當前位置:育文網>素材>手抄報> 簡單漂亮的數學手抄報

簡單漂亮的數學手抄報

時間:2022-05-08 21:44:13 手抄報 我要投稿
  • 相關推薦

簡單漂亮的數學手抄報

  《數學課程標準》重視學生應用數學解決實際問題的能力以及通過數學的學習活動,情感與態(tài)度方面有新的發(fā)展。以下是簡單漂亮的數學手抄報,歡迎閱讀。

簡單漂亮的數學手抄報

  人教版五年級數學(下冊)知識要點

  第一單元 觀察物體(三)

  1、 不同角度觀察一個物體 , 看到的面都是兩個或三個相鄰的面。

  2、 不可能一次看到長方體或正方體相對的面。

  注意點

  1)這里所說的正面、左面和上面,都是相對于觀察者而言的。

  2)站在任意一個位置,最多只能看到長方體的3個面。

  3)從不同的位置觀察物體,看到的形狀可能是不同的。

  4)從一個或兩個方向看到的圖形是不能確定立體圖形的形狀的。

  5)同一角度觀察不同的立體圖形,得到的平面圖形可能是相同,也可能是不同的。

  6)如果從物體的右面觀察,看到的不一定和從左面看到的完全相同。

  第二單元  因數和倍數

  1、整除:被除數、除數和商都是自然數,并且沒有余數。

  整數與自然數的關系:整數包括自然數。

  2、因數、倍數:大數能被小數整除時,大數是小數的倍數,小數是大數的因數。

  例:12是6的倍數,6是12的因數。

 。1)數a能被b整除,那么a就是b的倍數,b就是a的因數。因數和倍數是相互依存的,不能單獨存在。

 。2)一個數的因數的個數是有限的,其中最小的因數是1,最大的因數是它本身。

  一個數的因數的求法:成對地按順序找。

 。3)一個數的倍數的個數是無限的,最小的倍數是它本身。

  一個數的倍數的求法:依次乘以自然數。

 。4)2、3、5的倍數特征

  1) 個位上是0,2,4,6,8的數都是2的倍數。

  2)一個數各位上的數的和是3的倍數,這個數就是3的倍數。

  3)個位上是0或5的數,是5的倍數。

  4)能同時被2、3、5整除(也就是2、3、5的倍數)的最大的兩位數是90,最小的三位數是120。

  同時滿足2、3、5的倍數,實際是求2×3×5=30的倍數。

  5)如果一個數同時是2和5的倍數,那它的個位上的數字一定是0。

  3、完全數:除了它本身以外所有的因數的和等于它本身的數叫做完全數。

  如:6的因數有:1、2、3(6除外),剛好1+2+3=6,所以6是完全數,小的完全數有6、28等

  4:自然數按能不能被2整除來分:奇數、偶數。

  奇數:不能被2整除的數。叫奇數。也就是個位上是1、3、5、7、9的數。

  偶數:能被2整除的數叫偶數(0也是偶數),也就是個位上是0、2、4、6、8的數。

  最小的奇數是1,最小的偶數是0.

  關系: 奇數+、- 偶數=奇數

  奇數+、- 奇數=偶數

  偶數+、-偶數=偶數。

  5、自然數按因數的個數來分:質數、合數、1、0四類.

  質數(或素數):只有1和它本身兩個因數。

  合數:除了1和它本身還有別的因數(至少有三個因數:1、它本身、別的因數)。

  1: 只有1個因數!1”既不是質數,也不是合數。

  最小的質數是2,最小的合數是4,連續(xù)的兩個質數是2、3。

  每個合數都可以由幾個質數相乘得到,質數相乘一定得合數。

  20以內的質數:有8個(2、3、5、7、11、13、17、19)

  100以內的質數有25個:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97

  100以內找質數、合數的技巧:

  看是否是2、3、5、7、11、13…的倍數,是的就是合數,不是的就是質數。

  關系:奇數×奇數=奇數

  質數×質數=合數

  6、最大、最小

  A的最小因數是:1;

  A的最大因數是:A;

  A的最小倍數是:A;

  最小的自然數是:0;

  最小的奇數是:1;

  最小的偶數是:0;

  最小的質數是:2;

  最小的合數是:4;

  7、分解質因數:把一個合數分解成多個質數相乘的形式。

  用短除法分解質因數 (一個合數寫成幾個質數相乘的形式)。

  比如:30分解質因數是:(30=2×3×5)

  8、互質數:公因數只有1的兩個數,叫做互質數。

  兩個質數的互質數:5和7

  兩個合數的互質數:8和9

  一質一合的互質數:7和8

  兩數互質的特殊情況:

 、1和任何自然數互質;

  ⑵相鄰兩個自然數互質;

 、莾蓚質數一定互質;

 、2和所有奇數互質;

 、少|數與比它小的合數互質;

  9、公因數、最大公因數

  幾個數公有的因數叫這些數的公因數。其中最大的那個就叫它們的最大公因數。

  用短除法求兩個數或三個數的最大公因數 (除到互質為止,把所有的除數連乘起來)

  幾個數的公因數只有1,就說這幾個數互質。

  如果兩數是倍數關系時,那么較小的數就是它們的最大公因數。

  如果兩數互質時,那么1就是它們的最大公因數。

  10、公倍數、最小公倍數

  幾個數公有的倍數叫這些數的公倍數。其中最小的那個就叫它們的最小公倍數。

  用短除法求兩個數的最小公倍數(除到互質為止,把所有的除數和商連乘起來)

  用短除法求三個數的最小公倍數(除到兩兩互質為止,把所有的除數和商連乘起來)

  如果兩數是倍數關系時,那么較大的數就是它們的最小公倍數。

  如果兩數互質時,那么它們的積就是它們的最小公倍數。

  11、求最大公因數和最小公倍數方法

  用12和16來舉例

  1、求法一:(列舉求同法)

  最大公因數的求法:

  12的因數有:1、12、2、6、3、4

  16的因數有:1、16、2、8、4

  最大公因數是4

  最小公倍數的求法:

  12的倍數有:12、24、36、48、…

  16的倍數有:16、32、48、…

  最小公倍數是48

  2、求法二:(分解質因數法)

  12=2×2×3

  16=2×2×2×2

  最大公因數是:

  2×2=4(相同乘)

  最小公倍數是:

  2×2×3×2×2= 48(相同乘×不同乘)

  第三單元  長方體和正方體

  1、由6個長方形(特殊情況有兩個相對的面是正方形)圍成的立體圖形叫做長方體。兩個面相交的邊叫做棱。三條棱相交的點叫做頂點。相交于一個頂點的三條棱的長度分別叫做長方體的長、寬、高。

  長方體特點:

 。1)有6個面,8個頂點,12條棱,相對的面的面積相等,相對的棱的長度相等。

 。2)一個長方體最多有6個面是長方形,最少有4個面是長方形,最多有2個面是正方形。

  2、由6個完全相同的正方形圍成的立體圖形叫做正方體(也叫做立方體)。

  正方體特點:

 。1)正方體有12條棱,它們的長度都相等。

 。2)正方體有6個面,每個面都是正方形,每個面的面積都相等。

 。3)正方體可以說是長、寬、高都相等的長方體,它是一種特殊的長方體。

  相

  同

  點

  不同點

  面

  棱

  長方體

  都有6個面,12條棱,8個頂點。

  6個面都是長方形。

 。ㄓ锌赡苡袃蓚相對的面是正方形)。

  相對的棱的長度都相等

  正方體

  6個面都是正方形。

  12條棱都相等。

  3、長方體、正方體有關棱長計算公式:

  長方體的棱長總和=(長+寬+高)×4=長×4+寬×4+高×4

  L=(a+b+h)×4

  長=棱長總和÷4-寬 -高

  a=L÷4-b-h(huán)

  寬=棱長總和÷4-長 -高

  b=L÷4-a-h(huán)

  高=棱長總和÷4-長 -寬

  h=L÷4-a-b

  正方體的棱長總和=棱長×12

  L=a×12

  正方體的棱長=棱長總和÷12

  a=L÷12

  4、長方體或正方體6個面和總面積叫做它的表面積。

  長方體的表面積=(長×寬+長×高+寬×高)×2

  S=2(ab+ah+bh)

  無底(或無蓋)

  長方體表面積= 長×寬+(長×高+寬×高)×2

  S=2(ab+ah+bh)-ab

  S=2(ah+bh)+ab

  無底又無蓋長方體表面積=(長×高+寬×高)×2

  S=2(ah+bh)

  貼墻紙

  正方體的表面積=棱長×棱長×6    S=a×a×6 用字母表示:S= 6a2

  生活實際:

  油箱、罐頭盒等都是6個面

  游泳池、魚缸等都只有5個面

  水管、煙囪等都只有4個面。

  注意1:用刀分開物體時,每分一次增加兩個面。(表面積相應增加)

  注意2:長方體或正方體的長、寬、高同時擴大幾倍,表面積會擴大倍數的平方倍。

 。ㄈ玳L、寬、高各擴大2倍,表面積就會擴大到原來的4倍)。

  5、物體所占空間的大小叫做物體的體積。

  長方體的體積=長×寬×高    V=abh

  長=體積÷寬÷高   a=V÷b÷h

  寬=體積÷長÷高     b=V÷a÷h

  高=體積÷長÷寬     h= V÷a÷b

  正方體的體積=棱長×棱長×棱長

  V=a×a×a = a3

  讀作“a的立方”表示3個a相乘,(即a·a·a)

  長方體或正方體底面的面積叫做底面積。

  長方體(或正方體)的體積=底面積×高

  用字母表示:V=S h(橫截面積相當于底面積,長相當于高)。

  注意:一個長方體和一個正方體的棱長總和相等,但體積不一定相等。

  6、箱子、油桶、倉庫等所能容納物體的體積,通常叫做他們的容積。

  固體一般就用體積單位,計量液體的體積,如水、油等。

  常用的容積單位有升和毫升也可以寫成L和ml。

  1升=1立方分米

  1毫升=1立方厘米

  1升=1000毫升

  (1L = 1dm3   1ml = 1cm3)

  長方體或正方體容器容積的計算方法,跟體積的計算方法相同。

  但要從容器里面量長、寬、高。(所以,對于同一個物體,體積大于容積。)

  注意:長方體或正方體的長、寬、高同時擴大幾倍,體積就會擴大倍數的立方倍。

 。ㄈ玳L、寬、高各擴大2倍,體積就會擴大到原來的8倍)。

  *形狀不規(guī)則的物體可以用排水法求體積,形狀規(guī)則的物體可以用公式直接求體積。

  排水法的公式:

  V物體 =V現在-V原來

  也可以 V物體 =S×(h現在- h原來)

  V物體 =S×h升高

  8、【體積單位換算】

  大單位×進率=小單位

  小單位÷進率=大單位

  進率:1立方米=1000立方分米=1000000立方厘米(立方相鄰單位進率1000)

  1立方分米=1000立方厘米=1升=1000毫升

  1立方厘米=1毫升

  1平方米=100平方分米=10000平方厘米

  1平方千米=100公頃=1000000平方米

  注意:長方體與正方體關系

  把長方體或正方體截成若干個小長方體(或正方體)后,表面積增加了,體積不變。

  重量單位進率,時間單位進率,長度單位進率

  大單位×進率=小單位

  小單位÷進率=大單位

  長度單位:

  1千米 =1000 米  1 分米=10 厘米

  1厘米=10毫米  1分米=100毫米

  1米=10分米=100厘米=1000毫米

  (相鄰單位進率10)

  面積單位:

  1平方千米=100公頃

  1平方米=100平方分米

  1平方分米=100平方厘米

  1公頃=10000平方米(平方相鄰單位進率100)

  質量單位:

  1噸=1000千克

  1千克=1000克

  人民幣:

  1元=10角 1角=10分 1元=100分

  第四單元  分數的意義和性質

  1、分數的意義:一個物體、一物體等都可以看作一個整體,把這個整體平均分成若干份,這樣的一份或幾份都可以用分數來表示。

  2、單位“1”:一個整體可以用自然數1來表示,通常把它叫做單位“1”。(也就是把什么平均分什么就是單位“1”。)

  3、分數單位:把單位“1”平均分成若干份,表示其中一份的數叫做分數單位。如4/5的分數單位是1/5。

  4、分數與除法

  A÷B=A/B(B≠0,除數不能為0,分母也不能夠為0) 例如:4÷5=4/5

  5、真分數和假分數、帶分數

  1、真分數:分子比分母小的分數叫真分數。真分數<1。

  2、假分數:分子比分母大或分子和分母相等的分數叫假分數。假分數≧1

  3、帶分數:帶分數由整數和真分數組成的分數。帶分數>1.

  4、真分數<1≤假分數

  真分數<1<帶分數

  6、假分數與整數、帶分數的互化

 。1)假分數化為整數或帶分數,用分子÷分母,商作為整數,余數作為分子, 如:

  (2)整數化為假分數,用整數乘以分母得分子 如:

  (3)帶分數化為假分數,用整數乘以分母加分子,得數就是假分數的分子,分母不變,如:

 。4)1等于任何分子和分母相同的分數。如:

  7、分數的基本性質:

  分數的分子和分母同時乘以或除以相同的數(0除外),分數的大小不變。

  8、最簡分數:分數的分子和分母只有公因數1,像這樣的分數叫做最簡分數。

  一個最簡分數,如果分母中除了2和5以外,不含其他的質因數,就能夠化成有限小數。反之則不可以。

  9、約分:把一個分數化成和它相等,但分子和分母都比較小的分數,叫做約分。

  如:24/30=4/5

  10、通分:把異分母分數分別化成和原來相等的同分母分數,叫做通分。

  如:2/5和1/4  可以化成8/20和5/20

  11、分數和小數的互化

 。1)小數化為分數:數小數位數。一位小數,分母是10;兩位小數,分母是100……

  如:

  0.3=3/10 0.03=3/100 0.003=3/1000

 。2)分數化為小數:

  方法一:把分數化為分母是10、100、1000……

  如:3/10=0.3   3/5=6/10=0.6

  1/4=25/100=0.25

  方法二:用分子÷分母

  如:3/4=3÷4=0.75

 。3)帶分數化為小數:

  先把整數后的分數化為小數,再加上整數

  12、比分數的大小:

  分母相同,分子大,分數就大;

  分子相同,分母小,分數才大。

  分數比較大小的一般方法:同分子比較;通分后比較;化成小數比較。

  13、分數化簡包括兩步:一是約分;二是把假分數化成整數或帶分數。

  1/2=0.5   1/4=0.25   3/4=0.75

  1/5=0.2   2/5=0.4    3/5=0.6

  4/5=0.8

  1/8=0.125  3/8=0.375  5/8=0.625   7/8=0.875  1/20=0.05  1/25=0.04

  14、兩個數互質的特殊判斷方法:

 、 1和任何大于1的自然數互質。

 、 2和任何奇數都是互質數。

 、 相鄰的兩個自然數是互質數。

 、 相鄰的兩個奇數互質。

 、 不相同的兩個質數互質。

 、蕻斠粋數是合數,另一個數是質數時(除了合數是質數的倍數情況下),一般情況下這兩個數也都是互質數。

  15、求最大公因數的方法:

 、 倍數關系:最大公因數就是較小數。

  ② 互質關系:最大公因數就是1

 、 一般關系:從大到小看較小數的因數是否是較大數的因數。

  16、分數知識圖解:

  第五單元  圖形運動三

  圖形變換的基本方式是平移、對稱和旋轉。

  1、軸對稱:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸。

 。1)學過的軸對稱平面圖形:長(正)方形、圓形、等腰三角形、等邊三角形、等腰梯形……

  等腰三角形有1條對稱軸,

  等邊三角形有3條對稱軸,

  長方形有2條對稱軸,

  正方形有4條對稱軸,

  等腰梯形有1條對稱軸,

  任意梯形和平行四邊形不是軸對稱圖形。

  (2)圓有無數條對稱軸。

 。3)對稱點到對稱軸的距離相等。

 。4)軸對稱圖形的特征和性質:

  ①對應點到對稱軸的距離相等;

 、趯c的連線與對稱軸垂直;

 、蹖ΨQ軸兩邊的圖形大小、形狀完全相同。

 。5)對稱圖形包括軸對稱圖形和中心對稱圖形。平行四邊形(除棱形)屬于中心對稱圖形。

  2、旋轉:在平面內,一個圖形繞著一個頂點旋轉一定的角度得到另一個圖形的變化較做旋轉,定點O叫做旋轉中心,旋轉的角度叫做旋轉角,原圖形上的一點旋轉后成為的另一點成為對應點。

  (1)生活中的旋轉:電風扇、車輪、紙風車

 。2)旋轉要明確繞點,角度和方向。

 。3)長方形繞中點旋轉180度與原來重合,正方形繞中點旋轉90度與原來重合。等邊三角形繞中點旋轉120度與原來重合。

  旋轉的性質:

 。1)圖形的旋轉是圖形上的每一點在平面上繞某個固定點旋轉固定角度的位置移動;

 。2)其中對應點到旋轉中心的距離相等;

 。3)旋轉前后圖形的大小和形狀沒有改變;

 。4)兩組對應點非別與旋轉中心的連線所成的角相等,都等于旋轉角;

 。5)旋轉中心是唯一不動的點。

  3、對稱和旋轉的畫法:旋轉要注意:順時針、逆時針、度數

  第六單元  分數的加減法

  1、分數數的加法和減法

 。1) 同分母分數加、減法  (分母不變,分子相加減)

  (2) 異分母分數加、減法  (通分后再加減)

  (3) 分數加減混合運算:同整數。

 。4) 結果要是最簡分數

  2、帶分數加減法:

  帶分數相加減,整數部分和分數部分分別相加減,再把所得的結果合并起來。

  附:具體解釋

 。ㄒ唬┩帜阜謹导印p法

  1、同分母分數加、減法:

  同分母分數相加、減,分母不變,只把分子相加減。

  2、計算的結果,能約分的要約成最簡分數。

  (二)異分母分數加、減法

  1、分母不同,也就是分數單位不同,不能直接相加、減。

  2、異分母分數的加減法:

  異分母分數相加、減,要先通分,再按照同分母分數加減法的方法進行計算。

 。ㄈ┓謹导訙p混合運算

  1、分數加減混合運算的運算順序與整數加減混合運算的順序相同。

  在一個算式中,如果有括號,應先算括號里面的,再算括號外面的;如果只含有同一級運算,應從左到右依次計算。

  2、整數加法的交換律、結合律對分數加法同樣適用。

  第七單元  統(tǒng)計

  1、眾數: 一組數據中出現次數最多的一個數或幾個數,就是這組數據的眾數。

  眾數能夠反映一組數據的集中情況。

  在一組數據中,眾數可能不止一個,也可能沒有眾數。

  2、中位數:

 。1)按大小排列;

 。2)如果數據的個數是單數,那么最中間的那個數就是中位數;

 。3)如果數據的個數是雙數,那么最中間的那兩個數的平均數就是中位數。

  3、平均數的求法:

  總數÷總份數=平均數

  4、一組數據的一般水平:

 。1)當一組數據中沒有偏大偏小的數,也沒有個別數據多次出現,用平均數表示一般水平。

 。2)當一組數據中有偏大或偏小的數時,用中位數來表示一般水平。

  (3)當一組數據中有個別數據多次出現,就用眾數來表示一般水平。

  5、平均數、中位數和眾數的聯系與區(qū)別:

 、 平均數:

  一組數據的總和除以這組數據個數所得到的商叫這組數據的平均數。

  容易受極端數據的影響,表示一組數據的平均情況。

 、 中位數:

  將一組數據按大小順序排列,處在最中間位置的一個數叫做這組數據的中位數 。

  它不受極端數據的影響,表示一組數據的一般情況。

 、 眾數:

  在一組數據中出現次數最多的數叫做這組數據的眾數。

  它不受極端數據的影響,表示一組數據的集中情況。

  5、統(tǒng)計圖:我們學過——條形統(tǒng)計圖、復式折線統(tǒng)計圖。

  條形統(tǒng)計圖優(yōu)點:條形統(tǒng)計圖能形象地反映出數量的多少。

  折線統(tǒng)計圖優(yōu)點:折線統(tǒng)計圖不僅能表示出數量的多少,還能反映出數量的變化情況。

  注:① 畫圖時注意:

  一“點”(描點)、 二“連”(連線)、三“標”(標數據)。

 、谝貌煌木段分別連接兩組數據中的數。

  6、 打電話:

  規(guī)律——人人不閑著,每人都在傳。(技巧:已知人數依次 × 2)

 。1)逐個法:所需時間最多。

  (2)分組法:相對節(jié)約時間。

 。3)同時進行法:最節(jié)約時間

  第八單元  數學廣角

  用天平找次品規(guī)律:

  1、把所有物品盡可能平均地分成3份,(如余1則放入到最后一份中;如余2則分別放入到前兩份中),保證找出次品而且稱的次數一定最少。

  2、數目與測試的次數的關系:

  2~3個物體,保證能找出次品需要測的次數是1次

  4~9個物體,保證能找出次品需要測的次數是2次

  10~27個物體,保證能找出次品需要測的次數是3次

  28~81個物體,保證能找出次品需要測的次數是4次

  82~243個物體,保證能找出次品需要測的次數是5次

  244~729個物體,保證能找出次品需要測的次數是6次

  小學數學趣味小知識

  在我們的生活中到處都蘊含著數學知識,今天就給同學們介紹幾個數學趣味小知識:

  一、抽屜原理的應用

  947年,匈牙利數學家把這一原理引進到中學生數學競賽中,當年匈牙利全國數學競賽有一道這樣的試題:“證明在任何六個人中,一定可以找到三個互相認識的人,或者三個互不認識的人!边@個問題乍看起來,似乎令人匪夷所思。但如果你懂得抽屜原理,要證明這個問題是十分簡單的。我們用A、B、C、D、E、F代表六個人,從中隨便找一個,例如A吧,把其余五個人放到“與A認識”和“與A不認識”兩個“抽屜”里去,根據抽屜原理,至少有一個抽屜里有三個人。不妨假定在“與A認識”的抽屜里有三個人,他們是B、C、D。如果B、C、D三人互不認識,那么我們就找到了三個互不認識的人;如果B、C、D三人中有兩個互相認識,例如B與C認識,那么,A、B、C就是三個互相認識的人。不管哪種情況,本題的結論都是成立的。由于這個試題的形式新穎,解法巧妙,很快就在全世界廣泛流傳,使不少人知道了這一原理。其實,抽屜原理不僅在數學中有用,在現實生活中也到處在起作用,如招生錄取、就業(yè)安排、資源分配、職稱評定等等,都不難看到抽屜原理的作用。

  二、雞兔同籠

  你以前聽說過“雞兔同籠”問題嗎?這個問題,是我國古代著名趣題之一。大約在1500年前,《孫子算經》中就記載了這個有趣的問題。書中是這樣敘述的:“今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數,有35個頭;從下面數,有94只腳。求籠中各有幾只雞和兔?你會解答這個問題嗎?你想知道《孫子算經》中是如何解答這個問題的嗎?解答思路是這樣的:假如砍去每只雞、每只兔一半的腳,則每只雞就變成了“獨角雞”,每只兔就變成了“雙腳兔”。這樣,(1)雞和兔的腳的總數就由94只變成了47只;(2)如果籠子里有一只兔子,則腳的總數就比頭的總數多1。因此,腳的總只數47與總頭數35的差,就是兔子的只數,即47-35=12(只)。顯然,雞的只數就是35-12=23(只)了。這一思路新穎而奇特,其“砍足法”也令古今中外數學家贊嘆不已。這種思維方法叫化歸法。化歸法就是在解決問題時,先不對問題采取直接的分析,而是將題中的條件或問題進行變形,使之轉化,直到最終把它歸成某個已經解決的問題。

  三、普喬柯趣題

  普喬柯是原蘇聯著名的數學家。1951年寫成《小學數學教學法》一書。這本書中有下面一道有趣的題。商店里三天共賣出1026米布。第二天賣出的是第一天的2倍;第三天賣出的是第二天的3倍。求三天各賣出多少米布?這道題可以這樣想:把第一天賣出布的米數看作1份。就可以畫出下面的線段圖:第一天為1份;第二天為第一天的2倍;第三天為第二天的3倍,也就是第一天的2×3倍。

  列綜合算式可求出第一天賣布的米數:1026÷(l+2+6)=1026÷9=114(米)而114×2=228(米)228×3=684(米)所以三天賣的布分別是:114米、228米、684米。請你接這種方法做一道題。有四人捐款救災。乙捐款為甲的2倍,丙捐款為乙的3倍,丁捐款為丙的4倍。他們共捐款132元。求四人各捐款多少元?

  四、鬼谷算

  我國漢代有位大將,名叫韓信。他每次集合**,只要求部下先后按l~3、1~5、1~7報數,然后再報告一下各隊每次報數的余數,他就知道到了多少人。他的這種巧妙算法,人們稱為鬼谷算,也叫隔墻算,或稱為韓信點兵,外國人還稱它為“中國剩余定理”。到了明代,數學家程大位用詩歌概括了這一算法,他寫道:三人同行七十稀,五樹梅花廿一枝,七子團圓月正半,除百零五便得知。這首詩的意思是:用3除所得的余數乘上70,加上用5除所得余數乘以21,再加上用7除所得的余數乘上15,結果大于105就減去105的倍數,這樣就知道所求的數了。比如,一籃雞蛋,三個三個地數余1,五個五個地數余2,七個七個地數余3,籃子里有雞蛋一定是52個。算式是:1×70+2×21+3×15=157157-105=52(個)請你根據這一算法計算下面的題目。新華小學訂了若干張《中國少年報》,如果三張三張地數,余數為1張;五張五張地數,余數為2張;七張七張地數,余數為2張。新華小學訂了多少張《中國少年報》呢?

  以上的這些趣味小知識是不是很有意思呢?同學們只要我們在生活中用數學的眼光去觀察,用數學的頭腦去思考,相信你們也會成功的!

【簡單漂亮的數學手抄報】相關文章:

自然手抄報簡單又漂亮10-01

童話手抄報簡單又漂亮09-29

簡單漂亮的足球手抄報10-01

簡單又漂亮衛(wèi)生推廣手抄報10-02

讀書手抄報圖片簡單又漂亮09-29

簡單又漂亮的三國手抄報10-01

植樹節(jié)手抄報簡單漂亮09-27

植樹節(jié)手抄報簡單又漂亮09-22

2020抗擊疫情簡單又漂亮手抄報10-18