當前位置:育文網(wǎng)>教學文檔>說課稿> 勾股定理說課稿

勾股定理說課稿

時間:2021-12-30 23:28:34 說課稿 我要投稿
  • 相關(guān)推薦

【必備】勾股定理說課稿4篇

  作為一位兢兢業(yè)業(yè)的人民教師,時常會需要準備好說課稿,寫說課稿能有效幫助我們總結(jié)和提升講課技巧。我們應(yīng)該怎么寫說課稿呢?下面是小編精心整理的勾股定理說課稿4篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

【必備】勾股定理說課稿4篇

勾股定理說課稿 篇1

  一、說教材

  (一)教材分析

  本節(jié)內(nèi)容選自人教版八年級數(shù)學下冊第17章第二節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學習的一個直角三角形的判定定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學習中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計算的方法來證明幾何問題的思想,為將來學習解析幾何埋下了伏筆。

  (二)教學目標

  根據(jù)數(shù)學課標的要求和教材的具體內(nèi)容,結(jié)合學生實際我確定了本節(jié)課的教學目標。

  知識技能:

  理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。

  掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形。

  了解逆命題的概念,以及原命題為真時,它的逆命題不一定為真。

  過程方法:

  1、通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成的過程

  2、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)形結(jié)合方法的應(yīng)用

  3、通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關(guān)問題。

  情感態(tài)度:

  在探究勾股定理的逆定理的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神

 。ㄈ⿲W情分析

  盡管已到初二下學期的學生知識增多,能力增強,但思維的局限性還很大,能力之間也有差距,而利用“構(gòu)造法”證明勾股定理的逆定理學生第一次見到,它要求根據(jù)已知條件構(gòu)造一個直角三角形,根據(jù)學生的智能狀況,學生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點,而勾股定理逆定理的應(yīng)用是本節(jié)重點

  重點:勾股定理逆定理的應(yīng)用

  難點:勾股定理逆定理的證明

  二、說教法學法

  數(shù)學課程不僅注重知識、技能,以及情感意識和創(chuàng)造力的培養(yǎng),同樣注重社會實踐和體驗,教學要遵循以教師為主導(dǎo),學生為主體的原則,因此我采用的教法學法如下:

  在教學中以小組合作,自主探索為形式,采用“提問引導(dǎo)法”,通過“提出疑問”來啟發(fā)誘導(dǎo)學生,讓學生自覺主動地去分析問題、解決問題,學生在操作過程中不斷“發(fā)現(xiàn)問題——解決問題”,變學生“學會”為“會學”.這樣不僅使學生學習目標明確,而且能夠培養(yǎng)他們的.合作精神和自主學習的能力。根據(jù)學法指導(dǎo)自主性和差異性原則,本節(jié)我主要采用自主探究學習法,通過設(shè)計一系列問題,引導(dǎo)學生主動探究新知,體現(xiàn)學習自主性,從不同層面發(fā)掘不同學生的不同能力。

  三、說教學準備

  1、多媒體教學課件

  2、紙片、直尺、圓規(guī)等

  3、對學生事先分組

  四、說教學過程

  根據(jù)本課教學內(nèi)容以及數(shù)學課程學科特點,結(jié)合八年級學生的實際認知水平,我設(shè)計了如下六個教學環(huán)節(jié):

  (一)復(fù)習提問、引入新課

  問題1:前面我們學習了勾股定理,你能說出它的題設(shè)和結(jié)論嗎?

  問題2:若一個三角形三邊具有a2+b2=c2,能否確定這個三角形是直角三角形?

  (二)動手操作、觀察猜想

  探究一:分組做實驗

  第一組同學每人畫一個邊長為3cm、4 cm、5 cm的三角形;

  第二組同學每人畫一個邊長為2.5 cm、6 cm、7.5 cm的三角形;

  第三組同學每人畫一個邊長為4 cm、7.5 cm、8.5 cm的三角形;

  第四組同學每人畫一個邊長為2 cm、5 cm、6 cm的三角形。

  問題1:觀察這些三角形,它們分別是什么形狀呢?并測量驗證

  問題2:前三個三角形三邊具有怎樣的關(guān)系呢?

  問題3: 結(jié)合三角形三邊長度的平方關(guān)系,你能猜一猜三角形的三邊長度與三角形的形狀之間有怎樣的關(guān)系嗎?

  學生活動:動手、觀察、測量、思考、猜想

  設(shè)計意圖:由特殊到一般,歸納猜想得出勾股定理的逆命題,既培養(yǎng)學生動手操作能力和尋求解決數(shù)學問題的一般方法,又體驗了數(shù)與形的內(nèi)在聯(lián)系。

 。ㄈ⿲嵺`驗證,歸納證明

  教師出示問題

  問題1:對于一個真命題,它的逆命題是否也為真?學生舉例說明。

  勾股定理的逆命題是否也正確?怎么證明?

  問題2:三邊長度分別3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關(guān)系,你是怎樣得到的?(出示紙片)

  問題3:你能否借鑒問題2的方法來證明勾股定理的逆命題呢?

  學生活動:觀察思考,動手操作,分組討論,交流合作(教師引導(dǎo)學生主動探索,在師生互動中完成證明,得到勾股定理的逆定理)

  設(shè)計意圖:把“構(gòu)造直角三角形”這一方法的獲取過程交給學生,讓他們在不斷的嘗試、探究的過程中,親身體驗參與發(fā)現(xiàn)的愉悅,有效地突破本節(jié)的難點。

勾股定理說課稿 篇2

  一、教材分析

  勾股定理是學生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行學習的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。

  據(jù)此,制定教學目標如下:

  1、理解并掌握勾股定理及其證明。

  2、能夠靈活地運用勾股定理及其計算。

  3、培養(yǎng)學生觀察、比較、分析、推理的能力。

  4、通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

  教學重點:勾股定理的證明和應(yīng)用。

  教學難點:勾股定理的證明。

  二、教法和學法

  教法和學法是體現(xiàn)在整個教學過程中的,本課的教法和學法體現(xiàn)如下特點:

  1、以自學輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運用各種手段激發(fā)學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。

  2、切實體現(xiàn)學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。

  3、通過演示實物,引導(dǎo)學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望。

  三、教學程序

  本節(jié)內(nèi)容的教學主要體現(xiàn)在學生動手、動腦方面,根據(jù)學生的認知規(guī)律和學習心理,教學程序設(shè)計如下:

  (一)創(chuàng)設(shè)情境 以古引新

  1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發(fā)學生求知欲。

  2、是不是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學生進入樂學狀態(tài)。

  3、板書課題,出示學習目標。

 。ǘ┏醪礁兄 理解教材

  教師指導(dǎo)學生自學教材,通過自學感悟理解新知,體現(xiàn)了學生的自主學習意識,鍛煉學生主動探究知識,養(yǎng)成良好的'自學習慣。

 。ㄈ┵|(zhì)疑解難 討論歸納

  1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發(fā)學生的表現(xiàn)欲。

  2、教師引導(dǎo)學生按照要求進行拼圖,觀察并分析;

 。1)這兩個圖形有什么特點?

  (2)你能寫出這兩個圖形的面積嗎?

 。3)如何運用勾股定理?是否還有其他形式?

  這時教師組織學生分組討論,調(diào)動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,教師學生共同歸納,形成一致意見,最終解決疑難。

 。ㄋ模╈柟叹毩 強化提高

  1、出示練習,學生分組解答,并由學生總結(jié)解題規(guī)律。課堂教學中動靜結(jié)合,以免引起學生的疲勞。

  2、出示例1學生試解,教師學生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習,進一步提高學生運用知識的能力,對練習中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。

  (五)歸納總結(jié) 練習反饋

  引導(dǎo)學生對知識要點進行總結(jié),梳理學習思路。分發(fā)自我反饋練習,學生獨立完成。

  本課意在創(chuàng)設(shè)愉悅和諧的樂學氣氛,優(yōu)化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的教師學生關(guān)系。加強教師學生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創(chuàng)新精神和實踐能力得到培養(yǎng)。

勾股定理說課稿 篇3

各位專家領(lǐng)導(dǎo):

  上午好!今天我說課的課題是《勾股定理》。

  一、教材分析:

  (一)本節(jié)內(nèi)容在全書和章節(jié)的地位。

  這節(jié)課是九年制義務(wù)教育課程標準實驗教科書(華東版),八年級第十九章第二節(jié)“勾股定理”第一課時。勾股定理是學生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進行學習的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形的主要依據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系比較,理解勾股定理,以便于正確的進行運用。

  (二)三維教學目標:

  1、知識與能力目標。

  (1)理解并掌握勾股定理的內(nèi)容和證明,能夠靈活運用勾股定理及其計算;

 。2)通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。

  2、過程與方法目標。

  在探索勾股定理的過程中,讓學生經(jīng)歷“觀察-猜想-歸納-驗證”的數(shù)學思想,并體會數(shù)形結(jié)合和從特殊到一般的思想方法。

  3、情感態(tài)度與價值觀。

  通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學生的民族自豪感和鉆研精神。

  (三)教學重點、難點:

  1、教學重點:勾股定理的證明與運用

  2、教學難點:用面積法等方法證明勾股定理

  3、難點成因:

  對于勾股定理的得出,首先需要學生通過動手操作,在觀察的基礎(chǔ)上,大膽猜想數(shù)學結(jié)論,而這需要學生具備一定的分析、歸納的思維方法和運用數(shù)學的思想意識,但學生在這一方面的可預(yù)見性和耐挫折能力并不是很成熟,從而形成困難。

  4、突破措施:

 。1)創(chuàng)設(shè)情景,激發(fā)思維:

  創(chuàng)設(shè)生動、啟發(fā)性的問題情景,激發(fā)學生的問題沖突,讓學生在感到“有趣”、“有意思”的狀態(tài)下進入學習過程;

 。2)自主探索,敢于猜想:

  充分讓自己動手操作,大膽猜想數(shù)學問題的結(jié)論,老師是整個活動的組織者,更是一位參入者,學生之間相互交流、協(xié)作,從而形成生動的課堂環(huán)境;

 。3)張揚個性,展示風采:

  實行“小組合作制”,各小組中自己推薦一人擔任“發(fā)言人”,一人擔任“書記員”,在討論結(jié)束后,由小組的“發(fā)言人”匯報本小組的.討論結(jié)果,并可上臺利用“多媒體視頻展示臺”展示本組的優(yōu)秀作品,其他小組給予評價。這樣既保證討論的有效性,也調(diào)動了學生的學習積極性。

  二、教法與學法分析:

  1、教法分析:

  數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科,因此在教學中,不僅要使學生“知其然”,而且還要使學生“知其所以然”。針對初二年級學生的認知結(jié)構(gòu)和心理特征,本節(jié)課可選擇“引導(dǎo)探索法”,由淺到深,由特殊到一般的提出問題。引導(dǎo)學生自主探索,合作交流,這種教學理念緊隨新課改理念,也反映了時代精神;镜慕虒W程序是“創(chuàng)設(shè)情景-動手操作-歸納驗證-問題解決-課堂小結(jié)-布置作業(yè)”六個方面。

  2、學法分析:

  新課標明確提出要培養(yǎng)“可持續(xù)發(fā)展的學生”,因此教師要有組織、有目的、有針對性的引導(dǎo)學生并參入到學習活動中,鼓勵學生采用自主探索,合作交流的研討式學習方式,培養(yǎng)學生“動手”、“動腦”、“動口”的習慣與能力,使學生真正成為學習的主人。

  三、教學過程設(shè)計:

  (一)創(chuàng)設(shè)情景:

  多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

  問題的設(shè)計有一定的挑戰(zhàn)性,目的是激發(fā)學生的探究欲望,老師要注意引導(dǎo)學生將實際問題轉(zhuǎn)化為數(shù)學問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學生會感到一些困難,從而老師指出學習了今天的這節(jié)課后,同學們就會有辦法解決了。這種以實際問題作為切入點導(dǎo)入新課,不僅自然,而且也反映了“數(shù)學來源于生活”,學習數(shù)學是為更好“服務(wù)于生活”。

  (二)動手操作:

  1、課件出示課本P99圖19.2.1:

  觀察圖中用陰影畫出的三個正方形,你從中能夠得出什么結(jié)論?

  學生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學生用語言進行描述,引導(dǎo)學生發(fā)現(xiàn)SP+SQ=SR(此時讓小組“發(fā)言人”發(fā)言),從而讓學生通過正方形的面積之間的關(guān)系發(fā)現(xiàn):對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時,則 AC2+BC2=AB2。這樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結(jié)合的思想。

  2、緊接著讓學生思考:

  上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出P100圖 19.2.2(一般直角三角形)。學生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時可讓學生在預(yù)先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能夠發(fā)現(xiàn):對于一般的以整數(shù)為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學生的動手操作、合作交流,來獲取知識,這樣設(shè)計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數(shù)學思想及學習過程,提高學生的分析問題和解決問題的能力。

  3、再問:

  當邊長不為整數(shù)的直角三角形是否也存在這一結(jié)論呢?投影例題:一個邊長分別為1.5,3.6,3.9這種含有小數(shù)的直角三角形,讓學生計算。這樣設(shè)計的目的是讓學生體會到“從特殊到一般”的情形,這樣歸納的結(jié)論更具有一般性。

  (三)歸納驗證:

  1、歸納:

  通過動手操作、合作交流,探索邊長為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長為小數(shù)的直角三角形的兩直角邊與斜邊的關(guān)系,讓學生在整個學習過程中感受學數(shù)學的樂趣,,使學生學會“文字語言”與“數(shù)學語言”這兩種表達方式,各小組“發(fā)言人”的積極表現(xiàn),整堂課充分發(fā)揮學生的主體作用,真正獲取知識,解決問題。

  2、驗證:

  先后三次驗證“勾股定理”這一結(jié)論,期間學生動手進行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學生從中體會到數(shù)形結(jié)合和從特殊到一般的數(shù)學思想,而且這一過程也有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。

  (四)問題解決:

  1、讓學生解決開始上課前所提出的問題,前后呼應(yīng),讓學生體會到成功的快樂。

  2、自學課本P101例1,然后完成P102練習。

  (五)課堂小結(jié):

  1、小組成員從內(nèi)容、數(shù)學思想方法、獲取知識的途徑進行小結(jié),后由“發(fā)言人”匯報,小組間要互相比一比,看看哪一個小組表現(xiàn)最佳。

  2、教師用多媒體介紹“勾股定理史話”。

 。1)《周髀算徑》:西周的商高(公元一千多年前)發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。

 。2)康熙數(shù)學專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創(chuàng)。

  3、目的:對學生進行愛國主義教育,激勵學生奮發(fā)向上。

  (六)布置作業(yè):

  課本P104習題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學生進一步體會定理與實際生活的聯(lián)系。

  以上內(nèi)容,我僅從“說教材”,“說學情”、“說教法”、“說學法”、“說教學過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領(lǐng)導(dǎo)對本次說課提出寶貴的意見,謝謝!

勾股定理說課稿 篇4

  一、勾股定理是我國古數(shù)學的一項偉大成就.勾股定理為我們提供了直角三角形的三邊間的數(shù)量關(guān)系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據(jù),也是判定兩條直線是否互相垂直的一個重要方法,這些成果被廣泛應(yīng)用于數(shù)學和實際生活的各個方面.教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析,使學生獲得較為直觀的`印象,通過聯(lián)系和比較,了解勾股定理在實際生活中的廣泛應(yīng)用. 據(jù)此,制定教學目標如下:

  1.知識和方法目標:通過對一些典型題目的思考,練習,能正確熟練地進行勾股定理有關(guān)計算,深入對勾股定理的理解. 2.過程與方法目標:通過對一些題目的探討,以達到掌握知識的目的.

  3.情感與態(tài)度目標:感受數(shù)學在生活中的應(yīng)用,感受數(shù)學定理的美.

  教學重點:勾股定理的應(yīng)用. 教學難點:勾股定理的正確使用.

  教學關(guān)鍵:在現(xiàn)實情境中捕抓直角三角形,確定好直角三角形之后,再應(yīng)用勾股定理.

  二.說教法和學法

  1.以自學輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運用各種手段激發(fā)學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程.

  2.切實體現(xiàn)學生的主體地位,讓學生通過觀察,分析,討論,操作,歸納理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力.

  3.通過演示實物,引導(dǎo)學生觀察,操作,分析,證明,使學生獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望.

  三、教學程序本節(jié)內(nèi)容的教學主要體現(xiàn)在學生的動手,動腦方面,根據(jù)學生的認知規(guī)律和學習心理,教學程序設(shè)置如下: 回顧問:勾股定理的內(nèi)容是什么? 勾股定理揭示了直角三角形三邊之間的關(guān)系,今天我們來學習這個定理在實際生活中的應(yīng)用.