求最值的問題.這也是我們常說的三角代換法。
(5)線段長(zhǎng)的幾種簡(jiǎn)便計(jì)算方法
、俪浞掷矛F(xiàn)成結(jié)果,減少運(yùn)算過程。
、诮Y(jié)合圖形的'特殊位置關(guān)系,減少運(yùn)算
在求過圓錐曲線焦點(diǎn)的弦長(zhǎng)時(shí),由于圓錐曲線的定義都涉及焦點(diǎn),結(jié)合圖形運(yùn)用圓錐曲線的定義,可回避復(fù)雜運(yùn)算。
、劾脠A錐曲線的定義,把到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離。
高中數(shù)學(xué)解題技巧10
高一數(shù)學(xué)解題思路
高考數(shù)學(xué)解題思想一:函數(shù)與方程思想
函數(shù)思想是指運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,通過建立函數(shù)關(guān)系(或構(gòu)造函數(shù))運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題;方程思想,是從問題的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語(yǔ)言將問題轉(zhuǎn)化為方程(方程組)或不等式模型(方程、不等式等)去解決問題。利用轉(zhuǎn)化思想我們還可進(jìn)行函數(shù)與方程間的相互轉(zhuǎn)化。
高考數(shù)學(xué)解題思想二:數(shù)形結(jié)合思想
中學(xué)數(shù)學(xué)研究的對(duì)象可分為兩大部分,一部分是數(shù),一部分是形,但數(shù)與形是有聯(lián)系的,這個(gè)聯(lián)系稱之為數(shù)形結(jié)合或形數(shù)結(jié)合。它既是尋找問題解決切入點(diǎn)的“法寶”,又是優(yōu)化解題途徑的“良方”,因此我們?cè)诮獯饠?shù)學(xué)題時(shí),能畫圖的盡量畫出圖形,以利于正確地理解題意、快速地解決問題。
高考數(shù)學(xué)解題思想三:特殊與一般的思想
用這種思想解選擇題有時(shí)特別有效,這是因?yàn)橐粋(gè)命題在普遍意義上成立時(shí),在其特殊情況下也必然成立,根據(jù)這一點(diǎn),我們可以直接確定選擇題中的正確選項(xiàng)。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣精彩。
高考數(shù)學(xué)解題思想四:極限思想解題步驟
極限思想解決問題的一般步驟為:(1)對(duì)于所求的未知量,先設(shè)法構(gòu)思一個(gè)與它有關(guān)的變量;(2)確認(rèn)這變量通過無(wú)限過程的結(jié)果就是所求的未知量;(3)構(gòu)造函數(shù)(數(shù)列)并利用極限計(jì)算法則得出結(jié)果或利用圖形的極限位置直接計(jì)算結(jié)果。
高考數(shù)學(xué)解題思想五:分類討論思想
我們常常會(huì)遇到這樣一種情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)進(jìn)行下去,這是因?yàn)楸谎芯康膶?duì)象包含了多種情況,這就需要對(duì)各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。引起分類討論的原因很多,數(shù)學(xué)概念本身具有多種情形,數(shù)學(xué)運(yùn)算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。在分類討論解題時(shí),要做到標(biāo)準(zhǔn)統(tǒng)一,不重不漏。
高中數(shù)學(xué)的計(jì)算題的解題技巧
先易后難
就是先做簡(jiǎn)單題,再做綜合題,應(yīng)根據(jù)自己的實(shí)際,果斷跳過啃不動(dòng)的題目,從易到難,也要注意認(rèn)真對(duì)待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。
先熟后生
高考數(shù)學(xué)書卷發(fā)下來后,通覽全卷,可以得到許多有利的積極因素,也會(huì)看到一些不利之處,對(duì)后者,不要驚慌失措,應(yīng)想到試題偏難對(duì)所有考生也難,通過這種暗示,確保情緒穩(wěn)定,對(duì)高考數(shù)學(xué)全卷整體把握之后,就可實(shí)施先熟后生的方法,即先做那些內(nèi)容掌握比較到家、題型結(jié)構(gòu)比較熟悉、解題思路比較清晰的數(shù)學(xué)計(jì)算。這樣,在拿下數(shù)學(xué)熟題的同時(shí),可以使思維流暢、超常發(fā)揮,達(dá)到拿下中高檔題目的目的。
先同后異
先做高考數(shù)學(xué)同類型的題目,思考比較集中,知識(shí)和方法的溝通比較容易,有利于提高單位時(shí)間的效益。高考數(shù)學(xué)計(jì)算題一般要求較快地進(jìn)行“興奮灶”的轉(zhuǎn)移,而“先同后異”,可以避免“興奮灶”過急、過頻的跳躍,從而減輕大腦負(fù)擔(dān),保持有效精力,
高考數(shù)學(xué)解題過程要規(guī)范
高考數(shù)學(xué)計(jì)算題要保證既對(duì)且全,全而規(guī)范。應(yīng)為高考數(shù)學(xué)計(jì)算題表述不規(guī)范、字跡不工整又是造成高考數(shù)學(xué)試卷非智力因素失分的一大方面。
解決高考數(shù)學(xué)計(jì)算題,首先要全面調(diào)查題意,迅速接受概念,此為“面”;透過冗長(zhǎng)敘述,抓住重點(diǎn)詞句,提出重點(diǎn)數(shù)據(jù),此為“點(diǎn)”;綜合聯(lián)系,提煉關(guān)系,依靠數(shù)學(xué)方法,建立數(shù)學(xué)模型,此為“線”,如此將應(yīng)用性問題轉(zhuǎn)化為純數(shù)學(xué)問題。當(dāng)然,高考數(shù)學(xué)計(jì)算題解題過程和結(jié)果都不能離開實(shí)際背景。
高考數(shù)學(xué)考試答題技巧及方法
根據(jù)平時(shí)的數(shù)學(xué)考試所用時(shí)間規(guī)律,考前瀏覽整張卷子,合理分配數(shù)學(xué)考試題目的答題時(shí)間,對(duì)于考試時(shí)間自己有一個(gè)合理的安排,會(huì)使考生們?cè)诖痤}時(shí)更有信心,根據(jù)考試剩余時(shí)間和自己的答題狀況有計(jì)劃的進(jìn)行答題。有技巧的答題,不要盲目答題而忽略考試時(shí)間,導(dǎo)致沒有足夠的時(shí)間檢查錯(cuò)誤。
在高考數(shù)學(xué)答題時(shí),大家按照數(shù)學(xué)試卷中題目的順序開始答題,因?yàn)樵诔鼍碜訒r(shí),老師們一般都是按照知識(shí)的難易順序安排的考題,由易到難,緩解同學(xué)們考試的`壓力,使同學(xué)們漸漸的進(jìn)入考試狀態(tài)。但是當(dāng)遇到某道題一點(diǎn)思路都沒有或者完全不會(huì)的題時(shí),大家暫時(shí)跳過這一題,不要浪費(fèi)過多的時(shí)間,先答后面有把握拿到分的數(shù)學(xué)題,更后剩余的時(shí)間攻克數(shù)學(xué)難題,因?yàn)楦呖紨?shù)學(xué)考試時(shí)間有限,合理規(guī)劃時(shí)間的方法在高考中很實(shí)用。
高考數(shù)學(xué)答題時(shí)對(duì)于題目的時(shí)間利用方面,大家不要因小失大,在能保證拿得到的分?jǐn)?shù)的同時(shí),應(yīng)該去爭(zhēng)取更多的分。但是不能為了解決一道數(shù)學(xué)選擇題而白白浪費(fèi)10分鐘的答題時(shí)間。跟據(jù)高考數(shù)學(xué)題目的分值分配答題時(shí)間,分值大的題目就應(yīng)該占用更多的分值。
最后,在整張高考數(shù)學(xué)卷子發(fā)下來的時(shí)候,一定要聽從監(jiān)考老師的安排,檢查卷子的完整性,不要節(jié)省一兩分鐘的時(shí)間,如果有什么問題及時(shí)和老師反映,因?yàn)樵诟呖紨?shù)學(xué)考試時(shí),思維的完整性和連貫性很重要,如果中途發(fā)現(xiàn)出現(xiàn)了問題,既影響時(shí)間又會(huì)打斷答題的連貫思路,白白浪費(fèi)時(shí)間,高考是一場(chǎng)嚴(yán)肅的考試,所以考試要掌握一些高考應(yīng)試技巧及方法。
高中數(shù)學(xué)解題技巧11
高中數(shù)學(xué)的計(jì)算題的解題技巧
先易后難
就是先做簡(jiǎn)單題,再做綜合題,應(yīng)根據(jù)自己的實(shí)際,果斷跳過啃不動(dòng)的題目,從易到難,也要注意認(rèn)真對(duì)待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。
先熟后生
高考數(shù)學(xué)書卷發(fā)下來后,通覽全卷,可以得到許多有利的積極因素,也會(huì)看到一些不利之處,對(duì)后者,不要驚慌失措,應(yīng)想到試題偏難對(duì)所有考生也難,通過這種暗示,確保情緒穩(wěn)定,對(duì)高考數(shù)學(xué)全卷整體把握之后,就可實(shí)施先熟后生的方法,即先做那些內(nèi)容掌握比較到家、題型結(jié)構(gòu)比較熟悉、解題思路比較清晰的數(shù)學(xué)計(jì)算。這樣,在拿下數(shù)學(xué)熟題的同時(shí),可以使思維流暢、超常發(fā)揮,達(dá)到拿下中高檔題目的目的。
先同后異
先做高考數(shù)學(xué)同類型的題目,思考比較集中,知識(shí)和方法的溝通比較容易,有利于提高單位時(shí)間的效益。高考數(shù)學(xué)計(jì)算題一般要求較快地進(jìn)行“興奮灶”的轉(zhuǎn)移,而“先同后異”,可以避免“興奮灶”過急、過頻的跳躍,從而減輕大腦負(fù)擔(dān),保持有效精力,
高考數(shù)學(xué)解題過程要規(guī)范
高考數(shù)學(xué)計(jì)算題要保證既對(duì)且全,全而規(guī)范。應(yīng)為高考數(shù)學(xué)計(jì)算題表述不規(guī)范、字跡不工整又是造成高考數(shù)學(xué)試卷非智力因素失分的一大方面。
解決高考數(shù)學(xué)計(jì)算題,首先要全面調(diào)查題意,迅速接受概念,此為“面”;透過冗長(zhǎng)敘述,抓住重點(diǎn)詞句,提出重點(diǎn)數(shù)據(jù),此為“點(diǎn)”;綜合聯(lián)系,提煉關(guān)系,依靠數(shù)學(xué)方法,建立數(shù)學(xué)模型,此為“線”,如此將應(yīng)用性問題轉(zhuǎn)化為純數(shù)學(xué)問題。當(dāng)然,高考數(shù)學(xué)計(jì)算題解題過程和結(jié)果都不能離開實(shí)際背景。
高中數(shù)學(xué)的選擇題的做題方法
代入法
高考數(shù)學(xué)的選擇題中大部分是數(shù)值類型的,為了節(jié)省時(shí)間,可以逆向去推算,把答案去帶入到題中去,逐一驗(yàn)證總會(huì)找到答案的,這就是代入法,是快速且有效的一種高考數(shù)學(xué)選擇題解題技巧。應(yīng)用代入法的前提是正常解題時(shí)間比代入法時(shí)間長(zhǎng)。
數(shù)形結(jié)合
高考數(shù)學(xué)題最常用的就是數(shù)形結(jié)合法,由題目條件,作出符合題意的圖形或圖象,借助圖形或圖象的直觀性,經(jīng)過簡(jiǎn)單的推理或計(jì)算,從而得出答案的方法。數(shù)形結(jié)合的好處就是直觀,甚至可以用量角尺直接量出結(jié)果來,也是數(shù)學(xué)選擇題最直觀的解題技巧之一。
估值選擇
有些高考數(shù)學(xué)選擇題,由于題目條件限制,沒有直接的條件進(jìn)行精準(zhǔn)的運(yùn)算和判斷,此時(shí)只能借助估算,通過觀察、分析、比較、推算,從面得出正確判斷的方法,這種方法的優(yōu)點(diǎn)就是快。
蒙
對(duì)于自己實(shí)在不會(huì)的高考數(shù)學(xué)選擇題,最常用的一招就是蒙了,但是蒙也是有技巧的,在蒙的時(shí)候如果是數(shù)值類型的,大多數(shù)要選擇“0”或者“1”,或者選擇數(shù)值最小的,這是高考數(shù)學(xué)選擇題比較常見的答案,選擇蒙是為了更好的節(jié)約時(shí)間用在下面的題目里面。
檢驗(yàn)法
對(duì)于具有一般性的數(shù)學(xué)選擇題問題,我們?cè)诮忸}過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達(dá)到去偽存真的目的。
高考數(shù)學(xué)考試答題技巧及方法
根據(jù)平時(shí)的數(shù)學(xué)考試所用時(shí)間規(guī)律,考前瀏覽整張卷子,合理分配數(shù)學(xué)考試題目的答題時(shí)間,對(duì)于考試時(shí)間自己有一個(gè)合理的安排,會(huì)使考生們?cè)诖痤}時(shí)更有信心,根據(jù)考試剩余時(shí)間和自己的答題狀況有計(jì)劃的進(jìn)行答題。有技巧的答題,不要盲目答題而忽略考試時(shí)間,導(dǎo)致沒有足夠的時(shí)間檢查錯(cuò)誤。
在高考數(shù)學(xué)答題時(shí),大家按照數(shù)學(xué)試卷中題目的順序開始答題,因?yàn)樵诔鼍碜訒r(shí),老師們一般都是按照知識(shí)的難易順序安排的考題,由易到難,緩解同學(xué)們考試的壓力,使同學(xué)們漸漸的進(jìn)入考試狀態(tài)。但是當(dāng)遇到某道題一點(diǎn)思路都沒有或者完全不會(huì)的題時(shí),大家暫時(shí)跳過這一題,不要浪費(fèi)過多的時(shí)間,先答后面有把握拿到分的數(shù)學(xué)題,更后剩余的時(shí)間攻克數(shù)學(xué)難題,因?yàn)楦呖紨?shù)學(xué)考試時(shí)間有限,合理規(guī)劃時(shí)間的方法在高考中很實(shí)用。
高考數(shù)學(xué)答題時(shí)對(duì)于題目的時(shí)間利用方面,大家不要因小失大,在能保證拿得到的分?jǐn)?shù)的同時(shí),應(yīng)該去爭(zhēng)取更多的分。但是不能為了解決一道數(shù)學(xué)選擇題而白白浪費(fèi)10分鐘的答題時(shí)間。跟據(jù)高考數(shù)學(xué)題目的分值分配答題時(shí)間,分值大的題目就應(yīng)該占用更多的分值。
最后,在整張高考數(shù)學(xué)卷子發(fā)下來的時(shí)候,一定要聽從監(jiān)考老師的安排,檢查卷子的完整性,不要節(jié)省一兩分鐘的時(shí)間,如果有什么問題及時(shí)和老師反映,因?yàn)樵诟呖紨?shù)學(xué)考試時(shí),思維的完整性和連貫性很重要,如果中途發(fā)現(xiàn)出現(xiàn)了問題,既影響時(shí)間又會(huì)打斷答題的連貫思路,白白浪費(fèi)時(shí)間,高考是一場(chǎng)嚴(yán)肅的考試,所以考試要掌握一些高考應(yīng)試技巧及方法。
高考數(shù)學(xué)的7大學(xué)習(xí)方法
提高高中數(shù)學(xué)學(xué)習(xí)成績(jī)的關(guān)鍵:
初中學(xué)生學(xué)數(shù)學(xué),靠的是一個(gè)字:練!高中學(xué)生學(xué)數(shù)學(xué),靠的也是一個(gè)字:悟!
1.先看筆記后做作業(yè)
有的高一學(xué)生感到,老師講過的,自己已經(jīng)聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學(xué)生對(duì)教師所講的內(nèi)容的理解,還沒能達(dá)到教師所要求的層次。
因此,每天在做作業(yè)之前,一定要把課本的有關(guān)內(nèi)容和當(dāng)天的課堂筆記先看一看。能否堅(jiān)持如此,常常是好學(xué)生與差學(xué)生的區(qū)別。尤其練習(xí)題不太配套時(shí),作業(yè)中往往沒有老師剛剛講過的題目類型,因此不能對(duì)比消化。如果自己又不注意對(duì)此落實(shí),天長(zhǎng)日久,就會(huì)造成極大損失。
2.做題之后加強(qiáng)反思
學(xué)生一定要明確,現(xiàn)在正做著的題,一定不是考試的題目。而是要運(yùn)用現(xiàn)在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思,總結(jié)一下自己的收獲。
要總結(jié)出:這是一道什么內(nèi)容的題,用的是什么方法。做到知識(shí)成片,問題成串。日久天長(zhǎng),構(gòu)建起一個(gè)內(nèi)容與方法的.科學(xué)的網(wǎng)絡(luò)系統(tǒng)。俗話說:“有錢難買回頭看”。做完作業(yè),回頭細(xì)看,價(jià)值極大。這個(gè)回頭看,是學(xué)習(xí)過程中很重要的一個(gè)環(huán)節(jié)。
要看看自己做對(duì)了沒有;還有什么別的解法;題目處于知識(shí)體系中的什么位置;解法的本質(zhì)什么;題目中的已知與所求能否互換,能否進(jìn)行適當(dāng)增刪改進(jìn)。有了以上五個(gè)回頭看,學(xué)生的解題能力才能與日俱增。投入的時(shí)間雖少,效果卻很大?煞Q為事半功倍。
3.主動(dòng)復(fù)習(xí)和總結(jié)
進(jìn)行章節(jié)總結(jié)是非常重要的。初中時(shí)是教師替學(xué)生做總結(jié),做得細(xì)致,深刻,完整。高中是自己給自己做總結(jié),老師不但不給做,而且是講到哪,考到哪,不留復(fù)習(xí)時(shí)間,也沒有明確指出做總結(jié)的時(shí)間。
怎樣做章節(jié)總結(jié)呢?
①要把課本,筆記,區(qū)單元測(cè)驗(yàn)試卷,校周末測(cè)驗(yàn)試卷,都從頭到尾閱讀一遍。要一邊讀,一邊做標(biāo)記,標(biāo)明哪些是過一會(huì)兒要摘錄的。要養(yǎng)成一個(gè)習(xí)慣,在讀材料時(shí)隨時(shí)做標(biāo)記,告訴自己下次再讀這份材料時(shí)的閱讀重點(diǎn)。長(zhǎng)期保持這個(gè)習(xí)慣,學(xué)生就能由博反約,把厚書讀成薄書。積累起自己的獨(dú)特的,也就是最適合自己進(jìn)行復(fù)習(xí)的材料。
、诎驯菊鹿(jié)的內(nèi)容一分為二,一部分是基礎(chǔ)知識(shí),一部分是典型問題。要把對(duì)技能的要求,列進(jìn)這兩部分中的一部分,不要遺漏。
、墼诨A(chǔ)知識(shí)的疏理中,要羅列出所學(xué)的所有定義,定理,法則,公式。要做到三會(huì)兩用。即:會(huì)文字表述,會(huì)圖象符號(hào)表述,會(huì)推導(dǎo)證明。同時(shí)能從正反兩方面對(duì)其進(jìn)行應(yīng)用。
、馨阎匾,典型的各種問題進(jìn)行編隊(duì)。要盡量地把他們分類,找出它們之間的位置關(guān)系,總結(jié)出問題間的來龍去脈。就象我們欣賞一場(chǎng)團(tuán)體操表演,我們不能只盯住一個(gè)人看,看他從哪跑到哪,都做了些什么動(dòng)作。我們一定要居高臨下地看,看全場(chǎng)的結(jié)構(gòu)和變化。不然的話,陷入題海,徒勞無(wú)益。這一點(diǎn),是提高高中數(shù)學(xué)水平的關(guān)鍵所在。
⑤總結(jié)那些尚未歸類的問題,作為備注進(jìn)行補(bǔ)充說明。
、拚乙环葸m當(dāng)?shù)臏y(cè)驗(yàn)試卷,一定要計(jì)時(shí)測(cè)驗(yàn)。然后再對(duì)照答案,查漏補(bǔ)缺。
現(xiàn)在高中生的你們,無(wú)疑是要面對(duì)高考的,能否能在多變的情況下脫穎而出,就看你現(xiàn)在是什么樣的態(tài)度來面對(duì)了,所以,高一高二的學(xué)弟學(xué)妹們,努力學(xué)習(xí)才是關(guān)鍵。
4.重視改錯(cuò),錯(cuò)不重犯
一定要重視改錯(cuò)工作,做到錯(cuò)不再犯。初中數(shù)學(xué)教學(xué)采取的方法是,把各種可能的錯(cuò)誤,都告訴學(xué)生注意,只要有一人出過錯(cuò),就要提出來,讓全體同學(xué)引為借鑒。這叫“一人有病,全體吃藥!
高中數(shù)學(xué)課沒有那么多時(shí)間,除了少數(shù)幾種典型錯(cuò),其它錯(cuò)誤,不能一一顧及。只能“誰(shuí)有病,誰(shuí)吃藥”。如果學(xué)生“有病”,而自己卻又忘記吃藥,那么沒人會(huì)一再地提醒他應(yīng)該注意些什么。如果能及時(shí)改錯(cuò),那么錯(cuò)誤就可能轉(zhuǎn)變?yōu)樨?cái)富,成為不再犯這種錯(cuò)誤的預(yù)防針。但是,如果不能及時(shí)改錯(cuò),這個(gè)錯(cuò)誤就將形成一處隱患,一處“地雷”,遲早要惹禍。
有的學(xué)生認(rèn)為,自己考試成績(jī)上不去,是因?yàn)樽约鹤鲱}太粗心。其實(shí),原因并非如此。打一個(gè)比方。比如說,學(xué)習(xí)開汽車。右腳下面,往左踩,是踩剎車。往右踩,是踩油門。其機(jī)械原理,設(shè)計(jì)原因,操作規(guī)程都可以講的清清楚楚。
5.積累資料隨時(shí)整理
要注意積累復(fù)習(xí)資料。把課堂筆記,練習(xí),區(qū)單元測(cè)驗(yàn),各種試卷,都分門別類按時(shí)間順序整理好。每讀一次,就在上面標(biāo)記出自己下次閱讀時(shí)的重點(diǎn)內(nèi)容。這樣,復(fù)習(xí)資料才能越讀越精,一目了然。
6.精挑慎選課外讀物
初中學(xué)生學(xué)數(shù)學(xué),如果不注意看課外讀物,一般地說,不會(huì)有什么影響。高中則大不相同。高中數(shù)學(xué)考的是學(xué)生解決新題的能力。
作為一名高中生,如果只是圍著自己的老師轉(zhuǎn),不論老師的水平有多高,必然都會(huì)存在著很大的局限性。因此,要想學(xué)好數(shù)學(xué),必須打開一扇門,看看外面的世界。
當(dāng)然,也不要自立門戶,另起爐灶。一旦脫離校內(nèi)教學(xué)和自己的老師的教學(xué)體系,也必將事倍功半。
7.配合老師主動(dòng)學(xué)習(xí)
高一新生的學(xué)習(xí)主動(dòng)性太差是一個(gè)普遍存在的問題。小學(xué)生,常常是完成了作業(yè)就可以盡情地歡樂。初中生基本上也是如此,聽話的孩子就能學(xué)習(xí)好。
高中則不然,作業(yè)雖多,但是只知做作業(yè)就絕對(duì)不夠;老師的話也不少,但是誰(shuí)該干些什么了,老師并不一一具體指明。因此,高中新生必須提高自己學(xué)習(xí)的主動(dòng)性。準(zhǔn)備向?qū)淼拇髮W(xué)生的學(xué)習(xí)方法過渡。
高中數(shù)學(xué)解題技巧12
一、熟悉化策略
所謂熟悉化策略,就是當(dāng)我們面臨的是一道以前沒有接觸過的陌生題目時(shí),要設(shè)法把它化為曾經(jīng)解過的或比較熟悉的題目,以便充分利用已有的知識(shí)、經(jīng)驗(yàn)或解題模式,順利地解出原題。
一般說來,對(duì)于題目的熟悉程度,取決于對(duì)題目自身結(jié)構(gòu)的認(rèn)識(shí)和理解。從結(jié)構(gòu)上來分析,任何一道解答題,都包含條件和結(jié)論(或問題)兩個(gè)方面。因此,要把陌生題轉(zhuǎn)化為熟悉題,可以在變換題目的條件、結(jié)論(或問題)以及它們的聯(lián)系方式上多下功夫。
二、簡(jiǎn)單化策略
所謂簡(jiǎn)單化策略,就是當(dāng)我們面臨的是一道結(jié)構(gòu)復(fù)雜、難以入手的題目時(shí),要設(shè)法把轉(zhuǎn)化為一道或幾道比較簡(jiǎn)單、易于解答的新題,以便通過對(duì)新題的考察,啟迪解題思路,以簡(jiǎn)馭繁,解出原題。
簡(jiǎn)單化是熟悉化的補(bǔ)充和發(fā)揮。一般說來,我們對(duì)于簡(jiǎn)單問題往往比較熟悉或容易熟悉。
因此,在實(shí)際解題時(shí),這兩種策略常常是結(jié)合在一起進(jìn)行的,只是著眼點(diǎn)有所不同而已。
解題中,實(shí)施簡(jiǎn)單化策略的途徑是多方面的,常用的有:尋求中間環(huán)節(jié),分類考察討論,簡(jiǎn)化已知條件,恰當(dāng)分解結(jié)論等。
三、直觀化策略:
所謂直觀化策略,就是當(dāng)我們面臨的是一道內(nèi)容抽象,不易捉摸的題目時(shí),要設(shè)法把它轉(zhuǎn)化為形象鮮明、直觀具體的問題,以便憑借事物的形象把握題中所及的各對(duì)象之間的聯(lián)系,找到原題的解題思路。
四、特殊化策略
所謂特殊化策略,就是當(dāng)我們面臨的是一道難以入手的一般性題目時(shí),要注意從一般退到特殊,先考察包含在一般情形里的`某些比較簡(jiǎn)單的特殊問題,以便從特殊問題的研究中,拓寬解題思路,發(fā)現(xiàn)解答原題的方向或途徑。
五、一般化策略
所謂一般化策略,就是當(dāng)我們面臨的是一個(gè)計(jì)算比較復(fù)雜或內(nèi)在聯(lián)系不甚明顯的特殊問題時(shí),要設(shè)法把特殊問題一般化,找出一個(gè)能夠揭示事物本質(zhì)屬性的一般情形的方法、技巧或結(jié)果,順利解出原題。
高中數(shù)學(xué)解題技巧13
高考數(shù)學(xué)解析幾何解題路徑
我們先來分析一下解析幾何高考的命題趨勢(shì):
(1)題型穩(wěn)定:近幾年來高考解析幾何試題一直穩(wěn)定在三(或二)個(gè)選擇題,一個(gè)填空題,一個(gè)解答題上,分值約為30分左右,占總分值的20%左右。
(2)整體平衡,重點(diǎn)突出:《考試說明》中解析幾何部分原有33個(gè)知識(shí)點(diǎn),現(xiàn)縮為19個(gè)知識(shí)點(diǎn),一般考查的知識(shí)點(diǎn)超過50%,其中對(duì)直線、圓、圓錐曲線知識(shí)的考查幾乎沒有遺漏,通過對(duì)知識(shí)的重新組合,考查時(shí)既注意全面,更注意突出重點(diǎn),對(duì)支撐數(shù)學(xué)科知識(shí)體系的主干知識(shí),考查時(shí)保證較高的比例并保持必要深度。近四年新教材高考對(duì)解析幾何內(nèi)容的考查主要集中在如下幾個(gè)類型:
、偾笄方程(類型確定、類型未定);
、谥本與圓錐曲線的交點(diǎn)問題(含切線問題);
、叟c曲線有關(guān)的最(極)值問題;
、芘c曲線有關(guān)的幾何證明(對(duì)稱性或求對(duì)稱曲線、平行、垂直);
⑤探求曲線方程中幾何量及參數(shù)間的數(shù)量特征;
(3)能力立意,滲透數(shù)學(xué)思想:如20xx年第(22)題,以梯形為背景,將雙曲線的概念、性質(zhì)與坐標(biāo)法、定比分點(diǎn)的坐標(biāo)公式、離心率等知識(shí)融為一體,有很強(qiáng)的綜合性。一些雖是常見的基本題型,但如果借助于數(shù)形結(jié)合的思想,就能快速準(zhǔn)確的得到答案。
(4)題型新穎,位置不定:近幾年解析幾何試題的難度有所下降,選擇題、填空題均屬易中等題,且解答題未必處于壓軸題的位置,計(jì)算量減少,思考量增大。加大與相關(guān)知識(shí)的聯(lián)系(如向量、函數(shù)、方程、不等式等),凸現(xiàn)教材中研究性學(xué)習(xí)的能力要求。加大探索性題型的分量。
在近年高考中,對(duì)直線與圓內(nèi)容的考查主要分兩部分:
(1)以選擇題題型考查本章的基本概念和性質(zhì),此類題一般難度不大,但每年必考,考查內(nèi)容主要有以下幾類:
、倥c本章概念(傾斜角、斜率、夾角、距離、平行與垂直、線性規(guī)劃等)有關(guān)的問題;
、趯(duì)稱問題(包括關(guān)于點(diǎn)對(duì)稱,關(guān)于直線對(duì)稱)要熟記解法;
、叟c圓的位置有關(guān)的問題,其常規(guī)方法是研究圓心到直線的距離.
以及其他“標(biāo)準(zhǔn)件”類型的基礎(chǔ)題。
(2)以解答題考查直線與圓錐曲線的位置關(guān)系,此類題綜合性比較強(qiáng),難度也較大。
預(yù)計(jì)在今后一、二年內(nèi),高考對(duì)本章的考查會(huì)保持相對(duì)穩(wěn)定,即在題型、題量、難度、重點(diǎn)考查內(nèi)容等方面不會(huì)有太大的變化。
相比較而言,圓錐曲線內(nèi)容是平面解析幾何的核心內(nèi)容,因而是高考重點(diǎn)考查的內(nèi)容,在每年的高考試卷中一般有2~3道客觀題和一道解答題,難度上易、中、難三檔題都有,主要考查的內(nèi)容是圓錐曲線的概念和性質(zhì),直線與圓錐的位置關(guān)系等,從近十年高考試題看大致有以下三類:
(1)考查圓錐曲線的概念與性質(zhì);
(2)求曲線方程和求軌跡;
(3)關(guān)于直線與圓及圓錐曲線的位置關(guān)系的問題.
選擇題主要以橢圓、雙曲線為考查對(duì)象,填空題以拋物線為考查對(duì)象,解答題以考查直線與圓錐曲線的位置關(guān)系為主,對(duì)于求曲線方程和求軌跡的題,高考一般不給出圖形,以考查學(xué)生的想象能力、分析問題的能力,從而體現(xiàn)解析幾何的基本思想和方法,圓一般不單獨(dú)考查,總是與直線、圓錐曲線相結(jié)合的綜合型考題,等軸雙曲線基本不出題,坐標(biāo)軸平移或平移化簡(jiǎn)方程一般不出解答題,大多是以選擇題形式出現(xiàn).解析幾何的解答題一般為難題,近兩年都考查了解析幾何的基本方法——坐標(biāo)法以及二次曲線性質(zhì)的運(yùn)用的命題趨向要引起我們的重視.
請(qǐng)同學(xué)們注意圓錐曲線的定義在解題中的應(yīng)用,注意解析幾何所研究的問題背景平面幾何的一些性質(zhì).從近兩年的試題看,解析幾何題有前移的趨勢(shì),這就要求考生在基本概念、基本方法、基本技能上多下功夫.參數(shù)方程是研究曲線的.輔助工具.高考試題中,涉及較多的是參數(shù)方程與普通方程互化及等價(jià)變換的數(shù)學(xué)思想方法。
高二數(shù)學(xué)必修3知識(shí)點(diǎn)整理:幾何概型
幾何概型
【考點(diǎn)分析】
在段考中,多以選擇題和填空題的形式考查幾何概型的計(jì)算公式等知識(shí)點(diǎn),也會(huì)以解答題的形式考查。在高考中有時(shí)會(huì)以選擇題和填空題的形式考查幾何概型的計(jì)算公式,有時(shí)也不考,一般屬于中檔題。
【知識(shí)點(diǎn)誤區(qū)】
求幾何概型時(shí),注意首先尋找到一些重要的臨界位置,再解答。一般與線性規(guī)劃知識(shí)有聯(lián)系。
【同步練習(xí)題】
1.已知函數(shù)f(x)=log2x,若在[1,8]上任取一個(gè)實(shí)數(shù)x0,則不等式1≤f(x0)≤2成立的概率是.
解析:區(qū)間[1,8]的長(zhǎng)度為7,滿足不等式1≤f(x0)≤2即不等式1≤log2x0≤2,解答2≤x0≤4,對(duì)應(yīng)區(qū)間[2,4]長(zhǎng)度為2,由幾何概型公式可得使不等式1≤f(x0)≤2成立的概率是27.
點(diǎn)評(píng):本題考查了幾何概型問題,其與線段上的區(qū)間長(zhǎng)度及函數(shù)被不等式的解法問題相交匯,使此類問題具有一定的靈活性,關(guān)鍵是明確集合測(cè)度,本題利用區(qū)間長(zhǎng)度的比求幾何概型的概率.
2.在區(qū)間[-3,5]上隨機(jī)取一個(gè)數(shù)a,則使函數(shù)f(x)=x2+2ax+4無(wú)零點(diǎn)的概率是.
解析:由已知區(qū)間[-3,5]長(zhǎng)度為8,使函數(shù)f(x)=x2+2ax+4無(wú)零點(diǎn)即判別式Δ=4a2-16<0,解得-2點(diǎn)評(píng):本題屬于幾何概型,只要求出區(qū)間長(zhǎng)度以及滿足條件的區(qū)間長(zhǎng)度,由幾何概型公式解答.
高三數(shù)學(xué)立體幾何知識(shí)點(diǎn)復(fù)習(xí)
學(xué)好立幾并不難,空間想象是關(guān)鍵。點(diǎn)線面體是一家,共筑立幾百花園。
點(diǎn)在線面用屬于,線在面內(nèi)用包含。四個(gè)公理是基礎(chǔ),推證演算巧周旋。
空間之中兩條線,平行相交和異面。線線平行同方向,等角定理進(jìn)空間。
判定線和面平行,面中找條平行線。已知線與面平行,過線作面找交線。
要證面和面平行,面中找出兩交線,線面平行若成立,面面平行不用看。
已知面與面平行,線面平行是必然;若與三面都相交,則得兩條平行線。
判定線和面垂直,線垂面中兩交線。兩線垂直同一面,相互平行共伸展。
兩面垂直同一線,一面平行另一面。要讓面與面垂直,面過另面一垂線。
面面垂直成直角,線面垂直記心間。
一面四線定射影,找出斜射一垂線,線線垂直得巧證,三垂定理風(fēng)采顯。
空間距離和夾角,平行轉(zhuǎn)化在平面,一找二證三構(gòu)造,三角形中求答案。
引進(jìn)向量新工具,計(jì)算證明開新篇?臻g建系求坐標(biāo),向量運(yùn)算更簡(jiǎn)便。
知識(shí)創(chuàng)新無(wú)止境,學(xué)問思辨勇攀登。
多面體和旋轉(zhuǎn)體,上述內(nèi)容的延續(xù)。扮演載體新角色,位置關(guān)系全在里。
算面積來求體積,基本公式是依據(jù)。規(guī)則形體用公式,非規(guī)形體靠化歸。
展開分割好辦法,化難為易新天地。
高中數(shù)學(xué)解題技巧14
1高中數(shù)學(xué)解題技巧歸納與總結(jié)
、俦忱}:首先背例題的主要原因就是能夠在考場(chǎng)上遺忘了一些重要公式的時(shí)候,可以用題來套公式,這樣可以更好的幫助你理解試題,更好的解決試題中遇到的問題。
②課前預(yù)習(xí):很多人可能覺著課前預(yù)習(xí)對(duì)于巧妙解題并沒有什么影響,實(shí)則不然,課前預(yù)習(xí)主要是讓你了解課內(nèi)出現(xiàn)的一些知識(shí),自然就會(huì)有更多的方法來解答自己不會(huì)的題目啦。
、郾郴A(chǔ):基礎(chǔ)知識(shí)永遠(yuǎn)是解題過程中遇到的最多的,所以背誦基礎(chǔ)知識(shí)能夠幫助你更好的理解試題。
、芫C合理解逐一突破:簡(jiǎn)單來講就是由簡(jiǎn)到難,很多試題都是用簡(jiǎn)單的公式來變換,這也要求學(xué)生們能夠舉一反三,這樣才能更好的'解決問題。
2高中數(shù)學(xué)解題技巧主要有以下幾種方法
1、配方法:把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。
2、因式分解法:因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。
3、換元法:所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋(gè)部分或改造原來的式子,使它簡(jiǎn)化,使問題易于解決。
4、判別式法與韋達(dá)定理:一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac。韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱函數(shù)。
高中數(shù)學(xué)解題技巧15
高中數(shù)學(xué)選擇題解題技巧
首先,要認(rèn)真審題。做題時(shí)忌諱的就是不認(rèn)真讀題,埋頭苦算,結(jié)果不但浪費(fèi)了大量的時(shí)間,甚至有時(shí)候還選錯(cuò),結(jié)果事倍功半。所以一定要讀透題,由題迅速聯(lián)想到涉及到的概念,公式,定理以及知識(shí)點(diǎn)中要注意的問題。發(fā)掘題目中的隱含條件,要去偽存真,領(lǐng)會(huì)題目的真正含義。
其次,要注意解題方法。做題時(shí)除了按照解答題的思路直接來求以外,還要注意一些特殊的方法,比如說特殊值法,代入法,排除法,驗(yàn)證法,數(shù)形結(jié)合法等等。
直接法。有些選擇題本身就是由一些填空題,判斷題,解答題改編而來的,因此往往可采用直接法,直接由概念、公式、定理及性質(zhì)出發(fā),按照做解答題的方法一步步來求。我們?cè)谧鼋獯痤}時(shí)大部分都是采用這種方法。排除法。選擇題因其答案是四選一,必然只有一個(gè)正確答案,那么我們就可以采用排除法,從四個(gè)選項(xiàng)中排除掉易于判斷是錯(cuò)誤的答案,那么留下的一個(gè)自然就是正確的答案。
驗(yàn)證法。通過對(duì)選擇支的觀察,分析,將各選擇支逐個(gè)代入題干中,進(jìn)行驗(yàn)證、或適當(dāng)選取特殊值進(jìn)行檢驗(yàn)、或采取其他驗(yàn)證手段,以判斷選擇支正誤的方法。特殊值法。有些選擇題用常規(guī)方法求解比較困難,若根據(jù)答案中所提供的信息,選擇某些特殊情況進(jìn)行分析,或選擇某些特殊值進(jìn)行計(jì)算,或?qū)⒆帜竻?shù)換成具體數(shù)值代入,把一般形式變?yōu)樘厥庑问剑龠M(jìn)行判斷往往十分簡(jiǎn)單。
數(shù)形結(jié)合法。也叫圖象法。有些選擇題用代數(shù)方法解計(jì)算較繁,但若能根據(jù)題意,做出草圖,然后根據(jù)圖形的形狀、位置、性質(zhì)、綜合特征等,由圖形的直觀性得出選擇題的答案。選擇題的解題方法還有很多,但做題時(shí)也不要拘泥于固定思維,有時(shí)候一道題可采用多種特殊方法綜合運(yùn)用。還有,在做選擇題的過程中,遇到關(guān)鍵性的詞語(yǔ)可用筆做個(gè)記號(hào),以引起自己的注意,比如說至少,沒有一個(gè),至多一個(gè)等等。第一遍沒做的題也要做個(gè)記號(hào),但要注意與其它記號(hào)區(qū)分開來,這樣不容易遺漏。最后,做完題后要仔細(xì)檢查,有沒有遺漏的,有沒有涂錯(cuò)的,全面認(rèn)真的再做一遍,可用不同的方法做一下,驗(yàn)證答案。另外遇到真不會(huì)做的,也不要空著不做,一定要選個(gè)答案。
高中數(shù)學(xué)快速解題萬(wàn)能法
1、熟悉基本的解題步驟和解題方法
解題的過程,是一個(gè)思維的過程。對(duì)一些基本的、常見的問題,前人已經(jīng)總結(jié)出了一些基本的'解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習(xí)題的答案。
2、審題要認(rèn)真仔細(xì)
對(duì)于一道具體的習(xí)題,解題時(shí)最重要的環(huán)節(jié)是審題。審題的第一步是讀題,這是獲取信息量和思考的'過程。讀題要慢,一邊讀,一邊想,應(yīng)特別注意每一句話的內(nèi)在涵義,并從中找出隱含條件。
有些學(xué)生沒有養(yǎng)成讀題、思考的習(xí)慣,心里著急,匆匆一看,就開始解題,結(jié)果常常是漏掉了一些信息,花了很長(zhǎng)時(shí)間解不出來,還找不到原因,想快卻慢了。所以,在實(shí)際解題時(shí),應(yīng)特別注意,審題要認(rèn)真、仔細(xì)。
3、創(chuàng)立學(xué)科功能的方法
如公理化方法、模型化方法、結(jié)構(gòu)化方法,以及集合論方法、極限方法、坐標(biāo)方法、向量方法等。在具體的解題中,具有統(tǒng)帥全局的作用。
4、一般思維規(guī)律的方法
如觀察、試驗(yàn)、比較、分類、猜想、類比、聯(lián)想、歸納、演繹、分析、綜合等。在具體的解題中,有通性通法、適應(yīng)面廣的特征,常用于思路的發(fā)現(xiàn)與探求。
5、論證演算的方法
這又可以依其適應(yīng)面分為兩個(gè)層次:第一層次是適應(yīng)面較寬的求解方法,如消元法、換元法、降次法、待定系數(shù)法、反證法、同一法、數(shù)學(xué)歸納法(即遞推法)、坐標(biāo)法、三角法、數(shù)形結(jié)合法、構(gòu)造法、配方法等等;第二層次是適應(yīng)面較窄的求解技巧,如因式分解法以及因式分解里的“裂項(xiàng)法”、函數(shù)作圖的“描點(diǎn)法”、以及三角函數(shù)作圖的“五點(diǎn)法”、幾何證明里的“截長(zhǎng)補(bǔ)短法”、“補(bǔ)形法”、數(shù)列求和里的“裂項(xiàng)相消法”等。
6、“慢”一“快”,相得益彰
有些考生只知道考場(chǎng)上一味地要快,結(jié)果題意未清,條件未全,便急于解答,豈不知欲速則不達(dá),結(jié)果是思維受阻或進(jìn)入死胡同,導(dǎo)致失敗。應(yīng)該說,審題要慢,解答要快。審題是整個(gè)解題過程的“基礎(chǔ)工程”,題目本身是“怎樣解題”的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認(rèn)識(shí),為形成解題思路提供全面可靠的依據(jù)。而思路一旦形成,則可盡量快速完成。
7、提高解選擇題的速度、填空題的準(zhǔn)確
數(shù)學(xué)選擇題是知識(shí)靈活運(yùn)用,解題要求是只要結(jié)果、不要過程。因此,逆代法、估算法、特例法、排除法、數(shù)形結(jié)合法……盡顯威力。12個(gè)選擇題,若能把握得好,容易的一分鐘一題,難題也不超過五分鐘。由于選擇題的特殊性,由此提出解選擇題要求“快、準(zhǔn)、巧”,忌諱“小題大做”。填空題也是只要結(jié)果、不要過程,因此要力求“完整、嚴(yán)密”。
高中數(shù)學(xué)考場(chǎng)答題原則
(1)先易后難一般來說,選擇題的最后一題,填空題的最后一題,解答題的后兩題是難題.當(dāng)然,對(duì)于不同的學(xué)生來說,有的簡(jiǎn)單題目也可能是自己的難題,所以題目的難易只能由自己確定.一般來說,小題思考1分鐘還沒有建立解答方案,則應(yīng)采取“暫時(shí)性放棄”,把自己可做的題目做完再回頭解答.
(2)小題有法選擇題有其獨(dú)特的解答方法,首先重點(diǎn)把握選擇支也是已知條件,利用選擇支之間的關(guān)系可能使你的答案更準(zhǔn)確.切記不要“小題大做”.另外,答完選擇題后即可填涂答題卡,切記最后不要留空,實(shí)在不會(huì)的,要采用猜測(cè)、憑第一感覺(四個(gè)選項(xiàng)中正確答案的數(shù)目不會(huì)相差很大,選項(xiàng)C出現(xiàn)的機(jī)率較大,難題的答案常放在A、B兩個(gè)選項(xiàng)中)等方法選定答案.
(3)規(guī)范答題
(4)最大得分
(5)答題順序
(6)放棄原則
【高中數(shù)學(xué)解題技巧】相關(guān)文章:
高中數(shù)學(xué)二次函數(shù)解題技巧09-10
議論文閱讀解題技巧03-05
高中語(yǔ)文閱讀理解解題技巧02-20
高中英語(yǔ)考試解題技巧09-23